ON LOEWNER AND KWONG MATRICES

Takashi Sano and Shintaro Tachibana

Received September 16, 2012; revised November 14, 2012

Abstract. Let $f(t)$ be an operator monotone function from the interval $(0, \infty)$ into itself. In this note, we show that for any positive integer m, the matrices

$$
\left[\frac{\left\{f\left(t_{i}\right)\right\}^{m}+\left\{f\left(t_{j}\right)\right\}^{m}}{t_{i}^{m}+t_{j}^{m}}\right], \quad\left[\frac{\left\{f\left(t_{i}\right)\right\}^{m}-\left\{f\left(t_{j}\right)\right\}^{m}}{t_{i}^{m}-t_{j}^{m}}\right]
$$

are positive semidefinite for all positive integers n and t_{1}, \ldots, t_{n} in $(0, \infty)$; that is, the Kwong matrices $K_{\left\{f\left(t^{1 / m}\right)\right\}^{m}}\left(t_{1}, \ldots, t_{n}\right)$ and the Loewner matrices $L_{\left\{f\left(t^{1 / m}\right)\right\}^{m}}\left(t_{1}, \ldots, t_{n}\right)$ are positive semidefinite. The former is a generalization of Kwong's result, and the latter is an alternative proof for operator monotonicity of the function $t \mapsto\left\{f\left(t^{1 / m}\right)\right\}^{m}$.

1 Introduction Let $f(t)$ be a continuously differentiable function from the interval $(0, \infty)$ into itself. The function $f(t)$ is said to be operator monotone on $(0, \infty)$ if for two positive definite matrices A and B of any size n the inequality $A \geqq B$ implies $f(A) \geqq f(B)$. Here $A \geqq B$ means that $A-B$ is positive semidefinite. For distinct t_{1}, \ldots, t_{n} in $(0, \infty)$, we define the $n \times n$ matrix $L_{f(t)}\left(t_{1}, \ldots, t_{n}\right)$ as

$$
L_{f(t)}\left(t_{1}, \ldots, t_{n}\right):=\left[\frac{f\left(t_{i}\right)-f\left(t_{j}\right)}{t_{i}-t_{j}}\right]
$$

where the diagonal entries are understood as the first derivatives $f^{\prime}\left(t_{i}\right)$. This matrix is called a Loewner matrix. Similarly we define the $n \times n$ matrix $K_{f(t)}\left(t_{1}, \ldots, t_{n}\right)$ as

$$
K_{f(t)}\left(t_{1}, \ldots, t_{n}\right):=\left[\frac{f\left(t_{i}\right)+f\left(t_{j}\right)}{t_{i}+t_{j}}\right]
$$

which we call an Kwong matrix. (In [2, 9] it is called an anti-Loewner matrix.)
We also define the $n \times n$ matrix $L_{f(t)}^{(m)}\left(t_{1}, \ldots, t_{n}\right)$ and $K_{f(t)}^{(m)}\left(t_{1}, \ldots, t_{n}\right)$ as

$$
L_{f(t)}^{(m)}\left(t_{1}, \ldots, t_{n}\right):=\left[\frac{\left\{f\left(t_{i}\right)\right\}^{m}-\left\{f\left(t_{j}\right)\right\}^{m}}{t_{i}^{m}-t_{j}^{m}}\right], \quad K_{f(t)}^{(m)}\left(t_{1}, \ldots, t_{n}\right):=\left[\frac{\left\{f\left(t_{i}\right)\right\}^{m}+\left\{f\left(t_{j}\right)\right\}^{m}}{t_{i}^{m}+t_{j}^{m}}\right]
$$

for a positive integer m.
It is well-known that $f(t)$ is operator monotone if and only if for all n and t_{1}, \ldots, t_{n}, the Loewner matrices $L_{f(t)}\left(t_{1}, \ldots, t_{n}\right)$ are positive semidefinite, which is one of principal results by Löwner [11]. If $f(t)$ is operator monotone, the Kwong matrices $K_{f(t)}\left(t_{1}, \ldots, t_{n}\right)$ are positive semidefinite; this was given by Kwong [10]. In fact, the latter is recently characterized by Audenaert [2]. On the other hand, it is known that if $f(t)$ is operator monotone, so is the

