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ITERATIVE SCHEMES FOR APPROXIMATING SOLUTIONS OF
ACCRETIVE OPERATORS IN BANACH SPACES
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Abstract. In this paper, we introduce two iterative schemes for approximating solu-
tions of the equation 0 ∈ Av, where A is an accretive operator which satisfies the range
condition. Our methods are motivated by Halpern’s type iteration and Mann’s type
iteration.

1. Introduction

Let E be a real Banach space, let A ⊂ E × E be an m-accretive operator and let
Jr = (I + rA)−1 for r > 0. Our paper is concerned with iterative schemes for solving the
equation 0 ∈ Av. One well-known method is the following: x0 = x ∈ E,

xn+1 = Jrnxn, n = 0, 1, 2, . . . , (1.1)

where {rn} is a sequence of positive real numbers. The convergence of (1.1) in Hilbert
spaces has been studied by Rockafellar [16], Brézis and Lions [1], Lions [7] and Pazy [11].
The results in Banach spaces have been studied by Bruck and Reich [4], Reich [12, 13, 14],
Nevanlinna and Reich [9], Bruck and Passty [3] and Jung and Takahashi [6]. On the other
hand, Halpern [5] and Mann [8] introduced the following iterative schemes for approximating
a fixed point of a nonexpansive mapping T of E into itself:

xn+1 = αnx+ (1− αn)Txn, n = 0, 1, 2, . . . (1.2)

and

xn+1 = αnxn + (1− αn)Txn, n = 0, 1, 2, . . . , (1.3)

respectively, where x0 = x ∈ E and {αn} is a sequence in [0, 1]. Recently, the iterative
schemes (1.2) and (1.3) have been studied extensively. See, for example, Takahashi [19, 20]
and the references mentioned there.

In this paper, motivated by (1.1), (1.2) and (1.3), we introduce two iterative schemes to
solve 0 ∈ Av: one is Halpern’s type and the other is Mann’s type. Our methods will be
defined for accretive operators which satisfy the range condition.

2. Preliminaries

Throughout this paper, we denote the set of all nonnegative integers by N. Let E be a
real Banach space with norm ‖ · ‖ and let E∗ denote the dual of E. We denote the value of
y∗ ∈ E∗ at x ∈ E by 〈x, y∗〉. When {xn} is a sequence in E, we denote strong convergence
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of {xn} to x ∈ E by xn → x and weak convergence by xn ⇀ x. The modulus of convexity
of E is defined by

δ(ε) = inf
{
1− ‖x+ y‖

2
: ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε

}

for every ε with 0 ≤ ε ≤ 2. A Banach space E is said to be uniformly convex if δ(ε) > 0 for
every ε > 0. Further, δ satisfies that∥∥∥∥x+ y2

∥∥∥∥ ≤ r
(
1− δ

(ε
r

))
for every x, y ∈ E with ‖x‖ ≤ r, ‖y‖ ≤ r and ‖x−y‖ ≥ ε. We also know that if C is a closed
convex subset of a uniformly convex Banach space E, then for each x ∈ E, there exists a
unique element u = Px ∈ C with ‖x − u‖ = inf{‖x − y‖ : y ∈ C}. Such a P is called the
metric projection of E onto C. Let U = {x ∈ E : ‖x‖ = 1}. The duality mapping J from
E into 2E∗

is defined by

J(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2}
for every x ∈ E. The norm of E is said to be uniformly Gâteaux differentiable if for each
y ∈ U , the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

(2.1)

is attained uniformly for x ∈ U . It is also said to be Fréchet differentiable if for each x ∈ U ,
the limit (2.1) is attained uniformly for y ∈ U . It is known that if the norm of E is uniformly
Gâteaux differentiable, then the duality mapping J is single valued and uniformly norm to
weak∗ continuous on each bounded subset of E. A Banach space E is said to satisfy Opial’s
condition [10] if for any sequence {xn} ⊂ E, xn ⇀ y implies

lim inf
n→∞ ‖xn − y‖ < lim inf

n→∞ ‖xn − z‖
for all z ∈ E with z �= y.

Let C be a closed convex subset of E. A mapping T : C → C is said to be nonexpansive
if ‖Tx−Ty‖ ≤ ‖x− y‖ for all x, y ∈ C. We denote the set of all fixed points of T by F (T ).
A closed convex subset C of E is said to have the fixed point property for nonexpansive
mappings if every nonexpansive mapping of a bounded closed convex subset D of C into
itself has a fixed point in D. Let D be a subset of C. A mapping P of C into D is said to
be sunny if P (Px + t(x− Px)) = Px whenever Px + t(x− Px) ∈ C for x ∈ C and t ≥ 0.
A mapping P of C into itself is said to be a retraction if P 2 = P . We denote the closure of
the convex hull of D by coD.

