SOME RESULTS ON HYPERK-ALGEBRAS

M. M. ZAHEDI*, R. A. BORZOEI, YOUNG BAE JUN AND A. HASANKHANI**

Received October 15, 1999

ABSTRACT. In hyperK-algebras, the notion of a bounded hyperK-algebra and a homomorphism is introduced, and some properties related with a (weak) hyperK-ideal are investigated. The zero condition in a hyperK-algebra is considered, and then it is showed that every hyperK-algebra with the zero condition can be extended to a bounded hyperK-algebra.

1. Introduction The hyper algebraic structure theory was introduced in 1934 [7] by Marty at the 8th congress of Scandinavian Mathematiciens. Since then many researchers have worked on this area. Imai and Iseki in 1966 [3] introduced the notion of a BCK-algebra. Recently Jun et al. [6] applied the hyperstructures to BCK-algebras and introduced the concept of a hyperBCK-algebra which is a generalization of a BCK-algebra. Then Borzoei et al. [1] defined the notion of a hyperK-algebra. For background and notations we follow Borzoei et al. [1]. In this paper we introduced the notion of a bounded hyperK-algebra and a homomorphism of hyperK-algebras, and then we investigate some related results. We also consider the zero condition in hyperK-algebras. We show that every hyperK-algebra with the zero condition can be extended to a bounded hyperK-algebra.

2. Preliminaries

Definition 2.1 ([1], Definition 3.1). By a hyperK-algebra we mean a non-empty set H endowed with a hyperoperation " \circ " and a constant 0 satisfying the following conditions:

- $(HK1) \quad (x \circ z) \circ (y \circ z) < x \circ y,$
- $(HK2) \quad (x \circ y) \circ z = (x \circ z) \circ y,$
- $(HK3) \quad x < x,$
- (HK4) x < y and y < x imply x = y,
- $(HK5) \quad 0 < x.$

for all $x, y, z \in H$, where x < y is defined by $0 \in x \circ y$ and for every $A, B \subseteq H$, A < B is defined by $\exists a \in A$ and $\exists b \in B$ such that a < b.

Example 2.2 ([1], Example 3.2). (i) Define the hyper operation " \circ " on $H = [0, +\infty)$ as follows:

$$x \circ y := \left\{ \begin{array}{ll} [0,x] & \text{if } x \leq y \\ (0,y] & \text{if } x > y \neq 0 \\ \{x\} & \text{if } y = 0 \end{array} \right.$$

for all $x, y \in H$. Then $(H, \circ, 0)$ is a hyper K-algebra.

^{*} Research supported by the National Research Council of I.R. Iran (NRCI) as a National Research Project under the grant number 1720.

^{**} Supported by a grant from the Sistan and Baluchestan University.

¹⁹⁹¹ Mathematics Subject Classification. 06F35, 03G25, 20N20.

 $Key\ words\ and\ phrases.$ (Bounded) hyper K-algebra, (weak) hyper K-ideal, homomorphism, zero condition.

(ii) Let $H = \{0, a, b\}$. Consider the following table:

$$\begin{array}{c|cccc} \circ & 0 & a & b \\ \hline 0 & \{0\} & \{0\} & \{0\} \\ a & \{a\} & \{0,a\} & \{0,a\} \\ b & \{b\} & \{a,b\} & \{0,a,b\} \\ \end{array}$$

Then $(H, \diamond, 0)$ is a hyper K-algebra.

(iii) Let $H = \{0, 1, 2\}$. Consider the following table:

$$\begin{array}{c|ccccc} \circ & 0 & 1 & 2 \\ \hline 0 & \{0\} & \{0,1,2\} & \{0,1,2\} \\ 1 & \{1\} & \{0,1,2\} & \{0,1,2\} \\ 2 & \{2\} & \{2\} & \{0,1,2\} \\ \end{array}$$

Then $(H, \circ, 0)$ is a hyper K-algebra.

