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Abstract. In this paper, we introduce a new notion, called an BH-algebra, which is a

generalization of BCH=BCI=BCK-algebras. We de�ne the notions of ideals and boundedness

in BH-algebras, and show that there is a maximal ideal in bounded BH-algebras. Further-

more, we establish construct the quotient BH-algebras via translation ideals and obtain the

fundamental theorem of homomorphisms for BH-algebras as a consequence.

1. Introduction

Y. Imai and K. Is�eki introduced two classes of abstract algebras: BCK-algebras and
BCI-algebras ([2, 3, 4]). It is known that the class of BCK-algebras is a proper subclass
of the class of BCI-algebras. In [1] Q. P. Hu and X. Li introduced a wide class of abstract
algebras: BCH-algebras. They have shown that the class of BCI-algebras is a proper sub-
class of the class of BCH-algebras. BCK-algebras have some connections with other areas:
D. Mundici [8] proved thatMV -algebras are categorically equivalent to bounded commuta-
tive BCK-algebras, and J. Meng [7] proved that implicative commutative semigroups are
equivalent to a class of BCK-algebras. In this paper, we introduce a new notion, called
an BH-algebra, which is a generalization of BCH=BCI=BCK-algebras. We de�ne the no-
tions of ideals and boundedness in BH-algebras, and show that there is a maximal ideal in
bounded BH-algebras. Furthermore, we establish construct the quotient BH-algebras via
translation ideals and obtain the fundamental theorem of homomorphisms for BH-algebras
as a consequence.

2. BH-algebras

In 1983, Q. P. Hu and X. Li [1] introduced a very interesting class of algebras, called
a BCH-algebra. An algebra (X; �; 0) of type (2,0) with the following axioms: for all
x; y; z 2 X,

(1) x � x = 0,
(2) (x � y) � z = (x � z) � y,
(3) x � y = 0 and y � x = 0 imply x = y.

is called a BCH-algebra. It is well known that for any BCH-algebra X
(4) x � 0 = x for all x 2 X.

It is natural to pose a question: Can we construct more generalized algebraic class of the
BCH-algebras ? In this section, we will discuss this question and introduce the new notion
of BH-algebras which is a generalization of BCH-algebras.
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De�nition 2.1. By a BH-algebra, we mean an algebra (X; �; 0) of type (2,0) having the
conditions (1), (3) and (4).

Example 2.2. (a) Let X = f0; 1; 2; 3g be a set with the following Cayley table:

* 0 1 2 3

0 0 3 0 2

1 1 0 0 0

2 2 2 0 3

3 3 3 1 0

It is easy to verify that (X; �; 0) is a BH-algebra, but not a BCH-algebra, since (2�3)�2 =
1 6= 2 = (2 � 2) � 3.

(b) Let R be the set of all real numbers and de�ne

x � y :=

(
0 if x = 0,
(x�y)2

x
otherwise,

for all x; y 2 R, where \�" is the usual substraction of real numbers. Then it is easy to
check that (R; �; 0) is a BH-algebra, but not a BCH-algebra.

We now investigate relations between BH-algebras and BCH-algebras (also, BCK=BCI-
algebras). The following theorems are easily proved, and omit the proof.

Theorem 2.3. Every BCH-algebra is a BH-algebra. Every BH-algebra satisfying the

condition (2) is a BCH-algebra.

Theorem 2.4. Every BH-algebra satisfying the condition

(5) ((x � y) � (x � z)) � (z � y) = 0; 8x; y; z 2 X,

is a BCI-algebra.

Theorem 2.5. Every BH-algebra satisfying the conditions (5) and
(6) (x � y) � x = 0; 8x; y 2 X;

is a BCK-algebra.

By [3], [1], Theorem 2.3 and Example 2.2, we know the following relations:

The class The class The class The class
of � of � of � of

BCK-algebra BCI-algebras BCH-algebras BH-algebras

Theorem 2.6. Every BH-algebra X satisfying x � (x � y) = x � y for all x; y; z 2 X is a

trivial algebra.

Proof. Putting x = y in the equation x � (x � y) = x � y, we have x � 0 = 0. It follows from
(4) that x = 0. Hence X is a trivial algebra. �

The following example shows that a BH-algebra may not have the associative law.

Example 2.7. Let X = f0; 1; 2g with the Cayley table as follows:

* 0 1 2

0 0 1 2

1 1 0 1

2 2 1 0
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Then X is an BH-algebra, but associativity does not hold, since (2 � 1) � 1 6= 2 � (1 � 1).