Let I denote the identity operator on E. An operator A ⊂ E × E with domain D(A) =
{z ∈ E : Az �= ∅} and range R(A) =

⋃{Az : z ∈ D(A)} is said to be accretive if for each
xi ∈ D(A) and yi ∈ Axi, i = 1, 2, there exists j ∈ J(x1 − x2) such that 〈y1 − y2, j〉 ≥ 0.
If A is accretive, then we have ‖x1 − x2‖ ≤ ‖x1 − x2 + r(y1 − y2)‖ for all xi ∈ D(A), yi ∈
Axi, i = 1, 2 and r > 0. An accretive operator A is said to satisfy the range condition
if D(A) ⊂ ⋂

r>0R(I + rA). If A is accretive, then we can define, for each r > 0, a
nonexpansive single valued mapping Jr : R(I + rA) → D(A) by Jr = (I + rA)−1. It is
called the resolvent of A. We also define the Yosida approximation Ar by Ar = (I − Jr)/r.
We know that Arx ∈ AJrx for all x ∈ R(I + rA) and ‖Arx‖ ≤ inf{‖y‖ : y ∈ Ax} for all
x ∈ D(A) ∩ R(I + rA). We also know that for an accretive operator A which satisfies the
range condition, we have A−10 = F (Jr) for all r > 0. An accretive operator A is said to be
m-accretive if R(I + rA) = E for all r > 0.



Iterative schemes for approximating solutions of accretive operators in Banach spaces 109

In the sequel, unless otherwise stated, we assume that A ⊂ E×E is an accretive operator
which satisfies the range condition and Jr is the resolvent of A for r > 0.

3. Halpern’s type iterative scheme

In this section, we study the strong convergence of Halpern’s type iteration. We employ
the methods of Wittmann [23] and Shioji and Takahashi [17] for the proof of the following
theorem.

Theorem 1. Let E be a Banach space with a uniformly Gâteaux differentiable norm and
let C be a nonempty closed convex subset of E such that D(A) ⊂ C ⊂ ⋂

r>0R(I + rA).
Assume that {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞) satisfy limn→∞ αn = 0,

∑∞
n=0 αn = ∞ and

limn→∞ rn = ∞. Let x0 = x ∈ C and let {xn} be a sequence generated by

xn+1 = αnx+ (1− αn)Jrnxn, n ∈ N.

If A−10 �= ∅ and {Jtx} converges strongly to z ∈ A−10 as t → ∞, then {xn} converges
strongly to z ∈ A−10.

Proof. Let yn = Jrnxn and u ∈ A−10. Then we have

‖x1 − u‖ = ‖α0x+ (1− α0)y0 − u‖
≤ α0‖x− u‖+ (1− α0)‖y0 − u‖
≤ α0‖x− u‖+ (1− α0)‖x0 − u‖
= ‖x− u‖.

If ‖xn − u‖ ≤ ‖x− u‖ for some n ∈ N \ {0}, then we can show that ‖xn+1 − u‖ ≤ ‖x− u‖.
Then, by induction, {xn} is bounded. Therefore {yn} is also bounded. Next we shall show
that

lim sup
n→∞

〈x− z, J(xn − z)〉 ≤ 0. (3.1)

We know (x− Jtx)/t ∈ AJtx and Arnxn ∈ Ayn. Since A is accretive, we have

〈Arnxn − x− Jtx

t
, J(yn − Jtx)〉 ≥ 0

and hence

〈x− Jtx, J(yn − Jtx)〉 ≤ t〈Arnxn, J(yn − Jtx)〉
for all n ∈ N and t > 0. Then, since Arnxn = (xn − yn)/rn → 0 as n→ ∞, we obtain

lim sup
n→∞

〈x− Jtx, J(yn − Jtx)〉 ≤ 0 (3.2)

for all t > 0. Since Jtx→ z as t→ ∞ and the norm of E is uniformly Gâteaux differentiable,
for any ε > 0, there exists t0 > 0 such that

|〈z − Jtx, J(yn − Jtx)〉| ≤ ε2
and

|〈x− z, J(yn − Jtx)− J(yn − z)〉| ≤ ε
2
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for all t ≥ t0 and n ∈ N. Then we have

|〈x− Jtx, J(yn − Jtx)〉 − 〈x− z, J(yn − z)〉|
≤ |〈x− Jtx, J(yn − Jtx)〉 − 〈x− z, J(yn − Jtx)〉|

+ |〈x− z, J(yn − Jtx)〉 − 〈x− z, J(yn − z)〉|
= |〈z − Jtx, J(yn − Jtx)〉|+ |〈x− z, J(yn − Jtx)− J(yn − z)〉|
≤ ε (3.3)

for all t ≥ t0 and n ∈ N. Therefore, from (3.2) and (3.3), we have

lim sup
n→∞

〈x− z, J(yn − z)〉 ≤ lim sup
n→∞

〈x− Jtx, J(yn − Jtx)〉+ ε
≤ ε.

