Scientiae Mathematicae Vol. 1, No. 3(1998), 347-354 347

ON BH-ALGEBRAS
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ABSTRACT. In this paper, we introduce a new notion, called an BH-algebra, which is a
generalization of BOC'H/BCT/BC K-algebras. We define the notions of ideals and boundedness
in BH-algebras, and show that there is a maximal ideal in bounded BH-algebras. Further-
more, we establish construct the quotient BH-algebras via translation ideals and obtain the
fundamental theorem of homomorphisms for BH-algebras as a consequence.

1. INTRODUCTION

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-algebras and
BCI-algebras ([2, 3, 4]). It is known that the class of BC K-algebras is a proper subclass
of the class of BC'T-algebras. In [1] Q. P. Hu and X. Li introduced a wide class of abstract
algebras: BC' H-algebras. They have shown that the class of BC'I-algebras is a proper sub-
class of the class of BC H-algebras. BC K -algebras have some connections with other areas:
D. Mundici [8] proved that M V-algebras are categorically equivalent to bounded commuta-
tive BC'K-algebras, and J. Meng [7] proved that implicative commutative semigroups are
equivalent to a class of BC'K-algebras. In this paper, we introduce a new notion, called
an BH-algebra, which is a generalization of BCH/BCI/BC K-algebras. We define the no-
tions of ideals and boundedness in B H-algebras, and show that there is a maximal ideal in
bounded B H-algebras. Furthermore, we establish construct the quotient BH-algebras via
translation ideals and obtain the fundamental theorem of homomorphisms for B H-algebras
as a consequence.

2. BH-ALGEBRAS

In 1983, Q. P. Hu and X. Li [1] introduced a very interesting class of algebras, called
a BCH-algebra. An algebra (X;x,0) of type (2,0) with the following axioms: for all
z,y,z € X,
(1) %2 =0,
(2) (zxy)xz=(vx2)xy,
(3) xxy=0and yxx =0 imply « = y.
is called a BC'H-algebra. 1t is well known that for any BC H-algebra X
(4) @ %0 =« for all 2 € X.
It is natural to pose a question: Can we construct more generalized algebraic class of the
BC H-algebras 7 In this section, we will discuss this question and introduce the new notion
of BH-algebras which is a generalization of BC' H-algebras.
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Definition 2.1. By a BH-algebra, we mean an algebra (X;,0) of type (2,0) having the
conditions (1), (3) and (4).

Example 2.2. (a) Let X = {0,1,2,3} be a set with the following Cayley table:

*To 1 2 3
0, 0 3 0 2
111 0 0 O
212 2 0 3
313 3 1 0

It is easy to verify that (X;x,0) is a BH-algebra, but not a BC'H-algebra, since (2%3) 2 =
1#2=(2%2)%3.

(b) Let R be the set of all real numbers and define

0 itez=0,
TRy = )2

=1 .
( f” otherwise,

for all z,y € R, where “—” is the usual substraction of real numbers. Then it is easy to

check that (R;x,0) is a BH-algebra, but not a BC' H-algebra.
We now investigate relations between B H-algebras and BC H-algebras (also, BCK/BCI-
algebras). The following theorems are easily proved, and omit the proof.
Theorem 2.3. Every BCH-algebra is a BH-algebra. Every BH-algebra satisfying the
condition (2) is a BC'H-algebra.
Theorem 2.4. Every BH-algebra satisfying the condition
(5) ((e5y)* (25 2) % (5y) =0, Va,y.z € X,
is a BCI-algebra.

Theorem 2.5. Every BH-algebra satisfying the conditions (5) and
(6) (xxy)xx=0, Va,yelX,
is a BC' K -algebra.

By [3], [1], Theorem 2.3 and Example 2.2, we know the following relations:

The class The class The class The class
of C of C of C of
BCK-algebra BClI-algebras BCH-algebras B H-algebras

Theorem 2.6. Every BH-algebra X satisfying % (xxy) = x %y for all z,y.z € X is a
trivial algebra.

