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Abstract. In this paper we prove some inequalities for M�obius transformations and

discrete groups in R
n

. We also get several suÆcient and necessary conditions that two

elements of M�obius group M(R
n

) have a common �xed point.

1. INTRODUCTION. For each f and g of M�obius group M(R
n

) we let [f; g] denote

fgf�1g�1, (f; g) denote fgfg�1 and < f; g > denote the group generated by f and g.

In 1976[1], T.Jorgensen proved the following famous inequality which is basic for discrete

groups:

Theorem A Suppose that f and g 2M(R
2
) generate a discrete non-elementary group.

Then

jtr2(f)� 4j+ jtr[f; g]� 2j � 1(1)

The lower bound is best possible.

There has been strong activity in the area of M�obius transformations in several dimen-

sion since L.V.Ahlfors published his two famous papers[5][6]. Gilman thinks it is important

to establish the Jorgensen's inequality and it's similar forms in R
n

([7]). In recent years

many Jorgensen type inequalities in R
2
have been established[2][3][4]. However, to study

the M�obius groups in R
n

is very diÆcult. It is well known that M(R
2
) and M(R

n

), Where

n > 2, have many essential distinctions.

In this paper we study the Jorgensen's inequality and its similar forms. We obtain the

following inequality which is equivalent to Jorgensen's inequality:

Theorem B Suppose that f and g 2M(R
2
) generate a non-elementary discrete group.

Then

jtr2(f)� 4j+ jtr(f; g)� 2j � 1(2)

The lower bound is best possible.

We also prove some inequality for discrete M�obius groups in R
n

and study (f; g) futher,

we obtain several suÆcient and necessary conditions that two elements of M(R
n

) have com-

mon �xed points.
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2. SOME BASIC CONCEPTS. The Cli�ord algebra An shall be the associative alge-

bra over the real numbers generated by n - 1 elements e1; e2; : : : ; en�1 subject to the relation

e2
h
= �1; ehek = �ekeh(h 6= k);and no others. Every a 2 An has a unique representation in

the form a = a0+
P

avEv , where a0 and av are real and the sum ranges over all multi-indices

v = (v1; v2; : : : ; vp) with 0 < v1 < v2 < � � � < vp � n� 1, and Ev = ev1ev2 � � � evp . The

Cli�ord numbers of the special form x = x0 + x1e1 + � � � + xn�1en�1 are called vectors.

They form an n-dimensional subspace V n which we shall usually identity with Rn.

De�nition 2.1 jaj2 = a20 +
P
v

a2
v
for each a 2 An

The algebra An has three important involutions. The main conjugation consists in re-

placing every eh by �eh. We shall denote the main conjugation of a by a
0

. It is an

automorphism in the sense that (a + b)
0

= a
0

+ b
0

and (ab)
0

= a
0

b
0

. Next by reversing the

order of the factor in each Ev = ev1 � � � evp , we obtain a conjugation a ! a�. Obviously,

(ab)� = b�a�. These conjugation can be combined to a third, �a = (a
0

)� = (a�)
0

.

De�nition 2.2 The center =n of An consists of all a 2 An which commutes with every

element of An.

De�nition 2.3 The Cli�ord group �n consists of all a 2 An which can be written as

products of non-zero vectors in Rn.

De�nition 2.4 The matrix

�
a b

c d

�
is a Cli�ord matrix in dimension n if the following

conditions are ful�lled:

(1) a; b; c; d 2 �n [ f0g;

(2) ad� � bc� = 1;

(3) ac�1 and c�1d 2 Rn if c 6= 0;

(4) db�1 and b�1a 2 Rn if b 6= 0.

We let SL(2;�n) denote the set of Cli�ord matrices. For every M�obius transformation

g 2M(R
n

) we have the expression g(x) = (ax+ b)(cx+ d)�1,

�
a b

c d

�
2 SL(2;�n).

We classify the elements of M�obius group M(R
n

)/fIdg as the following:

De�nition 2.5 (1)If g is conjugate to

�
 0

0 �1

�
; Where  2 R/f�1,0g, then g is

called hyperbolic;

(2)If g is conjugate to

�
� 0

0 �
0

�
; where j�j=1,� 6= �1, then g is called elliptic;

(3)If g is conjugate to

�
1 0

t 1

�
; where t 2 Rn/f0g, then g is called strictly parabolic;

(4)If g is conjugate to

�
�t 0

t t�

�
; where � 2 Rn/R,t6= t�, and either t 62 =n(=n is the



INEQUALITIES AND COMMON FIXED POINTS FOR M�OBIUS GROUPS IN R
n

387

center of An) or t� 62 =n, then g is called qusi-parbolic;

(5)If g is conjugate to

�
� 0

0 �1�
0

�
; where j�j = 1; � 6= �1;  2 R/f�1; 0g, then g is

called loxodromic;

(6)If g is conjugate to

�
� �2t

0

t �
0

�
; where j�j < 1;  2 R; t 6= 0; t 2 Rn andj(�� +

�
0

)2 � Re(�� + �
0

)2j2 = �[(�� + �
0

)2 � Re(�� + �
0

)2]2 can not hold at the same time, and

for 8u 2 Rn/0, �t 6= �(t�)
0

, then g is called motion.