Since ε > 0 is arbitrary, we obtain

lim sup
n→∞

〈x− z, J(yn − z)〉 ≤ 0. (3.4)

On the other hand, since xn+1 − yn = αn(x − yn) → 0 as n → ∞ and the norm of E is
uniformly Gâteaux differentiable, we have

lim
n→∞ |〈x− z, J(xn+1 − z)〉 − 〈x− z, J(yn − z)〉| = 0. (3.5)

Combining (3.4) and (3.5), we obtain (3.1).
¿From (1− αn)(yn − z) = (xn+1 − z)− αn(x− z), we have

(1− αn)2‖yn − z‖2 ≥ ‖xn+1 − z‖2 − 2αn〈x− z, J(xn+1 − z)〉
and hence

‖xn+1 − z‖2 ≤ (1− αn)2‖yn − z‖2 + 2αn〈x− z, J(xn+1 − z)〉
≤ (1− αn)‖xn − z‖2 + 2αn〈x− z, J(xn+1 − z)〉

for all n ∈ N. By (3.1), for any ε > 0, there exists m ∈ N such that

〈x− z, J(xn+1 − z)〉 ≤ ε2
for all n ≥ m. Hence we have

‖xn+m+1 − z‖2 ≤ (1− αn+m)‖xn+m − z‖2 + αn+mε

for all n ∈ N. By induction, we obtain

‖xn+m+1 − z‖2 ≤ ‖xm − z‖2
n+m∏
i=m

(1− αi) +

{
1−

n+m∏
i=m

(1− αi)

}
ε

≤ ‖xm − z‖2 exp

(
−

n+m∑
i=m

αi

)
+ ε

for all n ∈ N. Therefore, from
∑∞

n=0 αn = ∞, we have

lim sup
n→∞

‖xn − z‖2 = lim sup
n→∞

‖xn+m+1 − z‖2 ≤ ε.

Since ε > 0 is arbitrary, {xn} converges strongly to z.

The convergence of {Jtx} as t → ∞ was discussed by Takahashi and Ueda [22]. See also
Reich [15].
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Theorem 2. Let E be a reflexive Banach space whose norm is uniformly Gâteaux differ-
entiable. Suppose that every weakly compact convex subset of E has the fixed point property
for nonexpansive mappings. Let C be a nonempty closed convex subset of E such that
D(A) ⊂ C ⊂ ⋂r>0R(I + rA). If A−10 �= ∅, then the strong limt→∞ Jtx exists and belongs
to A−10 for all x ∈ C. Further, if Px = limt→∞ Jtx for each x ∈ C, then P is a sunny
nonexpansive retraction of C onto A−10.

Let C be a nonempty closed convex subset of E and let T be a nonexpansive mapping
of C into itself. Then A = I − T is an accretive operator which satisfies C = D(A) ⊂⋂

r>0R(I + rA); see Takahashi [18]. Then, putting A = I − T in Theorem 1, we obtain the
following result by using Theorem 2.

Corollary 3. Let C be a nonempty closed convex subset of a Banach space E with a uni-
formly Gâteaux differentiable norm and let T be a nonexpansive mapping from C into itself.
Assume that {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞) satisfy limn→∞ αn = 0,

∑∞
n=0 αn = ∞ and

limn→∞ rn = ∞. Let x0 = x ∈ C and let {xn} be a sequence generated by
yn =

1
1 + rn

xn +
rn

1 + rn
Tyn,

xn+1 = αnx+ (1− αn)yn, n ∈ N.

If F (T ) �= ∅ and {zt} converges strongly to z ∈ F (T ) as t ↓ 0, then {xn} converges strongly
to z ∈ F (T ), where zt is a unique element of C which satisfies zt = tx+ (1− t)Tzt.

In the case where A is an m-accretive operator, we obtain the following result by using
Theorem 2.