2000 Mathematics Subject Classification. 47A63, 15A45.
Key words and phrases. Operator monotone; Loewner matrix; Kwong matrix.
function $t \mapsto\left\{f\left(t^{1 / m}\right)\right\}^{m}$ for any positive integer m. See $[1,8]$. Hence, combining them, we conclude that if f is operator monotone, then the Loewner matrices $L_{\left\{f\left(t^{1 / m}\right)\right\}^{m}}\left(t_{1}, \ldots, t_{n}\right)$ and the Kwong matrices $K_{\left\{f\left(t^{1 / m}\right)\right\}^{m}}\left(t_{1}, \ldots, t_{n}\right)$ are positive semidefinite; therefore, so are $L_{f(t)}^{(m)}\left(t_{1}, \ldots, t_{n}\right)$ and $K_{f(t)}^{(m)}\left(t_{1}, \ldots, t_{n}\right)$.

In this note, we give an alternative proof for operator monotonicity of the function $t \mapsto$ $\left\{f\left(t^{1 / m}\right)\right\}^{m}$ by showing in Theorem 2.6 that if f is operator monotone, then $L_{f(t)}^{(m)}\left(t_{1}, \ldots, t_{n}\right)$ are positive semidefinite for all n and t_{1}, \ldots, t_{n} in $(0, \infty)$. We also show in Theorem 2.5 that if f is operator monotone, then $K_{f(t)}^{(m)}\left(t_{1}, \ldots, t_{n}\right)$ are positive semidefinite for all n and t_{1}, \ldots, t_{n} in $(0, \infty)$; in the case of $n=1$, this is just Kwong's result. We refer the reader to $[3,4,7]$ for properties of operator monotone functions.

2 Main Theorems We recall several facts as mentioned:
Theorem 2.1 (Löwner [11]) Let f be a C^{1} function on ($0, \infty$). Then f is operator monotone if and only if $L_{f(t)}\left(t_{1}, \ldots, t_{n}\right)$ are positive semidefinite for all positive integers n and t_{1}, \ldots, t_{n} in $(0, \infty)$.

Theorem 2.2 (Kwong [10]) Let f be a positive C^{1} function on $(0, \infty)$. If f is operator monotone, then $K_{f(t)}\left(t_{1}, \ldots, t_{n}\right)$ are positive semidefinite for all positive integers n and t_{1}, \ldots, t_{n} in $(0, \infty)$.

Although the following characterization is not used in this note, but we review: Theorem 2.3 (Audenaert [2]) Let f be a positive C^{1} function on $(0, \infty)$. For all positive integers n and t_{1}, \ldots, t_{n} in $(0, \infty) K_{f(t)}\left(t_{1}, \ldots, t_{n}\right)$ are positive semidefinite if and only if $f(\sqrt{t}) \sqrt{t}$ is operator monotone.

Theorem 2.4 (Ando [1], Fujii-Fujii [8]) Let f be an operator monotone function from $(0, \infty)$ into itself. Then so is the function $t \mapsto\left\{f\left(t^{1 / m}\right)\right\}^{m}$ for any positive integer m.

We will show the following theorems:
Theorem 2.5 Let f be an operator monotone function from $(0, \infty)$ into itself. Then for any positive integer $m, K_{f(t)}^{(m)}\left(t_{1}, \ldots, t_{n}\right)$ are positive semidefinite for all positive integers n and t_{1}, \ldots, t_{n} in $(0, \infty)$: or $K_{\left\{f\left(t^{1 / m}\right)\right\}^{m}}\left(t_{1}, \ldots, t_{n}\right)$ are positive semidefinite for all positive integers n and t_{1}, \ldots, t_{n} in $(0, \infty)$.

Theorem 2.5 is a generalization of Theorem 2.2.
Theorem 2.6 Let f be an operator monotone function from $(0, \infty)$ into itself. Then for any positive integer $m, L_{f(t)}^{(m)}\left(t_{1}, \ldots, t_{n}\right)$ are positive semidefinite for all positive integers n and t_{1}, \ldots, t_{n} in $(0, \infty)$: or $L_{\left\{f\left(t^{1 / m}\right)\right\}^{m}}\left(t_{1}, \ldots, t_{n}\right)$ are positive semidefinite for all positive integers n and t_{1}, \ldots, t_{n} in $(0, \infty)$.

