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ABSTRACT. In this paper we prove some inequalities for Mo6bius transformations and
discrete groups in R". We also get several sufficient and necessary conditions that two
elements of M&bius group M(R") have a common fixed point.

1. INTRODUCTION. For each f and g of Mobius group M(En) we let [f, g] denote
faftg™t, (f,g) denote fgfg ! and < f,g > denote the group generated by f and g.

In 1976[1], T.Jorgensen proved the following famous inequality which is basic for discrete
groups:

Theorem A Suppose that f and g € M (RQ) generate a discrete non-elementary group.
Then

(1) |tr?(f) — 4l + |tr(f, 9] = 2| > 1

The lower bound is best possible.

There has been strong activity in the area of Mobius transformations in several dimen-
sion since L.V.Ahlfors published his two famous papers[5][6]. Gilman thinks it is important
to establish the Jorgensen’s inequality and it’s similar forms in R"([7]). In recent years
many Jorgensen type inequalities in R’ have been established[2][3][4]. However, to study
the Mabius groups in R is very difficult. It is well known that M(EQ) and M(R"), Where
n > 2, have many essential distinctions.

In this paper we study the Jorgensen’s inequality and its similar forms. We obtain the
following inequality which is equivalent to Jorgensen’s inequality:

Theorem B Suppose that f and g € M (}_22) generate a non-elementary discrete group.
Then

2) |tr?(f) — 4l + |tr(f,9) 2| > 1

The lower bound is best possible.

We also prove some inequality for discrete Mdbius groups in B~ and study (f,g) futher,

we obtain several sufficient and necessary conditions that two elements of M(Rn) have com-
mon fixed points.
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2. SOME BASIC CONCEPTS. The Clifford algebra A™ shall be the associative alge-
bra over the real numbers generated by n - 1 elements e, ez, ... ,e,_1 subject to the relation
e7 = —1,epe, = —egen(h # k),and no others. Every a € A4, has a unique representation in
the form a = ap+) a, E,, where ag and a, are real and the sum ranges over all multi-indices
v =(v1,02,...,0p) With 0 <w; <wvs <---<v, <n—1,and E, = ey €y, - €,,. The
Clifford numbers of the special form z = zg + z1e1 + --- + T,_1€,_1 are called vectors.
They form an n-dimensional subspace V" which we shall usually identity with R™.

Definition 2.1 |a|*> = a3 + > a? for each a € A4,

The algebra A,, has three important involutions. The main conjugation consists in re-
placing every e; by —ep. We shall denote the main conjugation of a by a. It is an
automorphism in the sense that (¢ +b) =a +b and (ab)’ = a'b". Next by reversing the
order of the factor in each E, = e,, ---e,,, we obtain a conjugation a — a*. Obviously,

(ab)* = b*a*. These conjugation can be combined to a third, a = (a')* = (a*) .

Definition 2.2 The center <, of A, consists of all a € A,, which commutes with every
element of A4,,.

Definition 2.3 The Clifford group T',, consists of all a € A,, which can be written as
products of non-zero vectors in R™.

Definition 2.4 The matrix ( Z b > is a Clifford matrix in dimension n if the following

d
conditions are fulfilled:

(1) a,b,e,d € T, U{0};

(2) ad* — be* = 1;

(3) ac™! and ¢7'd € R™if ¢ # 0;
(4) db" and b="a € R™ if b # 0.

We let SL(2,T,) denote the set of Clifford matrices. For every Mébius transformation

g € M(R") we have the expression g(z) = (az + b)(cz + d) !, < (cl Z > € SL(2,T,).

We classify the elements of Mobius group M(R")/{Id} as the following:

Definition 2.5 (1)If ¢ is conjugate to ( g 791 ) , Where v € R/{+1,0}, then g is

called hyperbolic;

o

(2)If g is conjugate to , > , where |[A|=1,A # %1, then g is called elliptic;

A
0
1
t

=

> , where t € R™/{0}, then g is called strictly parabolic;

(4)If g is conjugate to

(3)If g is conjugate to (

Zt 737 ) , where n € R" /R, t# t*, and either ¢ € <, (S, is the
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center of A™) or tn € S, then g is called qusi-parbolic;

A
(5)If g is conjugate to ( 70 772}\, ) , where |A| =1,A # £1,v € R/{£1,0}, then g is

called loxodromic;

1

(6)If g is conjugate to >; _K,t ) , where |\| < 1,7 € R,t # 0,t € R™ and|(A* +

AN)2 = Re(\* +X)2]2 = —[(A\* + X')? — Re(A\* + \')?]2 can not hold at the same time, and
for Vu € R™/0, ut # —(tp) , then g is called motion.

Remark 2.6 It is easy to prove that g is strictly parabolic if and only if g conjugates to
11

(01)
Definition 2.7 tr(g) = a + d* is the trace of g,g = ( z Z ) € SL(2,T,)

Definition 2.8. A subgroup G of M(ﬁn) is said to be elementary if and only if G has
. ., .. xntl
a finite G-orbit in R~ .

