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ON LOEWNER AND KWONG MATRICES
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Abstract. Let f(t) be an operator monotone function from the interval (0,∞) into
itself. In this note, we show that for any positive integer m, the matrices

»

{f(ti)}m + {f(tj)}m

tm
i + tm

j

–

,

»

{f(ti)}m − {f(tj)}m

tm
i − tm

j

–

are positive semidefinite for all positive integers n and t1, . . . , tn in (0,∞); that is, the
Kwong matrices K{f(t1/m)}m(t1, . . . , tn) and the Loewner matrices L{f(t1/m)}m(t1, . . . , tn)
are positive semidefinite. The former is a generalization of Kwong’s result, and the
latter is an alternative proof for operator monotonicity of the function t 7→ {f(t1/m)}m.

1 Introduction Let f(t) be a continuously differentiable function from the interval
(0,∞) into itself. The function f(t) is said to be operator monotone on (0,∞) if for two
positive definite matrices A and B of any size n the inequality A = B implies f(A) = f(B).
Here A = B means that A−B is positive semidefinite. For distinct t1, . . . , tn in (0,∞), we
define the n × n matrix Lf(t)(t1, . . . , tn) as

Lf(t)(t1, . . . , tn) :=
[
f(ti) − f(tj)

ti − tj

]
,

where the diagonal entries are understood as the first derivatives f ′(ti). This matrix is
called a Loewner matrix. Similarly we define the n × n matrix Kf(t)(t1, . . . , tn) as

Kf(t)(t1, . . . , tn) :=
[
f(ti) + f(tj)

ti + tj

]
,

which we call an Kwong matrix. (In [2, 9] it is called an anti-Loewner matrix.)
We also define the n × n matrix L

(m)
f(t)(t1, . . . , tn) and K

(m)
f(t)(t1, . . . , tn) as

L
(m)
f(t)(t1, . . . , tn) :=

[
{f(ti)}m − {f(tj)}m

tmi − tmj

]
, K

(m)
f(t)(t1, . . . , tn) :=

[
{f(ti)}m + {f(tj)}m

tmi + tmj

]

for a positive integer m.
It is well-known that f(t) is operator monotone if and only if for all n and t1, . . . , tn, the

Loewner matrices Lf(t)(t1, . . . , tn) are positive semidefinite, which is one of principal results
by Löwner [11]. If f(t) is operator monotone, the Kwong matrices Kf(t)(t1, . . . , tn) are pos-
itive semidefinite; this was given by Kwong [10]. In fact, the latter is recently characterized
by Audenaert [2]. On the other hand, it is known that if f(t) is operator monotone, so is the
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function t 7→ {f(t1/m)}m for any positive integer m. See [1, 8]. Hence, combining them, we
conclude that if f is operator monotone, then the Loewner matrices L{f(t1/m)}m(t1, . . . , tn)
and the Kwong matrices K{f(t1/m)}m(t1, . . . , tn) are positive semidefinite; therefore, so are

L
(m)
f(t)(t1, . . . , tn) and K

(m)
f(t)(t1, . . . , tn).

In this note, we give an alternative proof for operator monotonicity of the function t 7→
{f(t1/m)}m by showing in Theorem 2.6 that if f is operator monotone, then L

(m)
f(t)(t1, . . . , tn)

are positive semidefinite for all n and t1, . . . , tn in (0,∞). We also show in Theorem 2.5 that
if f is operator monotone, then K

(m)
f(t)(t1, . . . , tn) are positive semidefinite for all n and

t1, . . . , tn in (0,∞); in the case of n = 1, this is just Kwong’s result. We refer the reader to
[3, 4, 7] for properties of operator monotone functions.

2 Main Theorems We recall several facts as mentioned:
Theorem 2.1 (Löwner [11]) Let f be a C1 function on (0,∞). Then f is operator
monotone if and only if Lf(t)(t1, . . . , tn) are positive semidefinite for all positive integers n
and t1, . . . , tn in (0,∞).

Theorem 2.2 (Kwong [10]) Let f be a positive C1 function on (0,∞). If f is operator
monotone, then Kf(t)(t1, . . . , tn) are positive semidefinite for all positive integers n and
t1, . . . , tn in (0,∞).

Although the following characterization is not used in this note, but we review: The-
orem 2.3 (Audenaert [2]) Let f be a positive C1 function on (0,∞). For all positive
integers n and t1, . . . , tn in (0,∞) Kf(t)(t1, . . . , tn) are positive semidefinite if and only if
f(
√

t)
√

t is operator monotone.

Theorem 2.4 (Ando [1], Fujii-Fujii [8]) Let f be an operator monotone function from
(0,∞) into itself. Then so is the function t 7→ {f(t1/m)}m for any positive integer m.