Proof. Putting « = y in the equation z % (x x y) = @ x y, we have x % 0 = 0. It follows from
(4) that = 0. Hence X is a trivial algebra. O

The following example shows that a BH-algebra may not have the associative law.

Example 2.7. Let X = {0, 1,2} with the Cayley table as follows:

o 1 2
o 0 1 2
11 0 1
20 2 1 0
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Then X is an B H-algebra, but associativity does not hold, since (2% 1) %1 # 2% (1% 1).

Theorem 2.8. Every BH-algebra (X; x,0) satisfying the associative law is a group under

“ o

the operation “ x”.

Proof. Putting # = y = z in the associative law (z % y) * z = x % (y * z) and using (1) and
(4), we obtain 0 x = x x 0 = x. This means that 0 is the identity of X. By (1), every
element 2 of X has its inverse element z itself. Therefore (X, *) is a group. O

3. IDEALS IN BH-ALGEBRAS

In this section, we introduce the notions of ideals, translation ideals in B H-algebras, and
we show that there is a maximal ideal in bounded BH-algebras. Finally, we construct the
quotient B H-algebra via translation ideals.

Definition 3.1. Let X be a BH-algebra and I(# ) C X. [ is called an ideal of X if it
satisfies: for all z,y, z € X,
(7)0el,
(8) zxyelandyelimply r €1,
Obviously, {0} and X are ideals of X. We will call {0} and X a zero ideal and a trivial
tdeal, respectively. An ideal I said to be proper if I # X.

Example 3.2. Let X = {0,1,2} be a BH-algebra with the following table:

o 1 2
o 0 0o 1
11 0 2
2 2 2 0

We can easily show that {0,1} is a proper ideal of X.

Definition 3.3. Let I be an ideal of a BH-algebra X. Then [ is called a maximal ideal if
I is a proper ideal of X, and not a proper subset of any proper ideal of X.

In Example 3.2, {0,1} is a maximal ideal of X.

Definition 3.4. Let X be a BH-algebra. X is said to be bounded if there is an element
m € X satisfying z ¥ m = 0 for all z € X,

Theorem 3.5. Let (X;x%,0) be a bounded BH-algebra with |X| > 2. Then X has at least
one maximal ideal.

Proof. Let m € X with x xm = 0 for all # € X. First, we prove that an ideal I of X is
proper if and only if m ¢ I. In fact, if m ¢ I, then I # X, and so [ is a proper ideal.
Conversely, assume that I is a proper ideal of X and let # € X. If m € I, then since
x*m = 0, we have & € I. This means that I = X, which contradicts to the assumption.
Therefore m ¢ I.

We now prove that every ideal A of X is contained in a maximal ideal. The set of all
proper ideals containing A is denoted by S. Obviously, (S, C) is a partially ordered set and
S # 0. Let S be a chain of § and let B := U{I|] € Sy}. Noticing that A is the least
element of (S, C), we have A C B. Hence 0 € B. Let z,y € X be such that 2 * y € B and
y € B. Then there are I1,Is € Sy such that zxy € I} and y € I,. We may assume I C [,
without loss of generality. Thus ¢ xy € I,y € I} and so « € I;. It follows that «+ € B.
Hence the condition (8) holds. This means that B is an ideal of X. Since every ideal of Sy
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does not contain the element m, we have m ¢ B, and so B is a proper ideal. Hence B € S.
This proves that every chain of S has an upper bound in §. By Zorn’s Lemima, S have a
maximal element M. This proves the theorem. [
Definition 3.6. An ideal A of a BH-algebra X is said to be a translation ideal of X if it
satisfies: for all z,y,z € X,
(9) zxyeAandyxz € Almply (xx2)x(yxz) € Aand (zx2) x (z xy) € A

Obviously, {0} and X are translation ideals of X. The next examples show that (8) and
(9) are independent.
Example 3.7. Let X = {0,1,2,3} be a BH-algebra with the Cayley table as follows:

X

W o = o

W N = OO
W N O ==
W O o W
O W o oflw

Then A = {0,1, 2} satisfies (8), but not (9), since 1¥2=2,2x1=2€ Abut (1x1)%(2x1) =
0x2=3¢ A.