Theorem 2.3 ([1], Theorem 3.7). Let $(H_1, \circ_1, 0)$ and $(H_2, \circ_2, 0)$ be two hyperK-algebra such that $H_1 \cap H_2 = \{0\}$ and $H = H_1 \cup H_2$. Then $(H, \circ, 0)$ is a hyperK-algebra, where the hyper operation " \circ " on H is defined by:

$$x \circ y = \begin{cases} x \circ_1 y & \text{if } x, y \in H_1 \\ x \circ_2 y & \text{if } x, y \in H_2 \\ \{x\} & \text{otherwise,} \end{cases}$$

for all $x, y \in H$, and we denote it by $H_1 \oplus H_2$

Theorem 2.4 ([1], Theorem 3.9). Let $(H_1, \circ_1, 0_1)$ and $(H_2, \circ_2, 0_2)$ be hyperK-algebras and $H = H_1 \times H_2$. We define a hyperopration " \circ " on H as follows,

$$(a_1, b_1) \circ (a_2, b_2) = (a_1 \circ_1 a_2, b_1 \circ_2 b_2)$$

for all $(a_1, b_1), (a_2, b_2) \in H$, where for $A \subseteq H_1$ and $B \subseteq H_2$ by (A, B) we mean

$$(A,B) = \{(a,b) : a \in A, b \in B\}, 0 = (0_1,0_2)$$

and

$$(a_1, b_1) < (a_2, b_2) \Leftrightarrow a_1 < a_2 \text{ and } b_1 < b_2.$$

Then $(H, \circ, 0)$ is a hyperK-algebra, and it is called the hyperK-product of H_1 and H_2 .

Definition 2.5 ([1], Definition 4.1). Let I be a non-empty subset of a hyperK-algebra $(H, \circ, 0)$. Then I is called a weak hyperK-ideal of H if

- $(Id1) \quad 0 \in I,$
- (Id2) $x \circ y \subset I$ and $y \in I$ imply that $x \in I$ for all $x, y \in H$.

Definition 2.6 ([1], Definition 4.4). Let I be a non-empty subset of a hyperK-algebra $(H, \circ, 0)$. Then I is said to be a hyperK-ideal of H if

- (Id1) $0 \in I$.
- (Id3) $x \circ y < I$ and $y \in I$ imply that $x \in I$, for all $x, y \in H$.

Note that every hyper K-ideal is a weak hyper K-ideal (see [1, Proposition 4.6]).

Definition 2.7 ([1], Definition 4.11). Let $(H, \circ, 0)$ be a hyper K-algebra and let S be a subset of H containing 0. If S is a hyper K-algebra with respect to the hyperoperation " \circ " on H, we say that S is a hyper K-subalgebra of H.

Theorem 2.8 ([1], Theorem 4.12). Let S be a non-empty subset of a hyperK-algebra

 $(H, \diamond, 0)$. Then S is a hyperK-subalgebra of H if and only if $x \diamond y \subset S$ for all $x, y \in S$.

3. Bounded hyper K-algebras

Definition 3.1. Let $(H, \circ, 0)$ be a hyper K-algebra. If there exists an element $e \in H$ such that x < e for all $x \in H$, then H is called a bounded hyper K-algebra and e is said to be the unit of H.

Note that (HK4) implies that the unit of H is unique.

Example 3.2. (i) Let (X, *, 0) be a bounded BCK-algebra. Define the hyper operation "o" on X as follows:

$$x \circ y = \{x * y\}, \quad \forall x, y \in X.$$

Then $(X, \circ, 0)$ is a bounded hyper K-algebra.

- (ii) The hyper K-algebra $(H, \circ, 0)$ in Example 2.2(i) is not bounded, because if $a \in H$ is unit, then $(a+1) \circ a = (0, a]$. Thus $0 \notin (a+1) \circ a$, i.e., $a+1 \notin a$.
 - (iii) In Example 2.2(ii), H is bounded and $b \in H$ is unit.
 - (iv) The hyper K-algebra $(H, \circ, 0)$ in Example 2.2(iii) is bounded and $2 \in H$ is unit.

Proposition 3.3. Let H_1 and H_2 be two bounded hyperK-algebras. Then the hyperK-product $H_1 \times H_2$ of H_1 and H_2 is also bounded.

Proof. Let $e_1 \in H_1$ and $e_2 \in H_2$ be units and $(x,y) \in H_1 \times H_2$. Then $x < e_1$ and $y < e_2$ and so $(x,y) < (e_1,e_2)$. Therefore $H_1 \times H_2$ is bounded and (e_1,e_2) is its unit. \square

The following example shows that if H_1 and H_2 are two bounded hyperK-algebras, then $H_1 \oplus H_2$ may not be bounded. For the notation $H_1 \oplus H_2$, we follow Borzoei [1].