Remark 2.6 It is easy to prove that g is strictly parabolic if and only if g conjugates to�
1 1

0 1

�
:

De�nition 2.7 tr(g) = a+ d� is the trace of g; g =

�
a b

c d

�
2 SL(2;�n)

De�nition 2.8. A subgroup G of M(R
n

) is said to be elementary if and only if G has

a �nite G-orbit in R
n+1

.

3. INEQUALITIES. Now we establish a inequality in R
2
:

Theorem 3.1(Theorem B). Suppose that f and g 2M(R
2
) generate a non-elementary

group. Then

jtr2(f)� 4j+ jtr(f; g)� 2j � 1

The lower bound is best possible.

Proof. Case 1: f is parabolic. As the trace is invariant under conjugation we may assume

that

f =

�
1 1

0 1

�
; g =

�
a b

c d

�

where c 6= 0. We are assuming that the inequality fails and we have jcj < 1

Let g0 = g; gn+1 = gnfg
�1
n

. Then

gn+1 =

�
an+1 bn+1
cn+1 dn+1

�
=

�
1� ancn a2n
�c2

n
1 + ancn

�

From this we deduce that cn = �(�c)2
n

, so cn ! 0, janj � n+ ja0j. Thus ancn ! 0.

Then gn+1 ! f As < f; g > is discrete, the inequality holds.

Case 2: f is loxodromic or elliptic. Whithout loss of generality, Set

f =

�
u 0

0 1=u

�
; g =

�
a b

c d

�

Where bc 6= 0, We assume that the inequality fails, then

� = jtr2(f)� 4j+ jtr(fgfg�1)� 2j = (1 + jadj)ju� 1=uj2 < 1
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Let g0 = g, gn+1 = gnfg
�1
n

gn+1 =

�
an+1 bn+1
cn+1 dn+1

�
=

�
andnu� bncn=u anbn(1=u� u)

cndn(u� 1=u) andn=u� bncnu

�

So bn+1cn+1 = (bncn)(andn)(u� 1=u)
2
. We obtain jbncnj � �njbcj, jbncnj � �njadj:

So bncn ! 0, andn ! 1 and an+1 ! u; dn+1 ! 1=u.

Also, we obtain jbn+1=bnj � �1=2j�j. So jbn+1=u
n+1j < (1 + �1=2=2)jbn=u

nj

Thus bn=u
n ! 0 and cnu

n ! 0. It follows that

f�ng2nf
n =

�
a2n b2n=u

2n

u2nc2n d2n

�
! f

As < f; g > is discrete, the inequality holds.

To show that the lower bound in the theorem 3.1 is best possible, consider the group

generated by f(z) = z + 1 and g(z) = �1=z.

Remark 3.2 Using the Lie-product of f and g([3]) we can prove that the inequality in

Theorem 3.1 is equivalent to the Jorgensen's inequality in the theorem A. The

following is the brief proof:

Let � = fg�gf be the Lie-product of f and g, then � is elliptic of order 2 and conjugates

to f and g to their inverses. Applying theorem 3.1 to f and g� yields theorem A. Applying

theorem A to f and g� yields theorem 3.1.

When n > 2, we have the following theorems:

Theorem 3.3When n 6= 4l(l = 0; 1; 2; � � � ; ); f is loxodromic or elliptic, f =

�
� 0

0 �1�
0

�
;

where  2 R=f0; 1g, j�j = 1, � 6= �1, � 2 =n, < f; g > is a discrete subgroup, f and g have

no common �xed point, g(Ff ) 6= Ff . Then

jtr2(f)� 4j+ jtr(f; g)� 2j � 1

Proof. As n 6= 4l, � 2 =n, we have � = ��; �
0

= �, Write g=

�
a b

c d

�
: If f is elliptic

of order two, then the inequality holds. When f is elliptic, we may assume that f is not of

order two.

We obtain a 6= 0; d 6= 0; b 6= 0; c 6= 0.