Corollary 4. Let E be a Banach space with a uniformly Gâteaux differentiable norm and
let A ⊂ E × E be an m-accretive operator. Assume that {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞)
satisfy limn→∞ αn = 0,

∑∞
n=0 αn = ∞ and limn→∞ rn = ∞. Let x0 = x ∈ E and let {xn}

be a sequence generated by

xn+1 = αnx+ (1− αn)Jrnxn, n ∈ N. (3.6)

If A−10 �= ∅ and {Jtx} converges strongly to z ∈ A−10 as t → ∞, then {xn} converges
strongly to z ∈ A−10.

4. Mann’s type iterative scheme

In this section, we prove a weak convergence theorem for Mann’s type iteration. Before
proving the theorem, we need the following two lemmas.

Lemma 5 (Browder [2]). Let C be a closed bounded convex subset of a uniformly convex
Banach space E and let T be a nonexpansive mapping of C into itself. If {xn} converges
weakly to z ∈ C and {xn − Txn} converges strongly to 0, then Tz = z.

Lemma 6 (Reich [14]). Let E be a uniformly convex Banach space whose norm is Fréchet
differentiable norm, let C be a nonempty closed convex subset of E and let {T0, T1, T2, . . . }
be a sequence of nonexpansive mappings of C into itself such that

⋂∞
n=0 F (Tn) is nonempty.

Let x ∈ C and Sn = TnTn−1 · · ·T0 for all n ∈ N. Then the set
⋂∞

n=0 co{Smx : m ≥ n} ∩ U
consists of at most one point, where U =

⋂∞
n=0 F (Tn).

For the proof of Lemma 6, see Takahashi and Kim [21]. Now we can prove the following
weak convergence theorem.
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Theorem 7. Let E be a uniformly convex Banach space whose norm is Fréchet differen-
tiable or which satisfies Opial’s condition and let C be a nonempty closed convex subset of
E such that D(A) ⊂ C ⊂ ⋂

r>0R(I + rA). Assume that {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞)
satisfy lim supn→∞ αn < 1 and lim infn→∞ rn > 0. Let x0 = x ∈ C and let {xn} be a
sequence generated by

xn+1 = αnxn + (1− αn)Jrnxn, n ∈ N. (4.1)

If A−10 �= ∅, then {xn} converges weakly to an element of A−10.

Proof. Let u be an element of A−10 and yn = Jrnxn. Then for l = ‖x − u‖, the set
D = {z ∈ E : ‖z − u‖ ≤ l} is a nonempty closed bounded convex subset of E which is
invariant under Js for s > 0. So {xn} ⊂ D is bounded. From

‖xn+1 − u‖ = ‖αnxn + (1− αn)yn − u‖
≤ αn‖xn − u‖+ (1− αn)‖yn − u‖
≤ ‖xn − u‖,

limn→∞ ‖xn−u‖ exists. Without loss of generality, we may assume that limn→∞ ‖xn−u‖ �=
0. Since A is accretive, we have

‖yn − u‖ ≤
∥∥∥yn − u+ rn

2
(Arnxn − 0)

∥∥∥
= ‖yn − u+ 1

2
(xn − yn)‖

=
∥∥∥∥xn + yn

2
− u
∥∥∥∥

≤ ‖xn − u‖
{
1− δ

(‖xn − yn‖
‖x− u‖

)}

and hence

(1− αn)‖xn − u‖δ
(‖xn − yn‖

‖x− u‖
)

≤ (1− αn){‖xn − u‖ − ‖yn − u‖}
= ‖xn − u‖ − αn‖xn − u‖ − (1− αn)‖yn − u‖
≤ ‖xn − u‖ − ‖xn+1 − u‖.

Then, by lim supn→∞ αn < 1 and limn→∞ ‖xn−u‖ �= 0, we obtain δ(‖xn − yn‖/‖x−u‖) →
0. This implies xn − yn → 0. So, from

‖yn − J1yn‖ = ‖(I − J1)yn‖ = ‖A1yn‖ ≤ inf{‖z‖ : z ∈ Ayn}

≤ ‖Arnxn‖ =
∥∥∥∥xn − yn

rn

∥∥∥∥
and lim infn→∞ rn > 0, we have yn − J1yn → 0. Further, letting v ∈ E be a weak
subsequential limit of {xn} such that xni ⇀ v, we get yni ⇀ v. Then it follows from
Lemma 5 that v ∈ F (J1) = A−10.