Example 3.4. Let H_1 and H_2 be hyper K-algebras as in Examples 2.2(ii) and 2.2(iii) respectively. Then H_1 and H_2 are bounded, while $H_1 \oplus H_2$ is not bounded.

Definition 3.5. Let H be a hyperK-algebra. If $0 \circ x = \{0\}$ for all $x \in H$, then we say that H satisfies the zero condition.

Example 3.6. Let H be a hyperK-algebra as in Example 2.2(i). Then H satisfies the zero condition.

Theorem 3.7. Let $(H_1, \circ_1, 0)$ be a hyperK-algebra, which satisfies the zero condition. Then $(H_1, \circ_1, 0)$ can be extended to a bounded hyperK-algebra.

Proof. Let $e \notin H_1$ and $H = H_1 \cup \{e\}$. Define the hyper operation "o" on H as follows:

$$x \circ y = \begin{cases} \{e\} & \text{if } x = e, \ y \in H_1 \\ \{0\} & \text{if } x = e, \ y = e \\ \{0, x\} & \text{if } x \in H_1, \ y = e \\ x \circ_1 y & \text{if } x, y \in H_1, \end{cases}$$

for all $x, y \in H$. We show that $(H, \circ, 0)$ is a bounded hyper K-algebra and e is its unit.

(HK1): If $x, y, z \in H_1$, then by hypothesis (HK1) holds. Thus let at least one of x, y and z equal to e. If x = e and $y, z \in H_1$, then

$$(e \circ z) \circ (y \circ z) = \{e\} \circ (y \circ z) = \{e\} < \{e\} = e \circ y.$$

If z = e and $x, y \in H_1$, then

$$(x \circ e) \circ (y \circ e) = \{0, x\} \circ \{0, y\} = (0 \circ 0) \cup (0 \circ y) \cup (x \circ 0) \cup (x \circ y) < x \circ y.$$

If y = e and $x, z \in H_1$, then

$$(x \circ z) \circ (e \circ z) = (x \circ z) \circ \{e\} = \{0\} \cup (x \circ z) < \{0, x\} = x \circ e$$

If x = z = e and $y \in H_1$, then since 0 < e we have

$$(e \circ e) \circ (y \circ e) = \{0\} \circ \{0, y\} = (0 \circ 0) \cup (0 \circ y) < \{e\} = e \circ y.$$

If y = z = e and $x \in H_1$, then

$$(x \circ e) \circ (e \circ e) = \{0, x\} \circ \{0\} = (0 \circ 0) \cup (x \circ 0) < \{0, x\} = x \circ e.$$

If x = y = z = e, then

$$(e \circ e) \circ (e \circ e) = \{0\} \circ \{0\} < \{0\} = e \circ e$$
.

(HK2): If $x, y, z \in H_1$, then (HK2) holds. Thus we let at least one of x, y, z equal to e. If x = e and $y, z \in H_1$, then

$$(e \circ y) \circ z = \{e\} \circ z = \{e\} = \{e\} \circ y = (e \circ z) \circ e.$$

If y = e and $x, z \in H_1$, then since H_1 satisfies the zero condition we get that

$$(x \circ e) \circ z = \{0, x\} \circ z = (0 \circ z) \cup (x \circ z) = \{0\} \cup (x \circ z) = (x \circ z) \cup \{0\} = (x \circ z) \circ e.$$

If x = y = e and $z \in H_1$, then since H_1 satisfies the zero condition we have

$$(e \circ e) \circ z = \{0\} \circ z = \{0\} = \{e\} \circ e = (e \circ z) \circ e$$
.

(HK3) Since $e \circ e = \{0\}$, thus $0 \in e \circ e$ and consequently e < e.

(HK4) and (HK5) are proved easily. Hence $(H, \circ, 0)$ is a hyper K-algebra. Moreover, since for any $x \neq e$, we have $x \circ e = \{0, x\}$, thus x < e. In other words $(H, \circ, 0)$ is bounded with unit e. \square

4. Homomorphisms of hyper K-algebras

Definition 4.1. Let H_1 and H_2 be two hyper K-algebras. A mapping $f: H_1 \to H_2$ is said to be a homomorphism if

- (i) f(0) = 0
- (ii) $f(x \circ y) = f(x) \circ f(y), \forall x, y \in H_1.$

If f is 1-1 (or onto) we say that f is a monomorphism (or epimorphism). And if f is both 1-1 and onto, we say that f is an isomorphism.