3. INEQUALITIES. Now we establish a inequality in R

Theorem 3.1(Theorem B). Suppose that f and g € M (ﬁ2) generate a non-elementary
group. Then

|tr?(f) =4l + |tr(f,9) 2| > 1

The lower bound is best possible.

Proof. Case 1: f is parabolic. As the trace is invariant under conjugation we may assume

that
11 a b
f_<0 1>’g_<c d)
where ¢ # 0. We are assuming that the inequality fails and we have |¢| < 1
Let go = g, gnt1 = gnfg;I. Then

_ An+1 bpgr | _ [ 1= anca a?
nt1 Cn+1 dn—‘,—l —C% 1 + ancp
From this we deduce that ¢, = —(—¢)?", 50 ¢, = 0, |an| < n + |ag|. Thus a,c, — 0.
Then gn+1 — f As < f,g > is discrete, the inequality holds.

Case 2: f is loxodromic or elliptic. Whithout loss of generality, Set

f= u 0 ([ a b
L0 1/u 9=\ e d
Where be # 0, We assume that the inequality fails, then

p=tr?(f) =4l +tr(fofg™") — 2| = (1 + |ad])Ju - 1/u]* < 1



388 JIANG WANG AND BINLIN DAI

Let go = g, gnt1 = gnfyn'

o Gny1 bpyr \ andpt — bpen/u  apbp(l/u—u)
gnt1 = Cny1 dpi1 | endn(u—1/u)  apdy/u—bpcyu

S0 bnti1cnt1 = (bnen)(andy)(u — 1/u)2. We obtain |byc,| < p™|be|, |bncn| < 1™|ad|.
So bpen, = 0, and, — 1 and apy1 = u,dpyr — 1/u.

Also, we obtain |buy1/bn| < p/?|p]. So |bpyr /u™TY < (1 4+ p/2/2)|b, /u™|

Thus b, /u™ — 0 and c,u™ — 0. It follows that

—n n __ a2n b2n/U2n
I B A Y

As < f,g > is discrete, the inequality holds.

To show that the lower bound in the theorem 3.1 is best possible, consider the group
generated by f(z) =z+ 1 and g(z) = —1/z.

Remark 3.2 Using the Lie-product of f and ¢([3]) we can prove that the inequality in
Theorem 3.1 is equivalent to the Jorgensen’s inequality in the theorem A. The
following is the brief proof:

Let ¢ = fg—gf be the Lie-product of f and g, then ¢ is elliptic of order 2 and conjugates
to f and g to their inverses. Applying theorem 3.1 to f and g¢ yields theorem A. Applying
theorem A to f and g¢ yields theorem 3.1.

When n > 2, we have the following theorems:
. . .. YA 0
Theorem 3.3 Whenn # 41(1 =0,1,2,--- ,), f is loxodromic or elliptic, f = 0 4N )
where v € R/{0,1}, [A\| =1, A # £1, A € S, < f,g > is a discrete subgroup, f and g have
no common fixed point, g(Fy) # Fy. Then

|tr?(f) — 4l + |tr(f,9) 2| > 1

Proof. Asn #4l, A € $,, we have A = AN = X, Write g= < (cl Z ) If f is elliptic

of order two, then the inequality holds. When f is elliptic, we may assume that f is not of
order two.

We obtain a # 0,d # 0,b # 0,c # 0.

m  bm
Cm  dm

Set 9o = 95 gm+1 = gmfgrtla Write Im = ( > ’ We have

Amt1 = Qdy, YA — bmcfn'yfl/\’.
b1 = ambl, (YA = YA).
Cmt1 = Cmdy (YA =7 IN).

At = Amd 7N = bt YA

i YEA\*ad* — bc*  ba* + Y2 A\ ab*
fgfg = ¥ A2\ Jak —27\' Y 7%
cd* — vy N Adce cb* + 772X Mda
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So
jtr(f9fg ") = 2| = lad"|lPA =7 AP

Set,

a =t (f) = 4| +|tr(f,9) = 2| = (1 + |ad" )y =y~ N'P?
We assume a < 1. We have a,, # 0, b # 0, ¢m # 0,dm # 0. We deduce (by induction):
[bmcm| < a™|be|, and |bycm| < @™ |ad]|,
hence |bpmcm| = 0, am = YA, dm = YN, byn /Y™ = 0, ey™ — 0
So f~™gomf™ — f As < f,g > is discrete, we have a > 1.