Example 3.8. Let X = {0,1,2} be a BH-algebra with the Cayley table as follows:

|

o= OO

2
1
0
0

N = O
_ o O

Then A = {0,2} satisfies (9), but not (8), since 1x2=0€ A and 2 € A but 1 ¢ A.
Example 3.9. Let X = {0,1,2,3} be a BH-algebra with the Cayley table as follows:

*o 1 2 3
0, 0 1 0 O
111 0 0 0
212 2 0 3
313 3 3 0

Then we can easily show that A = {0,1} is a translation ideal of X.

Now we construct the quotient B H-algebras via translation ideals. Let A be a translation
ideal of a BH-algebra (X x,0). For any z,y € X, we define

r~pgyifandonlyif zxy € A and yxx € A.

Since 0 € A, we have x xx = 0 € A, i.e., & ~4 x for any x € X. This means that ~ 4 is
reflexive.

Let t~pyand y~4 2. Then zxy.yxx € Aand y*z,z+xy € A. Thus by (9) we have
(vxz)x(yxz) € Aand (zxx)*x(zxy) € A. Hence by (8), we get %z € A and zxa € A,
and so x ~4 z. This proves that ~ 4 is transitive.

The symmetry of ~4 is trivial from the definition. Therefore ~4 is an equivalence
relation on X.
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Ifr ~qgyandu~y v, then zxy,yxx € Aand uxv,vxu € A Thus by (9) we have
(wxu)x(y*u) € Aand (yxu)* (x*u) € A, and so & % u ~4 y* u. Similarly, we have
Yy *u ~, yxv. By transitivity of ~ 4, we obtain & % u ~4 y % v. Consequently ~4 is a
congruence relation on X.

Denote the equivalence class containing = by [z]4, i.e.,

[2]a ={y € X|z ~4 y}.
We note that x ~ 4 y if and only if [2]4 = [y]a.
Denote X/A = {[z]a]z € X} and define
[2]a % [y]la =[x * ya.

The operation “x'” is well-defined, since ~ 4 is a congruence relation on X. We claim
that (X/A,«',[0]4) is a BH-algebra. Clearly [z]a %" [v]4 = [0]4 and [z]4 *" [0]4 = [2]4 for
all [#]a € X/A. Let [2]a, [y]a € X/A be such that [2]4 *" [y]a = [0]a = [y]a *' [#]a. Then
[xyla =[0]a = [y*2x]sandso xxy ~4 O and yxx ~4 0. If u € [2]4 then z ~4 u. Tt
follows that u*y ~4 x xy ~4 0, which shows u € [y]4. Hence [z]4 C [y]a. Similarly, we
have [y]a C [#]a. Thus [2]4 = [y]a. We summarize:

Theorem 3.10. Let A be a translation ideal of a BH-algebra (X;*,0). If we define
[#]a %" [y]a =[x *y]a Yo,y € X,
then (X/A; %' [0]4) is a BH-algebra, which is called the quotient BH-algebra via A.
The notion of translation ideal is necessary for constructing the quotient BH-algebras.

Example 3.11. Let X = {0,1,2,3,4} be a BH-algebra with the Cayley table as follows:

*o 1 2 3 4
0,0 0 0 0 O
11 0 0 1 4
212 2 0 0 4
313 3 3 0 4
41 4 4 4 4 0

Then the set A = {0,1} is an ideal of X, but not a translation ideal of X, since 1x0,0x1 € A,
but (1x4)* (0x4)=4¢& A.

4. HOMOMORPHISMS IN BH-ALGEBRAS

In this section, we state a fundamental theorem of a homomorphism.

Definition 4.1. Let X and Y be BH-algebras. A mapping f: X — Y is called a homo-
morphism if
flexy) = f(z)« fy), Yo,y € X.

