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SOME RESULTS ON HYPERK-ALGEBRAS
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ABSTRACT. In hyperK-algebras, the notion of a bounded hyperK-algebra and a ho-
momorphism is introduced, and some properties related with a (weak) hyperK-ideal
are investigated. The zero condition in a hyperK-algebra is considered, and then it is
showed that every hyperK-algebra with the zero condition can be extended to a bounded
hyperK-algebra.

1. Imntroduction The hyper algebraic structure theory was introduced in 1934 [7] by
Marty at the 8th congress of Scandinavian Mathematiciens. Since then many researchers
have worked on this area. Tmai and Iseki in 1966 [3] introduced the notion of a BCK-algebra.
Recently Jun et al. [6] applied the hyperstructures to BCK-algebras and introduced the
concept of a hyperBCK-algebra which is a generalization of a BCK-algebra. Then Borzoei
et al. [1] defined the notion of a hyperK-algebra. For background and notations we follow
Borzoei et al. [1]. In this paper we introduced the notion of a bounded hyper K-algebra and
a homomorphism of hyperK-algebras, and then we investigate some related results. We
also consider the zero condition in hyper K-algebras. We show that every hyperK-algebra
with the zero condition can be extended to a bounded hyperK-algebra.

2. Preliminaries

Definition 2.1 ([1], Definition 3.1). By a hyperK -algebra we mean a non-empty set H

endowed with a hyperoperation “o” and a constant 0 satisfying the following conditions:

(HK1) (zoz)o(yoz)<xouy,
(HK2) (zoy)oz=(xroz)ouy,
(HK3) z < =z,

(HK4) z<yand y <z implyz =y,
(HK5) 0 <z,

for all #,y,z € H, where < y is defined by 0 € x oy and for every A, BC H, A< B is
defined by Ja € A and 3b € B such that a < b.

Example 2.2 ([1], Example 3.2). (i) Define the hyper operation “o” on H = [0,+o0) as
follows:
[0,2] if z<y
zoy:=+< (0,y] if e>y#0
{e} if y=0
for all x,y € H. Then (H,0,0) is a hyperK-algebra.
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(i) Let H = {0,a,b}. Consider the following table:

| 0 a b
{0} {0} {0}
{at {0,a} {0,a}
{6} {a,b} {0,a,b}

>R OO0

Then (H,0,0) is a hyperK-algebra.
(iii) Let H = {0, 1,2}. Consider the following table:
o 0 1 2
01{0} {0,1,2} {0 1,2}
{1t {o,1,24 {0,1,2}
20{2p {2} {012}
Then (H,0,0) is a hyperK-algebra.
Theorem 2.3 ([1], Theorem 3.7). Let (Hy,01,0) and (Ha,02,0) be two hyperK -algebra

such that Hy N Hy = {0} and H = H; U Hy. Then (H,0,0) is a hyperK -algebra, where the
hyper operation “” on H 1is defined by:

rory if v,y€ Hy
roy= o2y if z,y€ Hs
{} otherwise,
forall x,y € H, and we denote it by H1 P Ho.

Theorem 2.4 ([1], Theorem 3.9). Let (Hy,01,01) and (Ha, 02,02) be hyperK -algebras and
H = Hy x Hys. We define a hyperopration “o” on H as follows,

(al, b1) o (az, bz) = (Cl1 o1 G2, by o2 bz)
for all (a1,b1), (a2,b2) € H, where for AC Hy and B C Ha by (A, B) we mean
(A, B) ={(a,b) :a€ Ajbe B}, 0=1(01,09)

and
(al,bl) < (az,bz) Sayp < as and by < bs.

Then (H,o0,0) is a hyperK -algebra, and it is called the hyperK -product of Hy and Ha.

Definition 2.5 ([1], Definition 4.1). Let I be a non-empty subset of a hyperK-algebra
(H,0,0). Then I is called a weak hyperK -ideal of H if

(1d1) 0 €1,

(Id2) zoy C T and y € I imply that € I for all ,y € H.

Definition 2.6 ([1], Definition 4.4). Let I be a non-empty subset of a hyperK-algebra
(H,0,0). Then I is said to be a hyperK-ideal of H if

(1d1) 0 €1,

(Id3) zoy < I and y € I imply that z € I, for all ,y € H.

Note that every hyperK-ideal is a weak hyperK-ideal (see [1, Proposition 4.6]).
Definition 2.7 ([1], Definition 4.11). Let (H,0,0) be a hyperK-algebra and let S be a

[1bl

subset of H containing 0. If S is a hyperK-algebra with respect to the hyperoperation “o
on H, we say that S is a hyperK -subalgebra of H.