Similarly, we can prove the following theorems:

Theorem 3.4. When n # 41(I =0,1,2---), f is loxodromic or elliptic, f conjugates to

fo = < 7())\ 'y_?)\’ ) , Where v € R/{0}, A # £1, [A\| =1, A € Sy, < f,g > is a discrete

subgroup. If f(0) = 0 or f(c0) = oo, f and ¢g have no common fixed point, g(Fy) # Fy,
then
|tr?(f) — 4] + |tr(f,9) — 2] > 1
Theorem 3.5. When n # 4i(l = 0,1,2,--+), f is loxodromic or elliptic, f coujugates

A
to fo = ( 70 VEX ), where v € R/{0}, A # %1, |\| = 1, A € Q.. There exists

h = ( j g ) € SL(2,T,,), such that f = hfph™!, < f,g > is a discrete subgroup, f and

a b

g have no common fixed point, g(Fy) # Fy. Write h~tgh = ( e d ) If ad® € Sy, then

|tr?(f) =4+ |tr(f,9) — 2] > 1
Remark 3.6 When n=4l, if we add the condition A € R and ad* € R in Theorem 3.4
and Theorem 3.5, then the inequality is still holds.

Similar to the proof of theorem 3.1 and theorem 3.3, we can prove:

Theorem 3.7 If < f, g > is a discrete non-elementary subgroup. f = ( 1 (1) > , where

tER"/O,orf:(é tE)l >,WheretER,t7§il,then

tr?(f) — 4 + [tr(f,9) — 2| > 1

11
there exists h € SL(2,T,), such that f = hfyh™!, f and g have no common fixed point,

write h~'gh = ( (CI Z ) , if ad* € R, then

Theorem 3.8 < f, g > is discrete, f is strictly parabolic, f conjugates to fo = ( 1 0 > ’

[tr*(f) =4l + [tr(f,9) = 2| > 1
Remark 3.9 When n # 4I(l = 0,1,2,---), we can replace the condition ad* € R by
ad* € &,
Using theorem 3.5, we can obtain the following theorem(similar to [9])



390 JIANG WANG AND BINLIN DAI

a1 b1

Theorem 3.10. Assume that f = < o d
1y

> € SL(2,T',,) is hyperbolic, where |a1| #

|di], and g = < Z2 22 € SL(2,T,).If < f,g > is discrete non-elementary group, then
2 d

there is m € R,0 < m < 1 such that

|tr?(f) — 4 + [tr(f,9) — 2|/m > 1

4. COMMON FIXED POINTS. When n=2, we have the following theorem.
Theorem 4.1. Let f,g € M(ﬁ2), then f and g have a common fixed point in R’ if and
only if
tT‘(f,g) = th(f) -2

Proof. Without loss of generality, we let
[ a b [ a B
r=(6a)o=(5 %)

tr(f,9) = aaad + dédo = a® + d* = tr*(f) — 2.
Now suppose that tr(f,g) = tr’f — 2.

we have

If f is parabolic we can takea=d=b=1,g9 = < i g)
So

2:t7°(f,g):2—’)/2,
Then v = 0, thus both f and g fix oo ;

If f is not parabolic, we can assume that

=i 3)eron(1 1)

So tr(f,g) = (a®> + d®)ad — 23 = tr®(f) — 2
Then v3 = 0, So g fixes one of 0 and co.
When n > 2, we have the following theorem:

Theorem 4.2 Suppose that g = ( 3 ? > and f = ( 8 2 > (neither is the identity)

or f = (cl 2 is parabolic. If f and g have two fixed points at most and one fixed point

at least, then f and g have a common fixed point x=0 if and only if

acaa™" 0

G~ (T Lede@ ) @0

Where * is a certain Clifford number and ~ denotes the conjugation.
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Proof. The necessity is clear. Now we prove the sufficiency.

Letf:(% 2),9:(3 §>.Wehave

(f.q) = acaad* — afdyx afda* — acaf*
9=\ dyad* — dédy* ddda* — dyaB*

Let (f, g):; represent the element of (f, g) in the i-th row and j-th column. We consider the
folowing two cases: |a| = 1 and |a|] # 1.

If |a| =1, then d = @ and g is elliptic. As *(*)™' = a8, aa =1 and (a*)~! = d,
we obtain that (f,g)12 = afBa a* — aaaB* = 0 if and only if x = a1 is a solution of the
equation.

(3) z=azd

Let * = a3 be a solution of equation (3), then 8 = aaa~'3. Therefore

(f,9)11 = acaa™"

In addition, let # = a ! be a solution of the equation (3), then a* = 8*(a*) 'da*. Thus
(f,9)2=daa (a)".
Now we study the solvablity of (3). The equation (3) is

4) z=az(a) ' = Ax
Where

Ay

0 . _Qinf.
A=0 " o1, Ai:<cost92 sin 6; >,i:1,---,r

_E2s
Ey

and Q is an orthogonal matrix. Similar to the proof of theorem 2.5 in [9], We know that
there do not exists non-zero solutions of (4). Since (f,g)12 = 0, we have a8 = 0, So
B = 0. Thus f and g have a common fixed point x=0.

If |a| # 1, then f = 8 2 is loxodromic. Similarly, for the case that f is loxodromic

or parabolic, we can prove that f and g have a common fixed point = 0.
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