A homomorphism f is called a monomorphism (resp., epimorphism) if it is injective (resp.,
surjective). A bijective homomorphism is called an isomorphism. Two BH-algebras X and
Y are said to be isomorphic, written X = Y, if there exists an isomorphism f : X — Y.
For any homomorphism f : X — YV, the set { € X|f(x) = 0} is called the kernel of f,
denoted by Ker(f) and the set {f(x)|z € X} is called the image of f, denoted by Im(f).

Notice that f(0) = 0 for any homomorphism f.
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Theorem 4.2. Let f : X — Y be a homomorphism of BH-algebras. Then Ker(f) is a
translation ideal of X.

Proof. Obviously, 0 € Ker(f). Let v xy € ker(f) and y € ker(f). Then 0 = f(zxy) =
f@)x fly) = f(z)x0 = f(z). Hence x € ker(f). Let x xy € ker(f) and y x x € ker(f).
Then we get f(2) = f(y). Thus for any z € X, we have

Fllzx2)x(yx2))=0and f((z*2)*(zxy)) =0.
Hence we obtain (2 % z) % (y % z) € Ker(f) and (z % x) * (2 *y) € Ker(f). Therefore ker(f)
is a translation ideal of X. O
Theorem 4.3 (Homomorphism Theorem). If f : X — Y is a homomorphism from a
BH-algebra X onto a BH-algebraY, then X/Ker(f)2Y.

Proof. Define a mapping pu: X/Ker(f) = Y by u([z]xerir)) = f(@). I (2] keriry = Wrer(n
then zxy, yxx € Ker(f),and so f(z)*f(y) =0 = f(y) = f(z). By (3) we have f(x) = f(y),
Le., p([e]ier(ry) = p([Ylker(sy). This means that p is well-defined. For any y € Y, there
is an € X such that y = f(z), since f is onto. Hence p([z]xers)) = f(z) = y, which
means that i is onto. Let [¥]ger(p), [U]xer(s) € X/Ker(f) with [2]ger(s) # [Ylker(s)- Then
& ~gers y does not hold, and hence either z %y ¢ Ker(f) or yxa € Ker(f). Without loss
of generality, we may assume x xy € Ker(f). It follows that f(z)x f(y) = flzxy) #0
and hence f(x) # f(y). This means that u is one-one. Since u([z]ger(s) * [ Ker(r)) =
e ylkercr)) = floxy) = fx)x f(y) = p([@]kerir)) * (Y] ker(s) )s 1 is @ homomorphism.
Thus we obtain X/Ker(f) =Y, completing the proof. O

Theorem 4.4. Let X,Y and Z be BH-algebras, and let h : X — Y be an epimorphism and
g: X — Z beahomomorphism. If Ker(h) C Ker(g), then there is a unique homomorphism
f:Y o Z satisfying foh = g.

Proof. For any y € Y, there exists an @ € X such that y = h(z). Given an element x, we
put z := g(x). Define a mapping f: Y — Z by f(y) = =.

To prove that f is well-defined and foh = g. If y = h(z1) = h(z2), 21,22 € X, then
0 = h(zy) * h(za) = h(zy * x3). Hence z1 x x9 € Ker(h). Since Ker(h) C Ker(g), we have
0 = g(x1 % 22) = g(a1) * g(x2). Similarly, we get g(a2) x g(x1) = 0. Thus g(x2) = g(21).
This means that f is well-defined. Clearly g(x) = f(h(z)) for any » € X.

To show that f is a homomorphism. Let y1,y2 € Y. For any x1,22 € X such that
y1 = h(21),y2 = h(x2), we have f(y1 xy2) = f(h(x1)xh(x2)) = f(h{z1%22)) = gl % 22) =
g(z1) x g(xs) = f(h(z1)) * f(h(z2)) = f(y1) * f(y2). Hence f is a homomorphism. The
uniqueness of f follows directly from the fact that h is an epimorphism. O

Theorem 4.5. Let X,Y and Z be BH-algebras, and let ¢ : X — Z be a homomor-
phism and h 'Y — Z be a monomorphism with I'm(g) C Im(h), then there is a unique
homomorphism f : X — Y satisfying ho f = g.

