ON LOEWNER AND KWONG MATRICES

TAKASHI SANO AND SHINTARO TACHIBANA

Received September 16, 2012; revised November 14, 2012

ABSTRACT. Let f(t) be an operator monotone function from the interval $(0, \infty)$ into itself. In this note, we show that for any positive integer m, the matrices

$$\left[\frac{\{f(t_i)\}^m + \{f(t_j)\}^m}{t_i^m + t_j^m}\right], \quad \left[\frac{\{f(t_i)\}^m - \{f(t_j)\}^m}{t_i^m - t_j^m}\right]$$

are positive semidefinite for all positive integers n and t_1, \ldots, t_n in $(0, \infty)$; that is, the Kwong matrices $K_{\{f(t^{1/m})\}^m}(t_1, \ldots, t_n)$ and the Loewner matrices $L_{\{f(t^{1/m})\}^m}(t_1, \ldots, t_n)$ are positive semidefinite. The former is a generalization of Kwong's result, and the latter is an alternative proof for operator monotonicity of the function $t \mapsto \{f(t^{1/m})\}^m$.

1 Introduction Let f(t) be a continuously differentiable function from the interval $(0, \infty)$ into itself. The function f(t) is said to be *operator monotone* on $(0, \infty)$ if for two positive definite matrices A and B of any size n the inequality $A \ge B$ implies $f(A) \ge f(B)$. Here $A \ge B$ means that A - B is positive semidefinite. For distinct t_1, \ldots, t_n in $(0, \infty)$, we define the $n \times n$ matrix $L_{f(t)}(t_1, \ldots, t_n)$ as

$$L_{f(t)}(t_1,\ldots,t_n) := \left[\frac{f(t_i) - f(t_j)}{t_i - t_j}\right],$$

where the diagonal entries are understood as the first derivatives $f'(t_i)$. This matrix is called a *Loewner matrix*. Similarly we define the $n \times n$ matrix $K_{f(t)}(t_1, \ldots, t_n)$ as

$$K_{f(t)}(t_1,\ldots,t_n) := \left[\frac{f(t_i) + f(t_j)}{t_i + t_j}\right]$$

which we call an *Kwong matrix*. (In [2, 9] it is called an anti-Loewner matrix.)

We also define the $n \times n$ matrix $L_{f(t)}^{(m)}(t_1, \ldots, t_n)$ and $K_{f(t)}^{(m)}(t_1, \ldots, t_n)$ as

$$L_{f(t)}^{(m)}(t_1,\ldots,t_n) := \left[\frac{\{f(t_i)\}^m - \{f(t_j)\}^m}{t_i^m - t_j^m}\right], \quad K_{f(t)}^{(m)}(t_1,\ldots,t_n) := \left[\frac{\{f(t_i)\}^m + \{f(t_j)\}^m}{t_i^m + t_j^m}\right]$$

for a positive integer m.

It is well-known that f(t) is operator monotone if and only if for all n and t_1, \ldots, t_n , the Loewner matrices $L_{f(t)}(t_1, \ldots, t_n)$ are positive semidefinite, which is one of principal results by Löwner [11]. If f(t) is operator monotone, the Kwong matrices $K_{f(t)}(t_1, \ldots, t_n)$ are positive semidefinite; this was given by Kwong [10]. In fact, the latter is recently characterized by Audenaert [2]. On the other hand, it is known that if f(t) is operator monotone, so is the

²⁰⁰⁰ Mathematics Subject Classification. 47A63, 15A45.

 $[\]mathit{Key}\ \mathit{words}\ \mathit{and}\ \mathit{phrases}.$ Operator monotone; Loewner matrix; Kwong matrix.

function $t \mapsto \{f(t^{1/m})\}^m$ for any positive integer m. See [1, 8]. Hence, combining them, we conclude that if f is operator monotone, then the Loewner matrices $L_{\{f(t^{1/m})\}^m}(t_1, \ldots, t_n)$ and the Kwong matrices $K_{\{f(t^{1/m})\}^m}(t_1, \ldots, t_n)$ are positive semidefinite; therefore, so are $L_{f(t)}^{(m)}(t_1, \ldots, t_n)$ and $K_{f(t)}^{(m)}(t_1, \ldots, t_n)$. In this note, we give an alternative proof for operator monotonicity of the function $t \mapsto I_{f(t)}^{(m)}(t_1, \ldots, t_n)$.

In this note, we give an alternative proof for operator monotonicity of the function $t \mapsto \{f(t^{1/m})\}^m$ by showing in Theorem 2.6 that if f is operator monotone, then $L_{f(t)}^{(m)}(t_1,\ldots,t_n)$ are positive semidefinite for all n and t_1,\ldots,t_n in $(0,\infty)$. We also show in Theorem 2.5 that if f is operator monotone, then $K_{f(t)}^{(m)}(t_1,\ldots,t_n)$ are positive semidefinite for all n and t_1,\ldots,t_n in $(0,\infty)$; in the case of n = 1, this is just Kwong's result. We refer the reader to [3, 4, 7] for properties of operator monotone functions.