Example 4.2. Let H be as in Example 2.2(i) and $t \in \mathbb{R}^+$ be constant. Define

$$f: H \to H, \quad f(x) = tx, \quad \forall x \in H.$$

Then f is an isomorphism of hyper K-algebras. To do this, let $x, y \in H$ and $x \leq y$. Then $tx \leq ty$ and thus $f(x \circ y) = f([0, x]) = [0, tx] = tx \circ ty = f(x) \circ f(y)$. If $x > y \neq 0$, then tx > ty and so

$$f(x \circ y) = f((0, y]) = (0, ty] = tx \circ ty = f(x) \circ f(y)$$

If y = 0, then

$$f(x \circ 0) = f(\{x\}) = tx = tx \circ t0 = f(x) \circ f(0).$$

Also f(0) = 0, consequently f is a homomorphism. Clearly f is onto and 1-1. Thus f is an isomorphism.

Theorem 4.3. Let $f: H_1 \to H_2$ be a homomorphism of hyperK-algebras. Then

- (i) If S is a hyperK-subalgebra of H_1 , then f(S) is a hyperK-subalgebra of H_2 ,
- (ii) $f(H_1)$ is a hyperK-subalgebra of H_2 ,
- (iii) If H_1 satisfies the zero condition, then so is $f(H_1)$,
- (iv) If S is a hyperK-subalgebra of H_2 , then $f^{-1}(S)$ is a hyperK-subalgebra of H_1 ,
- (v) If I is a (weak) hyperK-ideal of H_2 , then $f^{-1}(I)$ is a (weak) hyperK-ideal of H_1 ,
- (vi) $\operatorname{Ker} f := \{x \in H_1 \mid f(x) = 0\}$ is a hyperK-ideal and hence a weak hyperK-ideal of H_1 ,
- (vii) If f is onto and I is a hyperK-ideal of H_1 which contains $\operatorname{Ker} f$, then f(I) is a hyperK-ideal of H_2 .
- *Proof.* (i) Let $x, y \in f(S)$. Then there exist $a, b \in S$ such that f(a) = x and f(b) = y. It follows from Theorem 2.8 that

$$x \circ y = f(a) \circ f(b) = f(a \circ b) \subseteq f(S)$$

so that f(S) is a hyper K-subalgebra of H_2 .

- (ii) It is straightforward by (i).
- (iii) If H_1 satisfies the zero condition, then $0 \circ x = \{0\}$ for all $x \in H_1$. Let $y \in f(H_1)$. Then there exists $a \in H_1$ such that f(a) = y. It follows that

$$0 \circ y = f(0) \circ f(a) = f(0 \circ a) = f(\{0\}) = \{0\}$$

so that $f(H_1)$ satisfies the zero condition.

- (iv) Since $0 \in S$, we have $f^{-1}(0) \subseteq f^{-1}(S)$. Since f(0) = 0, so $0 \in f^{-1}(0) \subseteq f^{-1}(S)$. Therefore $f^{-1}(S)$ is non-empty. Now let $x, y \in f^{-1}(S)$. Then $f(x), f(y) \in S$. Thus $f(x \circ y) = f(x) \circ f(y) \subseteq S$ and so $x \circ y \subseteq f^{-1}(S)$, which implies that $f^{-1}(S)$ is a hyperK-subalgebra of H_1 .
- (v) Let I be a weak hyperK-ideal of H_2 . Clearly $0 \in f^{-1}(I)$. Let $x, y \in H_1$ such that $x \circ y \subseteq f^{-1}(I)$ and $y \in f^{-1}(I)$. Then $f(x) \circ f(y) = f(x \circ y) \subseteq I$ and $f(y) \in I$. Since I is a weak hyperK-ideal, it follows from (Id2) that $f(x) \in I$, i.e., $x \in f^{-1}(I)$. Hence $f^{-1}(I)$ is a weak hyperK-ideal of H_1 . Now let I be a hyperK-ideal of H_2 . Obviously $0 \in f^{-1}(I)$. Let $x, y \in H_1$ such that $x \circ y < f^{-1}(I)$ and $y \in f^{-1}(I)$. Then there exist $t \in x \circ y$ and $z \in f^{-1}(I)$ such that t < z, i.e., $0 \in t \circ z$. Since $f(z) \in I$ and $0 \in t \circ z \subseteq (x \circ y) \circ z$, it follows that

$$0 = f(0) \in f((x \circ y) \circ z) = f(x \circ y) \circ f(z) \subseteq f(x \circ y) \circ I$$

so that $f(x) \circ f(y) = f(x \circ y) < I$. As $f(y) \in I$ and I is hyperK-ideal, by using (Id3) we have $f(x) \in I$, i.e., $x \in f^{-1}(I)$. Hence $f^{-1}(I)$ is a hyperK-ideal of H_1 .