We assume that E has a Fréchet differentiable norm. Putting Tn = αnI+(1−αn)Jrn and
Sn = TnTn−1 · · ·T0, we have

⋂∞
n=0 F (Tn) = A−10 and {v} =

⋂∞
n=0 co{xm : m ≥ n} ∩A−10

by Lemma 6. Therefore {xn} converges weakly to an element of A−10.
Next we assume that E satisfies Opial’s condition. Let v1 and v2 be two weak subse-

quential limits of the sequence {xn} such that xni ⇀ v1 and xnj ⇀ v2. As above, we have
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v1, v2 ∈ A−10. We claim that v1 = v2. If not, we have

lim
n→∞ ‖xn − v1‖ = lim

i→∞
‖xni − v1‖ < lim

i→∞
‖xni − v2‖ = lim

n→∞ ‖xn − v2‖
= lim

j→∞
‖xnj − v2‖ < lim

j→∞
‖xnj − v1‖ = lim

n→∞ ‖xn − v1‖.

This is a contradiction. Hence we have v1 = v2. This implies that {xn} converges weakly
to an element of A−10.

We can also study the strong convergence of (4.1) by using the metric projection.

Proposition 8. Let E be a uniformly convex Banach space and let C be a nonempty closed
convex subset of E such that D(A) ⊂ C ⊂ ⋂

r>0R(I + rA). Assume {αn} ⊂ [0, 1] and
{rn} ⊂ (0,∞). Let x0 = x ∈ C and let {xn} be a sequence generated by (4.1). If A−10 �= ∅
and P is the metric projection of E onto A−10, then {Pxn} converges strongly to an element
of A−10.

Proof. We have

‖Pxn+1 − xn+1‖ ≤ ‖Pxn − xn+1‖
≤ αn‖Pxn − xn‖+ (1− αn)‖Pxn − Jrnxn‖
≤ ‖Pxn − xn‖

for all n ∈ N. Then limn→∞ ‖Pxn − xn‖ exists. We shall show that {Pxn} is a Cauchy
sequence. Let a = limn→∞ ‖Pxn − xn‖. If a = 0, then for any ε > 0, there exists N0 ∈ N

such that ‖Pxn − xn‖ ≤ ε/4 for all n ≥ N0. If n,m ≥ N0, then we have

‖Pxn − Pxm‖ ≤ ‖Pxn − xn‖+ ‖xn − PxN0‖
+ ‖PxN0 − xm‖+ ‖xm − Pxm‖

≤ ‖Pxn − xn‖+ ‖xN0 − PxN0‖
+ ‖PxN0 − xN0‖+ ‖xm − Pxm‖

≤ ε.
Then {Pxn} is Cauchy. Let a > 0. If {Pxn} is not Cauchy, then there exists ε > 0 such
that for any N ∈ N, there are n,m ≥ N with ‖Pxn − Pxm‖ ≥ ε. Choose d > 0 such that

a

a+ d
> 1− δ

(
ε

a+ d

)
and N1 ∈ N such that ‖Pxn − xn‖ < a + d for all n ≥ N1. For this N1 ∈ N, there exist
n,m ≥ N1 such that ‖Pxn − Pxm‖ ≥ ε. For all l ∈ N with l ≥ n and l ≥ m, we have

‖Pxn − xl‖ ≤ ‖Pxn − xn‖ < a+ d
and

‖Pxm − xl‖ ≤ ‖Pxm − xm‖ < a+ d.
Since E is uniformly convex, we obtain

a = lim
l→∞

‖Pxl − xl‖

≤ lim sup
l→∞

∥∥∥∥Pxn + Pxm

2
− xl

∥∥∥∥
≤ (a+ d)

(
1− δ

(
ε

a+ d

))
< a,
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which is a contradiction. Thus the proof is completed.

As direct consequences of Theorem 7, we obtain the following two results.

Corollary 9. Let C be a nonempty closed convex subset of a uniformly convex Banach
space E whose norm is Fréchet differentiable or which satisfies Opial’s condition and let T
be a nonexpansive mapping of C into itself. Assume that {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞)
satisfy lim supn→∞ αn < 1 and lim infn→∞ rn > 0. Let x0 = x ∈ C and let {xn} be a
sequence generated by 

yn =
1

1 + rn
xn +

rn
1 + rn

Tyn,

xn+1 = αnxn + (1− αn)yn, n ∈ N.

If F (T ) �= ∅, then {xn} converges weakly to an element of F (T ).

Corollary 10. Let E be a uniformly convex Banach space whose norm is Fréchet differ-
entiable or which satisfies Opial’s condition and let A ⊂ E × E be an m-accretive op-
erator. Assume that {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞) satisfy lim supn→∞ αn < 1 and
lim infn→∞ rn > 0. Let x0 = x ∈ E and let {xn} be a sequence generated by

xn+1 = αnxn + (1− αn)Jrnxn, n ∈ N.

If A−10 �= ∅, then {xn} converges weakly to an element of A−10.
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