Theorem 2.8 ([1], Theorem 4.12). Let S be a non-empty subset of a hyperK -algebra
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(H,0,0). Then S is a hyperK -subalgebra of H if and only if x oy C S for all z,y € S.

3. Bounded hyperK-algebras

Definition 3.1. Let (H,0,0) be a hyperK-algebra. If there exists an element e € H such
that x < e for all x € H, then H is called a bounded hyperK -algebra and e is said to be the
unit of H.

Note that (HK4) implies that the unit of H is unique.

Example 3.2. (i) Let (X, *,0) be a bounded BCK-algebra. Define the hyper operation

“0” on X as follows:

voy={xxy}, Ve,yeX.

Then (X, 0,0) is a bounded hyperK-algebra.

(ii) The hyperK-algebra (H,o,0) in Example 2.2(i) is not bounded, because if a € H is
unit, then (a+1)oa=(0,a]. Thus 0 ¢ (a +1)oa,ie,a+ 1+ a.

(iii) In Example 2.2(ii), H is bounded and b € H is unit.

(iv) The hyperK-algebra (H,o,0) in Example 2.2(iii) is bounded and 2 € H is unit.
Proposition 3.3. Let Hy and Hy be two bounded hyperK-algebras. Then the hyperk -
product Hy x Hy of H1 and Hs s also bounded.

Proof. Let e; € Hy and ey € Hy be units and (#,y) € Hy x Ha. Then z < €1 and y < es
and so (x,y) < (e1,e2). Therefore Hy x Hs is bounded and (e, eq) is its unit. O

The following example shows that if H; and Hy are two bounded hyperK-algebras, then
Hy @ Hs may not be bounded. For the notation Hy @& Hs, we follow Borzoei [1].

Example 3.4. Let H; and Hy be hyperK-algebras as in Examples 2.2(ii) and 2.2(iii)
respectively. Then H; and Hs are bounded, while Hy @& H> is not bounded.

Definition 3.5. Let H be a hyperK-algebra. If 0oz = {0} for all # € H, then we say that
H satisfies the zero condition.

Example 3.6. Let H be a hyperK-algebra as in Example 2.2(i). Then H satisfies the zero
condition.

Theorem 3.7. Let (Hy,01,0) be a hyperK-algebra, which satisfies the zero condition. Then
(H1,01,0) can be extended to a bounded hyperK-algebra.

Proof. Let e ¢ Hy and H = Hy U {e}. Define the hyper operation “o” on H as follows:

{e} ife=e ye€ H
{0} ifz—e y—e
{0,2} ifeeH,y=c¢
xory ife,ye Hy,

roy =

for all x,y € H. We show that (H,o,0) is a bounded hyperK-algebra and e is its unit.
(HK1): If #,y, z € Hy, then by hypothesis (HK1) holds. Thus let at least one of 2,y and
zequaltoe. If x = e and y,z € Hy, then

(eoz)o(yoz)=He}o(yoz)={et<{e}=eoy.
If z=cand x,y € Hy, then

(zoe)o(yoe)={0,2}o{0,y} =(000)U(0oy)U(xol)U(zoy) <zoy.
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If y=¢€ and z,z € Hy, then
(zoz)o(eoz)=(roz)of{e}={0}U(zoz)<{0,x} =zoe.
If z=2=¢e and y € Hy, then since 0 < e we have
(coe)o(yoc)={0}o {0y} =(000)U(Doy) <{e} =coy.
Ify=z2=ceand x € Hy, then
(zoe)o(eoe)={0,2}o{0} =(000)U(z00) < {0,z}=zoce.
If xr =y=2=c¢e, then
(coe)o(coe)={0}o{0} < {0} =coc.
(HK2): If #,y,z € Hy, then (HK2) holds. Thus we let at least one of 2, y, z equal to e.
If z=eand y,z € Hy, then
(cop)or={e}oz={c}={choy=(coz)oc.
If y=-¢e and z,z € Hy, then since H; satisfies the zero condition we get that
(zoe)oz={0,z}oz=(00z)U(zoz)={0tU(zoz)=(roz)U{0} =(zoz)oe.
If z=y=eand z € Hy, then since H; satisfies the zero condition we have
(eoe)oz={0}oz={0}={e}oe=(eoz)oe.

(HK3) Since e o e = {0}, thus 0 € e o ¢ and consequently e < e.

