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Abstract. In the author’s recent paper [11], it is established that in a multiclass
single-server queue with regular service disciplines, the stationary distributions and
their moments for workload as well as for queue length can be approximated by ap-
propriate exponential distributions and their moments in the heavy-traffic regime.

In this work, relaxing the assumption of moment generating function on the primi-
tives in that paper to the moment condition of second-order or higher-order, we obtain
the corresponding approximation result in a multiclass single-server queue. The key
to our analysis is to use the framework of Budhiraja and Lee [4] in which under such
weak moment assumption, the tightness of stationary scaled queue length for single-
class (i.e., generalized Jackson) queueing networks is established for their stationary
heavy-traffic analysis. For a multiclass single-server queue, we obtain the tightness of
stationary scaled workload to show that state-space collapse occurs in the heavy-traffic
regime in stationarity, from which the desired approximation result follows.

1 Introduction.
In the author’s recent paper [11], it has been established that under appropriate con-

ditions, the stationary distributions of suitably scaled workload processes as well as queue
length processes in a multiclass single-server queue converge in the heavy-traffic regime to
exponential distributions, which are stationary distributions of one-dimensional reflected
Brownian motions with negative drift coefficients. In the limit of stationary scaled queue
length process, the rate of the exponential distribution depends on the service discipline in-
vestigated, i.e., first-in-first-out (FIFO) discipline, generalized head-of-the-line proportional
processor sharing (GHLPPS) discipline, or static buffer priority (SBP) discipline. Further-
more, in [11], the stationary moment convergence has been proved for the scaled workload
with first-order as well as for the scaled queue length with any order. The key to their
proof is to show that state-space collapse occurs in the heavy-traffic regime in stationarity
under the assumption of tightness on the stationary workload (or stationary queue length)
in general multiclass queueing networks. In a multiclass single-server queue, such tightness
condition is confirmed using the Lyapunov function method formulated by Gamarnik and
Zeevi [10], in which the heavy-traffic approximation for stationary distribution in a gener-
alized Jackson queueing network (GJN) is validated. In their work, also in [11], in order
to derive the sought tightness of scaled queue length, the following assumption of the finite
moment generating function (m.g.f.) in a neighborhood of origin is imposed on the residual
interarrival and service times:
There exists a constant ϑ0 > 0 such that

(1) sup
z∈R+

E
[
exp(ϑ0(ξ − z)) | ξ > z

]
< ∞,
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where ξ denotes the interarrival or service time.

However, this m.g.f. condition may be regarded as relatively restrictive from the standpoint
of the heavy-traffic approximations for queueing systems in which the second-order moment
condition is conventionally imposed on their primitives.

On the other hand, the recent work of Budhiraja and Lee [4] studies the same approx-
imation problem of GJNs as in [10], with the relaxation of the above finite m.g.f. condi-
tion to weaker moment condition, i.e., the finite p-th order moment condition with some
p ∈ [2,∞), on the primitive variables and the associated renewal processes. In particular,
for the second-order moment condition in [4], one has only to impose

(2) E[ ξ2 ] < ∞

with ξ denoting the interarrival or service time. In [4], uniform (in time and the scal-
ing parameter) moment bounds of the underlying Markov state process are obtained to
yield moment bounds for stationary distribution in the GJN, in virtue of the more general
framework of uniform moment bounds for Markov processes. (Cf. Theorems 3.2-3.5 in [4].)

In this work, we make such relaxation of moment condition in establishing the heavy-
traffic approximation for the stationary distribution of a multiclass single-server queue,
which has already been proved under the above m.g.f. condition in [11]. More specifically,
under the second-order moment condition, i.e., (2), we have the stationary distribution con-
vergence for workload as well as for queue length, in the heavy-traffic regime, and under
the moment condition with higher-order than the second, we have the stationary moment
convergence for workload with the first-order and those for queue lengths with the corre-
sponding order. In our analysis, the framework of [4] is employed to obtain moment bounds
of stationary queue length, which yields the tightness of stationary queue length in our
queue. In virtue of that tightness, we establish the condition of state-space collapse in sta-
tionarity, from which the desired approximation result follows. However, in the derivation
of such moment bounds, different from [4], we consider the Markov process