Theorem 2.6 shows another proof of Theorem 2.4.
Proof of Theorem 2.5. It is known that the operator monotone function f is of the form

$$
f(t)=\alpha+\beta t+\int_{0}^{\infty} \frac{t}{t+\lambda} d \mu(\lambda)
$$

where α, β are non-negative numbers and μ is a positive measure on $(0, \infty)$. See [3, p.144]. Let $g(t)=\int_{0}^{\infty} t /(t+\lambda) d \mu(\lambda)$. Then the power $\{f(t)\}^{m}$ is represented as the sum of $t^{k}\{g(t)\}^{l}$
for non-negative integers k, l satisfying $k+l \leqq m$ with non-negative coefficients, and $t^{k}\{g(t)\}^{l}$ is the multi-integral of

$$
h(t):=\frac{t^{k+l}}{\left(t+\lambda_{1}\right)\left(t+\lambda_{2}\right) \cdots\left(t+\lambda_{l}\right)}
$$

over $d \mu\left(\lambda_{1}\right) \cdots d \mu\left(\lambda_{l}\right)$. Hence, for our purpose, it is sufficient to show that $X:=\left[\frac{h\left(t_{i}\right)+h\left(t_{j}\right)}{t_{i}^{m}+t_{j}^{m}}\right]$ is positive semidefinite. Letting $p(t)=\left(t+\lambda_{1}\right)\left(t+\lambda_{2}\right) \cdots\left(t+\lambda_{l}\right)$, we have the expression

$$
X=\left[\frac{1}{p\left(t_{i}\right)} \frac{t_{i}^{k+l} p\left(t_{j}\right)+t_{j}^{k+l} p\left(t_{i}\right)}{t_{i}^{m}+t_{j}^{m}} \frac{1}{p\left(t_{j}\right)}\right]
$$

and using the expansion of $p(t): p(t)=a_{0} t^{l}+a_{1} t^{l-1}+\cdots+a_{l-1} t+a_{l}$ for $a_{0}=1$ and non-negative integers a_{1}, \ldots, a_{l},

$$
X=\sum_{s=0}^{l} a_{l-s}\left[\frac{t_{i}^{s}}{p\left(t_{i}\right)} \frac{t_{i}^{k+l-s}+t_{j}^{k+l-s}}{t_{i}^{m}+t_{j}^{m}} \frac{t_{j}^{s}}{p\left(t_{j}\right)}\right]=\sum_{s=0}^{l} a_{l-s} D_{s}\left[\frac{t_{i}^{k+l-s}+t_{j}^{k+l-s}}{t_{i}^{m}+t_{j}^{m}}\right] D_{s}
$$

where D_{s} is the diagonal matrix given as $D_{s}=\operatorname{diag}\left(\frac{t_{1}^{s}}{p\left(t_{1}\right)}, \ldots, \frac{t_{n}^{s}}{p\left(t_{n}\right)}\right)$. By $[5,6]$ or Theorem 2.2, $\left[\frac{t_{i}^{k+l-s}+t_{j}^{k+l-s}}{t_{i}^{m}+t_{j}^{m}}\right]$ is positive semidefinite, so is $D_{s}\left[\frac{t_{i}^{k+l-s}+t_{j}^{k+l-s}}{t_{i}^{m}+t_{j}^{m}}\right] D_{s}$. Hence, we conclude that X is positive semidefinite; therefore, the proof is complete.

Note that

$$
\begin{aligned}
L_{f(t)}^{(2)} & =\left[\frac{\left\{f\left(t_{i}\right)\right\}^{2}-\left\{f\left(t_{j}\right)\right\}^{2}}{t_{i}^{2}-t_{j}^{2}}\right]=\left[\frac{f\left(t_{i}\right)+f\left(t_{j}\right)}{t_{i}+t_{j}}\right] \circ\left[\frac{f\left(t_{i}\right)-f\left(t_{j}\right)}{t_{i}-t_{j}}\right] \\
& =K_{f(t)}\left(t_{1}, \ldots, t_{n}\right) \circ L_{f(t)}\left(t_{1}, \ldots, t_{n}\right)
\end{aligned}
$$

where o stands for Hadamard or Schur product: the entrywise product. When f is operator monotone, both matrices are positive semidefinite by Theorems 2.1 and 2.2, by Schur's Theorem so is their Hadamard product $L_{f(t)}^{(2)}$. For a positive integer k, since