(HK4) and (HKb) are proved easily. Hence (H,0,0) is a hyper K-algebra. Moreover,
since for any « # e, we have z o e = {0, z}, thus « < e. In other words (I, 0,0) is bounded
with unit e. O

4. Homomorphisms of hyperK-algebras

Definition 4.1. Let H; and Hs be two hyperK-algebras. A mapping f : Hy — H is said
to be a homomorphism if

() £(0) =0

(i) f(zoy) = f(x)o fly), Yo,y € Hy.

If fis 1-1 (or onto) we say that f is a monomorphism (or epimorphism). And if f is
both 1-1 and onto, we say that f is an isomorphism.

Example 4.2. Let H be as in Example 2.2(i) and ¢ € R be constant. Define
f:H—H, f(z)=te, Yeel.

Then f is an isomorphism of hyperK-algebras. To do this, let z,y € H and # < y. Then
te <ty and thus f(zoy) = f([0,z]) = [0,tx] = tx oty = f(x)o fly). If # > y # 0, then
tr > ty and so
f@oy) = f((0,4]) = (0,ty] =tw oty = f(x) o f(y).
If y =0, then
fleo0)= f({z}) =te =tz otl = f(x) o f(0).

Also f(0) = 0, consequently f is a homomorphism. Clearly f is onto and 1-1. Thus f is an
isomorphism.

Theorem 4.3. Let f: Hy — Hy be a homomorphism of hyperK -algebras. Then
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(1) If S is a hyperK -subalgebra of Hy, then f(S) is a hyperK -subalgebra of Hs,

(i1) f(H1) is a hyperK -subalgebra of Ha,

(iii) If Hy satisfies the zero condition, then so is f(Hy),

(iv) If S is a hyperK -subalgebra of Hs, then f=1(S) is a hyperK -subalgebra of Hy,

(v) IfI is a (weak) hyperK-ideal of Hs, then f=1(I) is a (weak) hyperK -ideal of Hy,
(vi) Kerf :={x € Hy | f(x) =0} is a hyperK -ideal and hence a weak hyperK -ideal of

(vii) If f is onto and I is a hyperK-ideal of Hy which contains Kerf, then f(I) is a
hyperK -ideal of H-.

Proof. (i) Let x,y € f(S). Then there exist a,b € S such that f(a) = x and f(b) = y. Tt
follows from Theorem 2.8 that

zoy = f(a)o f(b) = flaob) C f(5)

so that f(S) is a hyperK-subalgebra of Ha.

(ii) Tt is straightforward by (i).

(iii) If H; satisfies the zero condition, then 0o # = {0} for all x € Hy. Let y € f(H1).
Then there exists a € Hy such that f(a) = y. It follows that

Ooy=f(0)o fla) = f(00a)=f({0}) ={0}

so that f(H;) satisfies the zero condition.

(iv) Since 0 € S, we have f=1(0) C f=1(S). Since f(0) = 0,50 0 € f=1(0) C f=1(5).
Therefore f~1(S) is non-empty. Now let z,y € f=(S). Then f(z), f(y) € S. Thus
f(xoy)=f(z)o f(y) CS and so x oy C f~1(S), which implies that f=1(5) is a hyperK-
subalgebra of H;.

(v) Let I be a weak hyperK-ideal of Hs. Clearly 0 € f=1(I). Let =,y € Hy such that
zoy C f~H(I) and y € f~1(I). Then f(z)o f(y) = f(xoy) C I and f(y) € I. Since I is
a weak hyperK-ideal, it follows from (Id2) that f(z) € I, i.e., x € f~1(I). Hence f=1(I)
is a weak hyperK-ideal of H;. Now let I be a hyperK-ideal of Hs. Obviously 0 € f=*(I).
Let #,y € Hy such that z oy < f~1(I) and y € f~1(I). Then there exist { € z o y and
z € f71(I) such that ¢ < z,i.e., 0 € toz. Since f(z) € Il and 0 € toz C (zoy) oz, it
follows that

0= (0) € f((zov) o) = flop) 0 () C flzoy)ol
so that f(z) o f(y) = f(xoy) < I. As f(y) € I and [ is hyperK-ideal, by using (Id3) we
have f(z) € I, i.e., x € f~1(I). Hence f~1(I) is a hyperK-ideal of H;.

(vi) First we show that {0} C Ha is a hyperK-ideal. To do this, let x,y € Ha be such
that zoy < {0} and y € {0}. Then y = 0 and so 200 = zoy < {0}. Therefore there exists
t € 00 such that £ < 0. Thus £ = 0, and consequently 0 € z 00, i.e., z < 0, which implies
that = 0. This shows that {0} is a hyperK-ideal of Hs. Now by (v), Kerf = f=1({0}) is
a hyperK-ideal of H;.