2 Main Theorems We recall several facts as mentioned:

Theorem 2.1 (Löwner [11]) Let f be a C^1 function on $(0, \infty)$. Then f is operator monotone if and only if $L_{f(t)}(t_1, \ldots, t_n)$ are positive semidefinite for all positive integers n and t_1, \ldots, t_n in $(0, \infty)$.

Theorem 2.2 (Kwong [10]) Let f be a positive C^1 function on $(0, \infty)$. If f is operator monotone, then $K_{f(t)}(t_1, \ldots, t_n)$ are positive semidefinite for all positive integers n and t_1, \ldots, t_n in $(0, \infty)$.

Although the following characterization is not used in this note, but we review: **Theorem 2.3** (Audenaert [2]) Let f be a positive C^1 function on $(0, \infty)$. For all positive integers n and t_1, \ldots, t_n in $(0, \infty)$ $K_{f(t)}(t_1, \ldots, t_n)$ are positive semidefinite if and only if $f(\sqrt{t})\sqrt{t}$ is operator monotone.

Theorem 2.4 (Ando [1], Fujii-Fujii [8]) Let f be an operator monotone function from $(0, \infty)$ into itself. Then so is the function $t \mapsto \{f(t^{1/m})\}^m$ for any positive integer m.

We will show the following theorems:

Theorem 2.5 Let f be an operator monotone function from $(0, \infty)$ into itself. Then for any positive integer m, $K_{f(t)}^{(m)}(t_1, \ldots, t_n)$ are positive semidefinite for all positive integers nand t_1, \ldots, t_n in $(0, \infty)$: or $K_{\{f(t^{1/m})\}^m}(t_1, \ldots, t_n)$ are positive semidefinite for all positive integers n and t_1, \ldots, t_n in $(0, \infty)$.

Theorem 2.5 is a generalization of Theorem 2.2.

Theorem 2.6 Let f be an operator monotone function from $(0, \infty)$ into itself. Then for any positive integer m, $L_{f(t)}^{(m)}(t_1, \ldots, t_n)$ are positive semidefinite for all positive integers nand t_1, \ldots, t_n in $(0, \infty)$: or $L_{\{f(t^{1/m})\}^m}(t_1, \ldots, t_n)$ are positive semidefinite for all positive integers n and t_1, \ldots, t_n in $(0, \infty)$.

Theorem 2.6 shows another proof of Theorem 2.4.

Proof of Theorem 2.5. It is known that the operator monotone function f is of the form

$$f(t) = \alpha + \beta t + \int_0^\infty \frac{t}{t+\lambda} \, d\mu(\lambda),$$

where α, β are non-negative numbers and μ is a positive measure on $(0, \infty)$. See [3, p.144]. Let $g(t) = \int_0^\infty t/(t+\lambda) d\mu(\lambda)$. Then the power $\{f(t)\}^m$ is represented as the sum of $t^k \{g(t)\}^l$ for non-negative integers k,l satisfying $k+l \leq m$ with non-negative coefficients, and $t^k \{g(t)\}^l$ is the multi-integral of

$$h(t) := \frac{t^{\kappa+\iota}}{(t+\lambda_1)(t+\lambda_2)\cdots(t+\lambda_l)}$$

over $d\mu(\lambda_1)\cdots d\mu(\lambda_l)$. Hence, for our purpose, it is sufficient to show that $X := \left\lfloor \frac{h(t_i) + h(t_j)}{t_i^m + t_j^m} \right\rfloor$ is positive semidefinite. Letting $p(t) = (t + \lambda_1)(t + \lambda_2)\cdots(t + \lambda_l)$, we have the expression

$$X = \left[\frac{1}{p(t_i)} \frac{t_i^{k+l} p(t_j) + t_j^{k+l} p(t_i)}{t_i^m + t_j^m} \frac{1}{p(t_j)}\right]$$

and using the expansion of p(t): $p(t) = a_0t^l + a_1t^{l-1} + \cdots + a_{l-1}t + a_l$ for $a_0 = 1$ and non-negative integers a_1, \ldots, a_l ,

$$X = \sum_{s=0}^{l} a_{l-s} \left[\frac{t_i^s}{p(t_i)} \frac{t_i^{k+l-s} + t_j^{k+l-s}}{t_i^m + t_j^m} \frac{t_j^s}{p(t_j)} \right] = \sum_{s=0}^{l} a_{l-s} D_s \left[\frac{t_i^{k+l-s} + t_j^{k+l-s}}{t_i^m + t_j^m} \right] D_s,$$

where D_s is the diagonal matrix given as $D_s = \text{diag}\left(\frac{t_1^s}{p(t_1)}, \dots, \frac{t_n^s}{p(t_n)}\right)$. By [5, 6] or Theorem 2.2, $\left[\frac{t_i^{k+l-s} + t_j^{k+l-s}}{t_i^m + t_j^m}\right]$ is positive semidefinite, so is $D_s\left[\frac{t_i^{k+l-s} + t_j^{k+l-s}}{t_i^m + t_j^m}\right]D_s$. Hence, we conclude that X is positive semidefinite; therefore, the proof is complete.