$$
\begin{aligned}
L_{f(t)}^{\left(2^{k}\right)} & =\left[\frac{\left\{f\left(t_{i}\right)\right\}^{2^{k}}-\left\{f\left(t_{j}\right)\right\}^{2^{k}}}{t_{i}^{2^{k}}-t_{j}^{2^{k}}}\right] \\
& =\left[\frac{\left\{f\left(t_{i}\right)\right\}^{2^{k-1}}+\left\{f\left(t_{j}\right)\right\}^{2^{k-1}}}{t_{i}^{2^{k-1}}+t_{j}^{2^{k-1}}}\right] \circ\left[\frac{\left\{f\left(t_{i}\right)\right\}^{2^{k-1}}-\left\{f\left(t_{j}\right)\right\}^{2^{k-1}}}{t_{i}^{2^{k-1}}-t_{j}^{2^{k-1}}}\right] \\
& =K_{f(t)}^{\left(2^{k-1}\right)}\left(t_{1}, \ldots, t_{n}\right) \circ L_{f(t)}^{\left(2^{k-1}\right)}\left(t_{1}, \ldots, t_{n}\right),
\end{aligned}
$$

we conclude by induction and Theorem 2.5 that $L_{f(t)}^{\left(2^{k}\right)}$ is positive semidefinite for all k. But in fact, we have Theorem 2.6:

Proof of Theorem 2.6. We use the same notation as in the proof of Theorem 2.5. By the similar argument, it is sufficient to show that $Y:=\left[\frac{h\left(t_{i}\right)-h\left(t_{j}\right)}{t_{i}^{m}-t_{j}^{m}}\right]$ is positive
semidefinite. This matrix is represented as

$$
Y=\sum_{s=0}^{l} a_{l-s}\left[\frac{t_{i}^{s}}{p\left(t_{i}\right)} \frac{t_{i}^{k+l-s}-t_{j}^{k+l-s}}{t_{i}^{m}-t_{j}^{m}} \frac{t_{j}^{s}}{p\left(t_{j}\right)}\right]=\sum_{s=0}^{l} a_{l-s} D_{s}\left[\frac{t_{i}^{k+l-s}-t_{j}^{k+l-s}}{t_{i}^{m}-t_{j}^{m}}\right] D_{s}
$$

By $[5,6]$ or Theorem 2.1, $\left[\frac{t_{i}^{k+l-s}-t_{j}^{k+l-s}}{t_{i}^{m}-t_{j}^{m}}\right]$ is positive semidefinite, so is Y and the proof is complete.

References

[1] T. Ando, Concavity of certain maps on positive definite matrices and applications to Hadamard products, Linear Algebra Appl., 26 (1979), 203-241.
[2] K. M. R. Audenaert, A characterisation of anti-Löwner functions, Proc. Amer. Math. Soc., 139 (2011), 4217-4223.
[3] R. Bhatia, Matrix Analysis, Springer (1996).
[4] R. Bhatia, Positive Definite Matrices, Princeton University Press (2007).
[5] R. Bhatia and T. Sano, Loewner matrices and operator convexity, Math. Ann., 344 (2009), 703-716.
[6] R. Bhatia and T. Sano, Positivity and conditional positivity of Loewner matrices, Positivity 14 (2010), 421-430.
[7] W. F. Donoghue, Monotone Matrix Functions and Analytic Continuation, Springer (1974).
[8] J. I. Fujii and M. Fujii, An analogue to Hansen's theory of generalized Löwner's functions, Math. Japonica, 35 (1990), 327-330.
[9] C. Hidaka and T. Sano, Conditional negativity of anti-Loewner matrices, Linear and Multilinear Algebra, 60 (2012), 1265-1270.
[10] M. K. Kwong, Some results on matrix monotone functions, Linear Algebra Appl., 118 (1989), 129-153.
[11] K. Löwner, Über monotone Matrixfunctionen, Math. Z., 38 (1934), 177-216.

Communicated by Jun Ichi Fujii

Takashi Sano
Department of Mathematical Sciences, Faculty of Science
Yamagata University Yamagata 990-8560, Japan
sano@sci.kj.yamagata-u.ac.jp
Shintaro Tachibana
Graduate School of Science and Engineering
Yamagata University Yamagata 990-8560, Japan