We will show the following theorems:
Theorem 2.5 Let f be an operator monotone function from (0,∞) into itself. Then for
any positive integer m, K

(m)
f(t)(t1, . . . , tn) are positive semidefinite for all positive integers n

and t1, . . . , tn in (0,∞) : or K{f(t1/m)}m(t1, . . . , tn) are positive semidefinite for all positive
integers n and t1, . . . , tn in (0,∞).

Theorem 2.5 is a generalization of Theorem 2.2.
Theorem 2.6 Let f be an operator monotone function from (0,∞) into itself. Then for
any positive integer m, L

(m)
f(t)(t1, . . . , tn) are positive semidefinite for all positive integers n

and t1, . . . , tn in (0,∞) : or L{f(t1/m)}m(t1, . . . , tn) are positive semidefinite for all positive
integers n and t1, . . . , tn in (0,∞).

Theorem 2.6 shows another proof of Theorem 2.4.
Proof of Theorem 2.5. It is known that the operator monotone function f is of the
form

f(t) = α + βt +
∫ ∞

0

t

t + λ
dµ(λ),

where α, β are non-negative numbers and µ is a positive measure on (0,∞). See [3, p.144].
Let g(t) =

∫ ∞
0

t/(t+λ) dµ(λ). Then the power {f(t)}m is represented as the sum of tk{g(t)}l
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for non-negative integers k, l satisfying k+l 5 m with non-negative coefficients, and tk{g(t)}l

is the multi-integral of

h(t) :=
tk+l

(t + λ1)(t + λ2) · · · (t + λl)

over dµ(λ1) · · · dµ(λl). Hence, for our purpose, it is sufficient to show that X :=

[
h(ti) + h(tj)

tmi + tmj

]
is positive semidefinite. Letting p(t) = (t + λ1)(t + λ2) · · · (t + λl), we have the expression

X =

[
1

p(ti)
tk+l
i p(tj) + tk+l

j p(ti)
tmi + tmj

1
p(tj)

]

and using the expansion of p(t): p(t) = a0t
l + a1t

l−1 + · · · + al−1t + al for a0 = 1 and
non-negative integers a1, . . . , al,

X =
l∑

s=0

al−s

[
tsi

p(ti)
tk+l−s
i + tk+l−s

j

tmi + tmj

tsj
p(tj)

]
=

l∑
s=0

al−s Ds

[
tk+l−s
i + tk+l−s

j

tmi + tmj

]
Ds,

where Ds is the diagonal matrix given as Ds = diag
(

ts1
p(t1)

, . . . ,
tsn

p(tn)

)
. By [5, 6] or

Theorem 2.2,

[
tk+l−s
i + tk+l−s

j

tmi + tmj

]
is positive semidefinite, so is Ds

[
tk+l−s
i + tk+l−s

j

tmi + tmj

]
Ds.

Hence, we conclude that X is positive semidefinite; therefore, the proof is complete. ¥
Note that

L
(2)
f(t) =

[
{f(ti)}2 − {f(tj)}2

t2i − t2j

]
=

[
f(ti) + f(tj)

ti + tj

]
◦

[
f(ti) − f(tj)

ti − tj

]
= Kf(t)(t1, . . . , tn) ◦ Lf(t)(t1, . . . , tn),

where ◦ stands for Hadamard or Schur product: the entrywise product. When f is operator
monotone, both matrices are positive semidefinite by Theorems 2.1 and 2.2, by Schur’s
Theorem so is their Hadamard product L

(2)
f(t). For a positive integer k, since

L
(2k)
f(t) =

[
{f(ti)}2k − {f(tj)}2k

t2
k

i − t2
k

j

]

=

[
{f(ti)}2k−1

+ {f(tj)}2k−1

t2
k−1

i + t2
k−1

j

]
◦

[
{f(ti)}2k−1 − {f(tj)}2k−1

t2
k−1

i − t2
k−1

j

]
= K

(2k−1)
f(t) (t1, . . . , tn) ◦ L

(2k−1)
f(t) (t1, . . . , tn),

we conclude by induction and Theorem 2.5 that L
(2k)
f(t) is positive semidefinite for all k. But

in fact, we have Theorem 2.6:

Proof of Theorem 2.6. We use the same notation as in the proof of Theorem

2.5. By the similar argument, it is sufficient to show that Y :=

[
h(ti) − h(tj)

tmi − tmj

]
is positive
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semidefinite. This matrix is represented as

Y =
l∑

s=0

al−s

[
tsi

p(ti)
tk+l−s
i − tk+l−s

j

tmi − tmj

tsj
p(tj)

]
=

l∑
s=0

al−s Ds

[
tk+l−s
i − tk+l−s

j

tmi − tmj

]
Ds.

By [5, 6] or Theorem 2.1,

[
tk+l−s
i − tk+l−s

j

tmi − tmj

]
is positive semidefinite, so is Y and the proof

is complete. ¥
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