Set go = g, gm+1 = gmfg
�1
n , Write gm =

�
am bm
cm dm

�
; We have

am+1 = amd
�

m
�� bmc

�

m
�1�

0

:

bm+1 = amb
�

m
(�1�

0

� �):

cm+1 = cmd
�

m
(�� �1�

0

):

dm+1 = amd
�

m
�1�

0

� bmc
�

m�

fgfg�1 =

�
2���ad� � bc� ba� + 2���ab�

cd� � �2�0�dc� �cb� + �2�
0

�da�

�



INEQUALITIES AND COMMON FIXED POINTS FOR M�OBIUS GROUPS IN R
n

389

So

jtr(fgfg�1)� 2j = jad�jj�� �1�
0

j
2

Set

� = jtr2(f)� 4j+ jtr(f; g)� 2j = (1 + jad�j)j�� �1�
0

j
2

We assume � < 1. We have am 6= 0; bm 6= 0; cm 6= o; dm 6= 0. We deduce (by induction):

jbmcmj � �mjbcj, and jbmcmj � �mjadj,

hence jbmcmj ! 0, am ! �, dm ! �1�0, bm=
m ! 0, cm

m ! 0

So f�mg2mf
m ! f As < f; g > is discrete, we have � � 1.

Similarly, we can prove the following theorems:

Theorem 3.4. When n 6= 4l(l = 0; 1; 2 � � � ), f is loxodromic or elliptic, f conjugates to

f0 =

�
� 0

0 �1�
0

�
; Where  2 R=f0g, � 6= �1, j�j = 1, � 2 =n, < f; g > is a discrete

subgroup. If f(0) = 0 or f(1) = 1, f and g have no common �xed point, g(Ff ) 6= Ff ,

then

jtr2(f)� 4j+ jtr(f; g)� 2j � 1

Theorem 3.5. When n 6= 4l(l = 0; 1; 2; � � � ), f is loxodromic or elliptic, f coujugates

to f0 =

�
� 0

0 �1�
0

�
; where  2 R=f0g, � 6= �1, j�j = 1, � 2 =n. There exists

h =

�
� �

� Æ

�
2 SL(2;�n), such that f = hf0h

�1, < f; g > is a discrete subgroup, f and

g have no common �xed point, g(Ff ) 6= Ff . Write h�1gh =

�
a b

c d

�
: If ad� 2 =n, then

jtr2(f)� 4j+ jtr(f; g)� 2j � 1

Remark 3.6 When n=4l, if we add the condition � 2 R and ad� 2 R in Theorem 3.4

and Theorem 3.5, then the inequality is still holds.

Similar to the proof of theorem 3.1 and theorem 3.3, we can prove:

Theorem 3.7 If < f; g > is a discrete non-elementary subgroup. f =

�
1 0

t 1

�
; where

t 2 Rn=0, or f =

�
t 0

0 t�1

�
; where t 2 R, t 6= �1, then

jtr2(f)� 4j+ jtr(f; g)� 2j � 1

Theorem 3.8< f; g > is discrete, f is strictly parabolic, f conjugates to f0 =

�
1 0

1 1

�
;

there exists h 2 SL(2;�n), such that f = hf0h
�1, f and g have no common �xed point,

write h�1gh =

�
a b

c d

�
; if ad� 2 R, then

jtr2(f)� 4j+ jtr(f; g)� 2j � 1

Remark 3.9 When n 6= 4l(l = 0; 1; 2; � � � ), we can replace the condition ad� 2 R by

ad� 2 =n

Using theorem 3.5, we can obtain the following theorem(similar to [9])
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Theorem 3.10. Assume that f =

�
a1 b1
c1 d1

�
2 SL(2;�n) is hyperbolic, where ja1j 6=

jd1j, and g =

�
a2 b2
c2 d2

�
2 SL(2;�n).If < f; g > is discrete non-elementary group, then

there is m 2 R; 0 < m � 1 such that

jtr2(f)� 4j+ jtr(f; g) � 2j=m � 1

4. COMMON FIXED POINTS. When n=2, we have the following theorem.

Theorem 4.1. Let f; g 2M(R
2
), then f and g have a common �xed point in R

2
if and

only if

tr(f; g) = tr2(f)� 2

Proof. Without loss of generality, we let

f =

�
a b

0 d

�
; g =

�
� �

0 Æ

�

we have

tr(f; g) = a�aÆ + dÆd� = a2 + d2 = tr2(f)� 2:

Now suppose that tr(f; g) = tr2f � 2.