- (vi) First we show that $\{0\} \subseteq H_2$ is a hyper K-ideal. To do this, let $x, y \in H_2$ be such that $x \circ y < \{0\}$ and $y \in \{0\}$. Then y = 0 and so $x \circ 0 = x \circ y < \{0\}$. Therefore there exists $t \in x \circ 0$ such that t < 0. Thus t = 0, and consequently $0 \in x \circ 0$, i.e., x < 0, which implies that x = 0. This shows that $\{0\}$ is a hyper K-ideal of H_2 . Now by (v), Ker $f = f^{-1}(\{0\})$ is a hyper K-ideal of H_1 .
- (vii) Since $0 \in I$, we have $0 = f(0) \in f(I)$. Let x and y be arbitrary elements in H_2 such that $x \circ y < f(I)$ and $y \in f(I)$. Since $y \in f(I)$ and f is onto, there are $y_1 \in I$ and $x_1 \in H_1$ such that $y = f(y_1)$ and $x = f(x_1)$. Thus

$$f(x_1 \circ y_1) = f(x_1) \circ f(y_1) = x \circ y < f(I)$$
.

Therefore there are $a \in x_1 \circ y_1$ and $b \in I$ such that f(a) < f(b). So $0 \in f(a) \circ f(b) = f(a \circ b)$, which implies that f(c) = 0 for some $c \in a \circ b$. It follows that $c \in \text{Ker } f \subseteq I$ so that $a \circ b < I$. Now since I is a hyperK-ideal of H_1 and $b \in I$, we get $a \in I$. Thus $x_1 \circ y_1 < I$, which implies that $x_1 \in I$. Thereby $x = f(x_1) \in f(I)$, and so f(I) is a hyperK-ideal of H_2 . \square

The following theorem is straightforward, and we omit the proof.

Theorem 4.4. Let $f: H_1 \to H_2$ be an epimorphism of hyper K-algebras. Then there is a one to one correspondence between the set of all hyper K-ideals of H_1 containing $\operatorname{Ker} f$ and the set of all hyper K-ideals of H_2 .

Lemma 4.5. Let $f: H_1 \to H_2$ be a homomorphism of hyperK-algebras. If x < y in H_1 , then f(x) < f(y) in H_2 .

Proof. If x < y in H_1 , then $0 \in x \circ y$ and so

$$0 = f(0) \in f(x \circ y) = f(x) \circ f(y).$$

Therefore f(x) < f(y). \square

Theorem 4.6. Let $f: H_1 \to H_2$ be an epimorphism of hyperK-algebras. If H_1 is bounded, then H_2 is also bounded.

Proof. Let e be the unit of H_1 and $y \in H_2$ be an arbitrary element. Then there exists $x \in H_1$ such that f(x) = y. Since x < e, by Lemma 4.5 we have y = f(x) < f(e). Thus f(e) is the unit of H_2 and H_2 is bounded. \square

Theorem 4.7. Let $f: H_1 \to H_2$ and $g: H_1 \to H_3$ be two homomorphisms of hyperKalgebras such that f is onto and $\operatorname{Ker} f \subseteq \operatorname{Ker} g$. Then there exists a homomorphism $h: H_2 \to H_3$ such that $h \circ f = g$.