(vii) Since 0 € I, we have 0 = f(0) € f(I). Let # and y be arbitrary elements in Hs such
that z oy < f(I) and y € f(I). Since y € f(I) and f is onto, there are y; € I and 21 € H;
such that y = f(y1) and = f(x1). Thus

Jleroy) = flx1) o flyr) =z oy < f(I).

Therefore there are a € #10y; and b € T such that f(a) < f(b). So0 € f(a)o f(b) = f(aob),
which implies that f(¢) = 0 for some ¢ € aob. It follows that ¢ € Kerf C I so that aob < I.
Now since [ 1s a hyperK-ideal of H; and b € I, we get a € I. Thus z, oy; < I, which
implies that ©1 € I. Thereby z = f(x1) € f(I), and so f(I) is a hyperK-ideal of H,. O
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The following theorem is straightforward, and we omit the proof.

Theorem 4.4. Let f : Hi — Hs be an epimorphism of hyper K-algebras. Then there is a
one to one correspondence between the set of all hyper K-ideals of H; containing Kerf and
the set of all hyper K-ideals of Hs.

Lemma 4.5. Let f : Hi — Hy be a homomorphism of hyperK -algebras. If v < y in Hy,
then f(x) < f(y) in Hs.

Proof. If x <y in Hy, then 0 € z o y and so
0=/(0) € f(zoy) =f(z) o fly).
Therefore f(z) < f(y). O

Theorem 4.6. Let f : Hi — Hs be an epimorphism of hyperK -algebras. If Hy is bounded,
then Ho 1s also bounded.

Proof. Let e be the unit of H; and y € Hs be an arbitrary element. Then there exists
z € Hy such that f(z) = y. Since # < e, by Lemma 4.5 we have y = f(z) < f(e). Thus
f(e) is the unit of Hy and Hs is bounded. O

Theorem 4.7. Let f: Hi — Hy; and g : Hi — Hj be two homomorphisms of hyperk -

algebras such that f s onto and Kerf C Kerg. Then there exists a homomorphism h :
Hs — Hs such that ho f = g.

Proof. Let y € Hy be arbitrary. Since f is onto, there exists # € H; such that y = f(z).
Define h : Ha — Hs by h(y) = g(»), Yy € Ha. Now we show that h is well-defined. Let
Y1,y2 € Ha and y; = ya. Since f is onto, there are 1,22 € Hy such that y3 = f(z1) and
y2 = f(x2). Therefore f(x1) = f(x2) and thus 0 € f(x1) o f(wa) = f(x1 0 z2). Tt follows
that there exists ¢ € z1 o 23 such that f(t) = 0. Thus ¢t € Kerf C Kerg and so g(¢) = 0.
Since t € x1 o &3 we conclude that

0=yg(t) € g(x1 022) = g(21) 0 g(w2)

which implies that g(z1) < g(#2). On the other hand since 0 € f(z2) o f(x1) = f(xa 0
z1), similarly we can conclude that 0 € g(x2) o g(x1), i.e., g(x2) < g(x1). Thus g(z1) =
g(z2), which shows that h is well-defined. Clearly h o f = g. Finally we show that h is a
homomorphism. Let y1,y2 € Hs be arbitrary. Since f is onto there are z1,x2 € H; such
that y, = f(x1) and y2 = f(x2). Then

h(f(z1) o f(x2)) = h(f(z1022)) = (ho f)(x1 0 x2)
= gz owa) =g(x1) 0 g(az) = (hof)(x1)o (hof)(zs)
= A(f(z1)) o h(f(x2)) = h(y1) © h(y2).

Moreover since f(0) = 0 and ¢(0) = 0, we conclude that
h(0) = h(£(0)) = (h o £)(0) = g(0) = 0.
Thus A is a homomorphism, ending the proof. O

h(yl Oyz)

Theorem 4.8. Let f : Hi — H» be a monomorphism of hyperK -algebras. If Hy is bounded
with unit element e and e € Imf, then Hy is also bounded and f~1(e) is its unit.

Proof. Let @ € Hy. Then f(z) € Hs. Since Hs is bounded we conclude that f(z) < e,
and since e € Imf, we get that e = f(a) for some @ € Hy. Thus f(x) < f(a). Therefore
0 € f(z)o f(a) = f(x o a). It follows that there exists b € x o a such that f(b) = 0. Hence
b =0, because fis 1-1. Thus 0 € zoa, i.e., < a. Now since a = f~1(e), we conclude that
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x < f~1(e), which shows H; is bounded with unit f=1(e). O
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