Theorem 2.8. Every BH-algebra (X; �; 0) satisfying the associative law is a group under

the operation \ �".

Proof. Putting x = y = z in the associative law (x � y) � z = x � (y � z) and using (1) and
(4), we obtain 0 � x = x � 0 = x. This means that 0 is the identity of X. By (1), every
element x of X has its inverse element x itself. Therefore (X; �) is a group. �

3. Ideals in BH-algebras

In this section, we introduce the notions of ideals, translation ideals in BH-algebras, and
we show that there is a maximal ideal in bounded BH-algebras. Finally, we construct the
quotient BH-algebra via translation ideals.

De�nition 3.1. Let X be a BH-algebra and I(6= ;) � X. I is called an ideal of X if it
satis�es: for all x; y; z 2 X,

(7) 0 2 I,
(8) x � y 2 I and y 2 I imply x 2 I,

Obviously, f0g and X are ideals of X. We will call f0g and X a zero ideal and a trivial

ideal, respectively. An ideal I said to be proper if I 6= X.

Example 3.2. Let X = f0; 1; 2g be a BH-algebra with the following table:

* 0 1 2

0 0 0 1

1 1 0 2

2 2 2 0

We can easily show that f0; 1g is a proper ideal of X.

De�nition 3.3. Let I be an ideal of a BH-algebra X. Then I is called a maximal ideal if
I is a proper ideal of X, and not a proper subset of any proper ideal of X.

In Example 3.2, f0; 1g is a maximal ideal of X.

De�nition 3.4. Let X be a BH-algebra. X is said to be bounded if there is an element
m 2 X satisfying x �m = 0 for all x 2 X,

Theorem 3.5. Let (X; �; 0) be a bounded BH-algebra with jXj � 2. Then X has at least

one maximal ideal.

Proof. Let m 2 X with x �m = 0 for all x 2 X. First, we prove that an ideal I of X is
proper if and only if m =2 I. In fact, if m =2 I, then I 6= X, and so I is a proper ideal.
Conversely, assume that I is a proper ideal of X and let x 2 X. If m 2 I, then since
x �m = 0, we have x 2 I. This means that I = X, which contradicts to the assumption.
Therefore m =2 I.

We now prove that every ideal A of X is contained in a maximal ideal. The set of all
proper ideals containing A is denoted by S. Obviously, (S;�) is a partially ordered set and
S 6= ;. Let S0 be a chain of S and let B := [fIjI 2 S0g. Noticing that A is the least
element of (S;�), we have A � B. Hence 0 2 B. Let x; y 2 X be such that x � y 2 B and
y 2 B. Then there are I1; I2 2 S0 such that x � y 2 I1 and y 2 I2. We may assume I2 � I1,
without loss of generality. Thus x � y 2 I1; y 2 I1 and so x 2 I1. It follows that x 2 B.
Hence the condition (8) holds. This means that B is an ideal of X. Since every ideal of S0
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does not contain the element m, we have m =2 B, and so B is a proper ideal. Hence B 2 S.
This proves that every chain of S has an upper bound in S. By Zorn's Lemma, S have a
maximal element M . This proves the theorem. �

De�nition 3.6. An ideal A of a BH-algebra X is said to be a translation ideal of X if it
satis�es: for all x; y; z 2 X,

(9) x � y 2 A and y � x 2 A imply (x � z) � (y � z) 2 A and (z � x) � (z � y) 2 A.

Obviously, f0g and X are translation ideals of X. The next examples show that (8) and
(9) are independent.

Example 3.7. Let X = f0; 1; 2; 3g be a BH-algebra with the Cayley table as follows:

* 0 1 2 3

0 0 1 3 0

1 1 0 2 0

2 2 2 0 3

3 3 3 3 0

Then A = f0; 1; 2g satis�es (8), but not (9), since 1�2 = 2; 2�1 = 2 2 A but (1�1)�(2�1) =
0 � 2 = 3 =2 A.

Example 3.8. Let X = f0; 1; 2g be a BH-algebra with the Cayley table as follows:

* 0 1 2

0 0 0 1

1 1 0 0

2 2 1 0

Then A = f0; 2g satis�es (9), but not (8), since 1 � 2 = 0 2 A and 2 2 A but 1 =2 A.

Example 3.9. Let X = f0; 1; 2; 3g be a BH-algebra with the Cayley table as follows:

* 0 1 2 3

0 0 1 0 0

1 1 0 0 0

2 2 2 0 3

3 3 3 3 0

Then we can easily show that A = f0; 1g is a translation ideal of X.