Proof. Let $y \in H_2$ be arbitrary. Since f is onto, there exists $x \in H_1$ such that y = f(x). Define $h: H_2 \to H_3$ by h(y) = g(x), $\forall y \in H_2$. Now we show that h is well-defined. Let $y_1, y_2 \in H_2$ and $y_1 = y_2$. Since f is onto, there are $x_1, x_2 \in H_1$ such that $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Therefore $f(x_1) = f(x_2)$ and thus $0 \in f(x_1) \circ f(x_2) = f(x_1 \circ x_2)$. It follows that there exists $t \in x_1 \circ x_2$ such that f(t) = 0. Thus $t \in \text{Ker} f \subseteq \text{Ker} g$ and so g(t) = 0. Since $t \in x_1 \circ x_2$ we conclude that

$$0 = q(t) \in q(x_1 \circ x_2) = q(x_1) \circ q(x_2)$$

which implies that $g(x_1) < g(x_2)$. On the other hand since $0 \in f(x_2) \circ f(x_1) = f(x_2 \circ x_1)$, similarly we can conclude that $0 \in g(x_2) \circ g(x_1)$, i.e., $g(x_2) < g(x_1)$. Thus $g(x_1) = g(x_2)$, which shows that h is well-defined. Clearly $h \circ f = g$. Finally we show that h is a homomorphism. Let $y_1, y_2 \in H_2$ be arbitrary. Since f is onto there are $x_1, x_2 \in H_1$ such that $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Then

$$h(y_1 \circ y_2) = h(f(x_1) \circ f(x_2)) = h(f(x_1 \circ x_2)) = (h \circ f)(x_1 \circ x_2)$$

$$= g(x_1 \circ x_2) = g(x_1) \circ g(x_2) = (h \circ f)(x_1) \circ (h \circ f)(x_2)$$

$$= h(f(x_1)) \circ h(f(x_2)) = h(y_1) \circ h(y_2).$$

Moreover since f(0) = 0 and g(0) = 0, we conclude that

$$h(0) = h(f(0)) = (h \circ f)(0) = g(0) = 0.$$

Thus h is a homomorphism, ending the proof. \square

Theorem 4.8. Let $f: H_1 \to H_2$ be a monomorphism of hyperK-algebras. If H_2 is bounded with unit element e and $e \in \text{Im} f$, then H_1 is also bounded and $f^{-1}(e)$ is its unit.

Proof. Let $x \in H_1$. Then $f(x) \in H_2$. Since H_2 is bounded we conclude that f(x) < e, and since $e \in \text{Im} f$, we get that e = f(a) for some $a \in H_1$. Thus f(x) < f(a). Therefore $0 \in f(x) \circ f(a) = f(x \circ a)$. It follows that there exists $b \in x \circ a$ such that f(b) = 0. Hence b = 0, because f is 1-1. Thus $0 \in x \circ a$, i.e., x < a. Now since $a = f^{-1}(e)$, we conclude that

 $x < f^{-1}(e)$, which shows H_1 is bounded with unit $f^{-1}(e)$. \square

References

- 1. R. A. Borzoei, A. Hasankhani, M. M. Zahedi and Y. B. Jun, On hyperK-algebras, Math. Japon. (to appear).
- 2. P. Corsini, Prolegomena of hypergroup, Aviani Editore 1993.
- Y. Imai and K. Iseki, On axiom systems of propositional calculi XIV, Proc. Japan Academy, 42(1966), 19-22.
- $4.\ \ K.\ Iseki\ and\ S.\ Tanaka,\ \textit{Ideal\ theory\ of\ BCK-algebras,\ Math.\ Japon.\ 21 (1976),\ 351-366.$
- 5. K. Iseki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon. 23(1978), 1-26.
- 6. Y. B. Jun, M. M. Zahedi, X. L. Xin and R. A. Borzoei, On hyperBCK-algebras, Italian J. Pure Appl. Math. (to appear).
- 7. F. Marty, Sur une generalization de la notion de groups, 8th congress Math. Scandinaves, Stockholm, (1934), 45-49.
- 8. J. Meng and Y. B. Jun, BCK-algebras, Kyung Moonsa, Seoul, Korea, 1994.
- 9. M. M. Zahedi and A. Hasankhani, F-polygroups (I), J. Fuzzy Math. 3(1996), 533-548.

M. M. Zahedi and R. A. Borzoei Department of Mathematics Shahid Bahonar University of Kerman Kerman, Iran e-mail: zahedi@arg3.uk.ac.ir e-mail: borzoei@hamoon.usb.ac.ir

Young Bae Jun
Department of Mathematics Education
Gyeongsang National University
Chinju 660-701, Korea
e-mail: ybjun@nongae.gsnu.ac.kr

A. Hasankhani Department of Mathematics Sistan and Baluchestan University Zahedan, Iran e-mail: abhasan@hamoon.usb.ac.ir