$$L_{f(t)}^{(2)} = \left[\frac{\{f(t_i)\}^2 - \{f(t_j)\}^2}{t_i^2 - t_j^2}\right] = \left[\frac{f(t_i) + f(t_j)}{t_i + t_j}\right] \circ \left[\frac{f(t_i) - f(t_j)}{t_i - t_j}\right]$$
$$= K_{f(t)}(t_1, \dots, t_n) \circ L_{f(t)}(t_1, \dots, t_n),$$

where \circ stands for Hadamard or Schur product: the entrywise product. When f is operator monotone, both matrices are positive semidefinite by Theorems 2.1 and 2.2, by Schur's Theorem so is their Hadamard product $L_{f(t)}^{(2)}$. For a positive integer k, since

$$\begin{split} L_{f(t)}^{(2^k)} &= \left[\frac{\{f(t_i)\}^{2^k} - \{f(t_j)\}^{2^k}}{t_i^{2^k} - t_j^{2^k}} \right] \\ &= \left[\frac{\{f(t_i)\}^{2^{k-1}} + \{f(t_j)\}^{2^{k-1}}}{t_i^{2^{k-1}} + t_j^{2^{k-1}}} \right] \circ \left[\frac{\{f(t_i)\}^{2^{k-1}} - \{f(t_j)\}^{2^{k-1}}}{t_i^{2^{k-1}} - t_j^{2^{k-1}}} \right] \\ &= K_{f(t)}^{(2^{k-1})}(t_1, \dots, t_n) \circ L_{f(t)}^{(2^{k-1})}(t_1, \dots, t_n), \end{split}$$

we conclude by induction and Theorem 2.5 that $L_{f(t)}^{(2^k)}$ is positive semidefinite for all k. But in fact, we have Theorem 2.6:

Proof of Theorem 2.6. We use the same notation as in the proof of Theorem 2.5. By the similar argument, it is sufficient to show that $Y := \left[\frac{h(t_i) - h(t_j)}{t_i^m - t_j^m}\right]$ is positive

semidefinite. This matrix is represented as

$$Y = \sum_{s=0}^{l} a_{l-s} \left[\frac{t_i^s}{p(t_i)} \frac{t_i^{k+l-s} - t_j^{k+l-s}}{t_i^m - t_j^m} \frac{t_j^s}{p(t_j)} \right] = \sum_{s=0}^{l} a_{l-s} D_s \left[\frac{t_i^{k+l-s} - t_j^{k+l-s}}{t_i^m - t_j^m} \right] D_s.$$

By [5, 6] or Theorem 2.1, $\left\lfloor \frac{t_i^{-1} - t_j^{-1} - t_j^{-1}}{t_i^m - t_j^m} \right\rfloor$ is positive semidefinite, so is Y and the proof is complete.

References

- T. Ando, Concavity of certain maps on positive definite matrices and applications to Hadamard products, Linear Algebra Appl., 26 (1979), 203-241.
- [2] K. M. R. Audenaert, A characterisation of anti-Löwner functions, Proc. Amer. Math. Soc., 139 (2011), 4217-4223.
- [3] R. Bhatia, *Matrix Analysis*, Springer (1996).
- [4] R. Bhatia, *Positive Definite Matrices*, Princeton University Press (2007).
- [5] R. Bhatia and T. Sano, Loewner matrices and operator convexity, Math. Ann., 344 (2009), 703-716.
- [6] R. Bhatia and T. Sano, Positivity and conditional positivity of Loewner matrices, Positivity 14 (2010), 421-430.
- [7] W. F. Donoghue, Monotone Matrix Functions and Analytic Continuation, Springer (1974).
- [8] J. I. Fujii and M. Fujii, An analogue to Hansen's theory of generalized Löwner's functions, Math. Japonica, 35 (1990), 327-330.
- [9] C. Hidaka and T. Sano, Conditional negativity of anti-Loewner matrices, Linear and Multilinear Algebra, 60 (2012), 1265-1270.
- [10] M. K. Kwong, Some results on matrix monotone functions, Linear Algebra Appl., 118 (1989), 129-153.
- [11] K. Löwner, Über monotone Matrixfunctionen, Math. Z., 38 (1934), 177-216.

Communicated by Jun Ichi Fujii

Takashi Sano

Department of Mathematical Sciences, Faculty of Science Yamagata University Yamagata 990-8560, Japan sano@sci.kj.yamagata-u.ac.jp

Shintaro Tachibana Graduate School of Science and Engineering Yamagata University Yamagata 990-8560, Japan