Now we construct the quotient BH-algebras via translation ideals. Let A be a translation
ideal of a BH-algebra (X; �; 0). For any x; y 2 X, we de�ne

x �A y if and only if x � y 2 A and y � x 2 A:

Since 0 2 A, we have x � x = 0 2 A, i.e., x �A x for any x 2 X. This means that �A is
reexive.

Let x �A y and y �A z. Then x � y; y � x 2 A and y � z; z � y 2 A. Thus by (9) we have
(x � z) � (y � z) 2 A and (z � x) � (z � y) 2 A. Hence by (8), we get x � z 2 A and z � x 2 A,
and so x �A z. This proves that �A is transitive.

The symmetry of �A is trivial from the de�nition. Therefore �A is an equivalence
relation on X.
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If x �A y and u �A v, then x � y; y � x 2 A and u � v; v � u 2 A. Thus by (9) we have
(x � u) � (y � u) 2 A and (y � u) � (x � u) 2 A, and so x � u �A y � u. Similarly, we have
y � u �A y � v. By transitivity of �A, we obtain x � u �A y � v. Consequently �A is a
congruence relation on X.

Denote the equivalence class containing x by [x]A, i.e.,

[x]A = fy 2 Xjx �A yg:

We note that x �A y if and only if [x]A = [y]A.
Denote X=A = f[x]Ajx 2 Xg and de�ne

[x]A �
0 [y]A = [x � y]A:

The operation \�0" is well-de�ned, since �A is a congruence relation on X. We claim
that (X=A; �0; [0]A) is a BH-algebra. Clearly [x]A �

0 [x]A = [0]A and [x]A �
0 [0]A = [x]A for

all [x]A 2 X=A. Let [x]A; [y]A 2 X=A be such that [x]A �
0 [y]A = [0]A = [y]A �

0 [x]A. Then
[x � y]A = [0]A = [y � x]A and so x � y �A 0 and y � x �A 0. If u 2 [x]A then x �A u. It
follows that u � y �A x � y �A 0, which shows u 2 [y]A. Hence [x]A � [y]A. Similarly, we
have [y]A � [x]A. Thus [x]A = [y]A. We summarize:

Theorem 3.10. Let A be a translation ideal of a BH-algebra (X; �; 0). If we de�ne

[x]A �
0 [y]A = [x � y]A 8x; y 2 X,

then (X=A; �0; [0]A) is a BH-algebra, which is called the quotient BH-algebra via A.

The notion of translation ideal is necessary for constructing the quotient BH-algebras.

Example 3.11. Let X = f0; 1; 2; 3; 4g be a BH-algebra with the Cayley table as follows:

* 0 1 2 3 4

0 0 0 0 0 0

1 1 0 0 1 4

2 2 2 0 0 4

3 3 3 3 0 4

4 4 4 4 4 0

Then the set A = f0; 1g is an ideal ofX, but not a translation ideal ofX, since 1�0; 0�1 2 A,
but (1 � 4) � (0 � 4) = 4 62 A.

4. Homomorphisms in BH-algebras

In this section, we state a fundamental theorem of a homomorphism.

De�nition 4.1. Let X and Y be BH-algebras. A mapping f : X ! Y is called a homo-

morphism if
f(x � y) = f(x) � f(y); 8x; y 2 X:

A homomorphismf is called amonomorphism (resp., epimorphism) if it is injective (resp.,
surjective). A bijective homomorphism is called an isomorphism. Two BH-algebras X and
Y are said to be isomorphic, written X �= Y , if there exists an isomorphism f : X ! Y .
For any homomorphism f : X ! Y , the set fx 2 Xjf(x) = 0g is called the kernel of f ,
denoted by Ker(f) and the set ff(x)jx 2 Xg is called the image of f , denoted by Im(f).
Notice that f(0) = 0 for any homomorphism f .
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Theorem 4.2. Let f : X ! Y be a homomorphism of BH-algebras. Then Ker(f) is a

translation ideal of X.

Proof. Obviously, 0 2 Ker(f). Let x � y 2 ker(f) and y 2 ker(f). Then 0 = f(x � y) =
f(x) � f(y) = f(x) � 0 = f(x). Hence x 2 ker(f). Let x � y 2 ker(f) and y � x 2 ker(f).
Then we get f(x) = f(y). Thus for any z 2 X, we have

f((x � z) � (y � z)) = 0 and f((z � x) � (z � y)) = 0:

Hence we obtain (x � z) � (y � z) 2 Ker(f) and (z � x) � (z � y) 2 Ker(f). Therefore ker(f)
is a translation ideal of X. �

Theorem 4.3 (Homomorphism Theorem). If f : X ! Y is a homomorphism from a

BH-algebra X onto a BH-algebra Y , then X=Ker(f) �= Y .