If f is parabolic we can take a = d = b = 1; g =

�
� �

 Æ

�

So

2 = tr(f; g) = 2� 2;

Then  = 0, thus both f and g �x 1 ;

If f is not parabolic, we can assume that

f =

�
a 0

0 d

�
(a 6= d); g =

�
� �

 Æ

�

So tr(f; g) = (a2 + d2)�Æ � 2� = tr2(f)� 2

Then � = 0, So g �xes one of 0 and 1.

When n � 2, we have the following theorem:

Theorem 4.2 Suppose that g =

�
� �

 Æ

�
and f =

�
a 0

0 d

�
(neither is the identity)

or f =

�
a 0

c d

�
is parabolic. If f and g have two �xed points at most and one �xed point

at least, then f and g have a common �xed point x=0 if and only if

(f; g) �

�
a�a��1 0

� 1

jaj4
a

0

�
0

a
0

(�
0

)�1

�
; (� 6= 0)

Where � is a certain Cli�ord number and � denotes the conjugation.
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Proof. The necessity is clear. Now we prove the suÆciency.

Let f =

�
a 0

0 d

�
, g =

�
� �

 Æ

�
: We have

(f; g) =

�
a�aÆ� � a�d� a�d�� � a�a��

daÆ� � dÆd� dÆd�� � da��

�

Let (f; g)ij represent the element of (f; g) in the i-th row and j-th column. We consider the

folowing two cases: jaj = 1 and jaj 6= 1.

If jaj = 1, then d = a
0

and g is elliptic. As ��(��)�1 = ��1�, a�a = 1 and (a�)�1 = a
0

,

we obtain that (f; g)12 = a�a
0

�� � a�a�� = 0 if and only if x = ��1� is a solution of the

equation.

x = axa
0�1

(3)

Let x = ��1� be a solution of equation (3), then � = �a��1�. Therefore

(f; g)11 = a�a��1

In addition, let x = ��1� be a solution of the equation (3), then a�� = ��(��)�1d��. Thus

(f; g)22 = a
0

�
0

a
0

(�
0

)�1:

Now we study the solvablity of (3). The equation (3) is

x = ax(a
0

)�1 � Ax(4)

Where

A = Q

0
BBBBB@

A1

. . . 0

Ar

�E2s

Et

1
CCCCCA
Q�1; Ai =

�
cos �i � sin �i
sin �i cos �i

�
; i = 1; � � � ; r

and Q is an orthogonal matrix. Similar to the proof of theorem 2.5 in [9], We know that

there do not exists non-zero solutions of (4). Since (f; g)12 = 0, we have ��1� = 0, So

� = 0. Thus f and g have a common �xed point x=0.

If jaj 6= 1, then f =

�
a 0

0 d

�
is loxodromic. Similarly, for the case that f is loxodromic

or parabolic, we can prove that f and g have a common �xed point x = 0.

References

1. T.Jorgensen, On discrete groups of M�obius transformations, Amer. J. Math., 98(1976),739-749

2. R.Brooks and P.Matelski, The dynamics of two-generator subgroups of PSL(2, c), Ann. of Math. stud.

97. Princeton Univ, Press, 65-71

3. D.Tan, On two generator discrete groups of M�obius transformations, Proc. Amer. Math. Soc.,

106(1989), 764-770.

4. F.W.Gehring and G. J. Martin, Inequalities for M�obius transformations and discrete groups, J. reine.

angew. Math. 418(1991), 31-76.

5. L. V. Ahlfors, Old and new in M�obius groups, Ann. Acad. Sci. Fenn. Ser. A. l. Math., 9(1984), 93-105



392 JIANG WANG AND BINLIN DAI

6. L.V.Ahlfors, On the �xed points of M�obius transformations in R
n

, Ann. Acad. Sci. Fenn. Ser. A. I.

Math., 10(1985), 15-27

7. J. Gilman, A geometric approach to the hyperbolic Jorgensen inequality, Bull. Amer. Math. Soc.,

16(1987), 91-92.

8. A. F. Beardon. the geometry of discrete groups, Berlin Heidelberg New York, 1983

9. Fang Ainong, Jiang Yuepin, Fan Min, The traces of cli�ord matrices and Jorgensen's inequality in R
n

,

Proceeding of 16 Rolf Nevanlinna Colloquium, 21-30

10. Yu Zuguo,Wang Jiang,Ren Fuyao,The conjugate classi�cation and type criteria of M�obius transforma-

tions in higher dimension,Journal of Fudan University,1996(4),374-380.

Department of Mathematics, Xiangtan University, Hunan, 411105, P.R. China

Department of Applied Mathematics, Shanghai Jiaotong University, Shanghai, 200240, P.R.

China

and

Department of Mathematics, Xiangtan University, Hunan, 411105, P.R. China