Proof. For each z € X, g(z) C Im(g) C Im(h). Since & is a monomorphism, there exists a
unique y € Y such that h(y) = g(x). Defineamap f: X - Y by f(z) =y. Then ho f = g.
We show that f is a homomorphism. If 1,29 € X, then g(x; % x9) = h{f(x1 *x2)). On the
other hand, since g is a homomorphism, g(2 x #2) = g(x1) % g(x2) = h(f(21)) x h(f(x2)) =
h(f(x1) % f(22)). Hence h(f(x1 * x2)) = h(f(21) * f(22)). Since h is a monomorphism,
we have f(zy * x9) = f(z1) % f(x2). The uniqueness of f follows from the fact that & is a
monomorphism. [

If A is a translation ideal of a BH-algebra X. Then a map p : X — X/A defined
by p(#) = [#]a is a homomorphism, which is called the canonical mapping. Note that

Ker(p)=A
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Lemma 4.6. Let X and Y be BH-algebras and let f : X — Y be a homomorphism. If
A is a translation ideal of X such that A C Ker(f), then a map f: X/A — Y defined by
f(z]a) = f(z) for all x € X, is a homomorphism.

Proof. We show that f is well-defined. If [z]4 = [y]a, then [z % y]a = [z]a * [y]a. This
means v %y € A C Ker(f), and so f(x) * f(y) = f(:L * y) = 0. Similarly, we have
fy)x f(z) = f(y*x2) =0. Hence f(z) = f(y). Clearly, f is a homomorphism. O

Theorem 4.7. Let f : X — Y be a homomorphism of BH-algebras, and let A be a
translation ideal of X and f : X — Y be a homomorphism. Then the following are
equivalent:

(i) there is a unique homomorphism f : X/A — Y such that f op = f, where

p: X — X/A is the canonical mapping.

(i) A C Ker(f).

Furthemore, f is a monomorphism if and only if A = Ker(f).

Proof. (i) = (ii). If a € A, then f(a) = f(p(a)) = f([0]4) = f(0) = 0 for all a € A, since
fop=fand Ker(f) = A. Hence a € Ker(f).

(ii) = (i). By Lemma 4.6, we have a homomorphism f : X/A — Y defined by f([z]a) =
f(z) for all x € X. Since (f op)(z) = f([z]a) = f(z) for all z € X, we have fop = f. The
uniqueness of f follows from the fact that p is surjective.

Furthemore, f is a monomorphism if and only if f(z) = 0 implies [z]4 = [0]4 = A4, i.e.,
if and only if Ker(f) C A. This proves the theorem. O

Theorem 4.8. Let X and Y bhe BH-algebras. If a homomorphism f : X — Y can be
expressed as a composite homomorphisms of B H-algebras

X % 4 4 B 4oy

where « is an epimorphism, 3 is an isomorphism, and v is a monomorphism, then A =2

X/Ker(f) and B = Im(f).

Proof. Consider the diagram

X/Ker(f) AN Im(f)
b N
X Th lk Y
> “
A — B ’

where o fop is the canonical decomposition of f and «, 3,y are respectively an epimorphism,
an isomorphism and a monomorphism, respectively. Since f = vo 3o« and 7,3 are each
monomorphisms, we have f(z) = 0 if and ounly if a(z) = 0. Hence Ker(a) = Ker(f) =
Ker(p). By Theorem 4.4, there is a unique homomorphism h : A — X/Ker(f) such that
hoa = p. Clearly the mapping h is a monomorphism, since Ker(a) = Ker(p). Moreover,
h is surjective, since p is surjective. Thus h is an isomorphism.

Since Im(vy) = Im(f), by applying Theorem 4.5, we have a unique homomorphism
E : Im(f) — B such that v o k = i. The mapping k is clearly an epimorphism. The
injectivity of k follows from that ¢ is injective. Thus £ is an isomorphism. O
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