Proof. De�ne a mapping � : X=Ker(f)! Y by �([x]Ker(f)) = f(x). If [x]Ker(f) = [y]Ker(f)

then x�y; y�x 2 Ker(f), and so f(x)�f(y) = 0 = f(y)�f(x). By (3) we have f(x) = f(y),
i.e., �([x]Ker(f)) = �([y]Ker(f)). This means that � is well-de�ned. For any y 2 Y , there
is an x 2 X such that y = f(x), since f is onto. Hence �([x]Ker(f)) = f(x) = y, which
means that � is onto. Let [x]Ker(f), [y]Ker(f) 2 X=Ker(f) with [x]Ker(f) 6= [y]Ker(f). Then
x �Kerf y does not hold, and hence either x � y 62 Ker(f) or y � x 62 Ker(f). Without loss
of generality, we may assume x � y 62 Ker(f). It follows that f(x) � f(y) = f(x � y) 6= 0
and hence f(x) 6= f(y). This means that � is one-one. Since �([x]Ker(f) � [y]Ker(f)) =
�([x�y]Ker(f)) = f(x�y) = f(x)�f(y) = �([x]Ker(f))��([y]Ker(f)), � is a homomorphism.
Thus we obtain X=Ker(f) �= Y , completing the proof. �

Theorem 4.4. LetX;Y and Z beBH-algebras, and let h : X ! Y be an epimorphism and

g : X ! Z be a homomorphism. IfKer(h) � Ker(g), then there is a unique homomorphism

f : Y ! Z satisfying f � h = g.

Proof. For any y 2 Y , there exists an x 2 X such that y = h(x). Given an element x, we
put z := g(x). De�ne a mapping f : Y ! Z by f(y) = z.

To prove that f is well-de�ned and f � h = g. If y = h(x1) = h(x2); x1; x2 2 X, then
0 = h(x1) � h(x2) = h(x1 � x2). Hence x1 � x2 2 Ker(h). Since Ker(h) � Ker(g), we have
0 = g(x1 � x2) = g(x1) � g(x2). Similarly, we get g(x2) � g(x1) = 0. Thus g(x2) = g(x1).
This means that f is well-de�ned. Clearly g(x) = f(h(x)) for any x 2 X.

To show that f is a homomorphism. Let y1; y2 2 Y . For any x1; x2 2 X such that
y1 = h(x1); y2 = h(x2), we have f(y1 �y2) = f(h(x1)�h(x2)) = f(h(x1 �x2)) = g(x1 �x2) =
g(x1) � g(x2) = f(h(x1)) � f(h(x2)) = f(y1) � f(y2). Hence f is a homomorphism. The
uniqueness of f follows directly from the fact that h is an epimorphism. �

Theorem 4.5. Let X;Y and Z be BH-algebras, and let g : X ! Z be a homomor-

phism and h : Y ! Z be a monomorphism with Im(g) � Im(h), then there is a unique

homomorphism f : X ! Y satisfying h � f = g.

Proof. For each x 2 X, g(x) � Im(g) � Im(h). Since h is a monomorphism, there exists a
unique y 2 Y such that h(y) = g(x). De�ne a map f : X ! Y by f(x) = y. Then h�f = g.
We show that f is a homomorphism. If x1; x2 2 X, then g(x1 �x2) = h(f(x1 �x2)). On the
other hand, since g is a homomorphism, g(x1 � x2) = g(x1) � g(x2) = h(f(x1)) � h(f(x2)) =
h(f(x1) � f(x2)). Hence h(f(x1 � x2)) = h(f(x1) � f(x2)). Since h is a monomorphism,
we have f(x1 � x2) = f(x1) � f(x2). The uniqueness of f follows from the fact that h is a
monomorphism. �

If A is a translation ideal of a BH-algebra X. Then a map p : X ! X=A de�ned
by p(x) = [x]A is a homomorphism, which is called the canonical mapping. Note that
Ker(p) = A
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Lemma 4.6. Let X and Y be BH-algebras and let f : X ! Y be a homomorphism. If

A is a translation ideal of X such that A � Ker(f), then a map �f : X=A! Y de�ned by
�f([x]A) = f(x) for all x 2 X, is a homomorphism.

Proof. We show that �f is well-de�ned. If [x]A = [y]A, then [x � y]A = [x]A � [y]A. This
means x � y 2 A � Ker(f), and so f(x) � f(y) = f(x � y) = 0. Similarly, we have
f(y) � f(x) = f(y � x) = 0. Hence f(x) = f(y). Clearly, �f is a homomorphism. �

Theorem 4.7. Let f : X ! Y be a homomorphism of BH-algebras, and let A be a

translation ideal of X and f : X ! Y be a homomorphism. Then the following are

equivalent:

(i) there is a unique homomorphism �f : X=A ! Y such that �f � p = f , where

p : X ! X=A is the canonical mapping.

(ii) A � Ker(f).

Furthemore, �f is a monomorphism if and only if A = Ker(f).

Proof. (i) ) (ii). If a 2 A, then f(a) = �f(p(a)) = �f([0]A) = f(0) = 0 for all a 2 A, since
�f � p = f and Ker(f) = A. Hence a 2 Ker(f).

(ii) ) (i). By Lemma 4.6, we have a homomorphism �f : X=A! Y de�ned by �f([x]A) =
f(x) for all x 2 X. Since ( �f � p)(x) = �f([x]A) = f(x) for all x 2 X, we have �f � p = f . The
uniqueness of �f follows from the fact that p is surjective.

Furthemore, �f is a monomorphism if and only if f(x) = 0 implies [x]A = [0]A = A, i.e.,
if and only if Ker(f) � A. This proves the theorem. �

Theorem 4.8. Let X and Y be BH-algebras. If a homomorphism f : X ! Y can be

expressed as a composite homomorphisms of BH-algebras

X
�
�! A

�
�! B


�! Y;

where � is an epimorphism, � is an isomorphism, and  is a monomorphism, then A �=
X=Ker(f) and B �= Im(f).

Proof. Consider the diagram

X=Ker(f)
�f

�! Im(f)
p

%
i

&

X
x??h ??yk Y

&
�

%


A �!
�

B

where i� �f�p is the canonical decomposition of f and �; �;  are respectively an epimorphism,
an isomorphism and a monomorphism, respectively. Since f =  � � � � and ; � are each
monomorphisms, we have f(x) = 0 if and only if �(x) = 0. Hence Ker(�) = Ker(f) =
Ker(p). By Theorem 4.4, there is a unique homomorphism h : A ! X=Ker(f) such that
h � � = p. Clearly the mapping h is a monomorphism, since Ker(�) = Ker(p). Moreover,
h is surjective, since p is surjective. Thus h is an isomorphism.

Since Im() = Im(f), by applying Theorem 4.5, we have a unique homomorphism
k : Im(f) ! B such that  � k = i. The mapping k is clearly an epimorphism. The
injectivity of k follows from that i is injective. Thus k is an isomorphism. �



354 Y. B. JUN, E. H. ROH AND H. S. KIM

References

[1] Q. P. Hu and X. Li, On BCH-algebras, Mathematics Seminar Notes 11 (1983), 313-320.

[2] Y. Imai and K. Is�eki, On axiom systems of propositional calculi XIV, Proc. Japan Academy 42 (1966),

26-29.

[3] K. Is�eki, An algebra related with a propositional calculus, Proc. Japan Academy 42 (1966), 26-29.

[4] K. Is�eki, On BCI-algebras, Mathematics Seminar Notes 8 (1980), 125-130.

[5] K. Is�eki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japonica 23(1) (1978),

1-26.

[6] Y. B. Jun, Homomorphisms and exact sequences in BCK-algebras, Math. Japonica 34(1) (1989), 35-41.

[7] J. Meng, Implicative commutative semigroups are equivalent to a class of BCK-algebras, Semigroup

Forum 50 (1995), 89-96.

[8] D. Mundici, MV-algebras are categorically equivalent to bounded commutative BCK-algebras, Math.

Japonica 31 (1986), 889-894.

[9] E. H. Roh, On (fuzzy) ideals in BCK/BCI-algebras, Ph. D. Thesis, Gyeongsang National University,

Korea, 1996.

Department of Mathematics Education, Gyeongsang National University, Chinju 660-701,

Korea

E-mail : ybjun@nongae.gsnu.ac.kr; ehroh@nongae.gsnu.ac.kr

Department of Mathematics Education, Chinju National University of Education, Chinju

660-756, Korea

Department of Mathematics, Hanyang National University, Seoul 133-791, Korea

E-mail : heekim@email.hanyang.ac.kr