(3) X(t) = (Z(t), Ea(t), Ev(t), O(t)), t ≥ 0,

where Z(·) denotes the queue length process, Ea(·) the elapsed interarrival time process,
Ev(·) the elapsed service time process, and O(·) the process indicating the order of customer
classes in the queue. (Note that in [4], the residual time processes are taken instead of the
elapsed time processes.) Our choice of process (3) makes the analysis simpler than that in
the corresponding part of [4] because of the relation between the delayed renewal process
and the zero-delayed one under the conditional probability given X(0).

The rest of the paper is organized as follows. In §2.1 and §2.2, we recall the stan-
dard formulation of a multiclass single-server queue and in §2.3, we construct a sequence
of multiclass single-server queues satisfying the heavy-traffic condition, under the scaling
parameter regime. In §3, referring to the author’s recent work [11], we recall the result on
state-space collapse in stationarity and its application to the stationary heavy-traffic analy-
sis of a multiclass single-server queue. In §4, under the second-order moment assumption or
the higher-order one, we derive moment stability estimate of the Markov state process with
the corresponding order in a multiclass single-server queue. Using that estimate and also
making use of the framework of Budhiraja and Lee [4], we have the finiteness of uniform
stationary moment for the scaled queue length in a multiclass single-server queue. In §5,
applying the result of §4 to §3, we establish the heavy-traffic convergence for stationary
distribution as well as for stationary moment in a multiclass single-server queue, under our
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assumption. In §6, the appendices, we summerize the Markovian representation of a mul-
ticlass single-server queue and also uniform moment bounds of stationary distribution for
general Markov processes, which are cited from [11] and [4], respectively.

The following notation will be used. Let Rd be the d-dimensional Euclidean space and
for x = (x1, · · · , xd) ∈ Rd, the norm |x| is defined by |x| =

∑d
i=1 |xi|. For a matrix or a

vector, the prime is put to denote its transpose. The symbol N denotes the set of natural
numbers and N0 the set of nonnegative integers.

2 Model primitives and assumptions.

2.1 A multiclass single-server queue.

We begin with a description of a multiclass single-server queue with feedback class
routing. Each customer, belonging to one of K classes, receives service from a single server
in the queue with unlimited waiting capacity. For convenience, let K = {1, 2, · · · ,K}.
Customers of classes in A, a subset of K, arrive at the queue from outside, and no external
arrival is allowed for customers of any class in K−A. Upon service completion, a customer
changes its class to another one in a feedback way, or leaves the queue. We assume that
the server is never idle whenever there are customers being served or in waiting line, which
is called the non-idling policy. The service disciplines we investigate are all head-of-the-line
(HL), which means that customers in each class are served in the order of their arrivals
at the class and only the leading customer in each class can receive service at any time.
In this work, three instances of HL service disciplines are investigated in association with
a multiclass single-server queue, i.e., first-in-first-out (FIFO) discipline, generalized head-
of-the-line proportional processor sharing (GHLPPS) discipline, and static buffer priority
(SBP) discipline. (Cf. Bramson [1] and Bramson and Dai [2].)

2.2 Model primitives.

Let (Ω,F , P) be a probability space. Unless specified otherwise, all the random variables
considered in this work are defined on this probability space.

For each k ∈ A, the external interarrival times {ak(i), i = 2, 3, · · · } are i.i.d. (i.e.,
independent and identically distributed) positive random variables with mean 1/αk (αk > 0)
and finite variance ak ≥ 0 where ak(i) denotes the time between the (i− 1)-st and the i-th
external arrival of a class k customer. The term ak(1) denotes the residual interarrival time
equal to the time measured from origin until the first external arrival.
For k ∈ A, we set

Ek(t) = max{l ∈ N :
l∑

i=1

ak(i) ≤ t}

where max φ ≡ 0. For convenience, for each k ∈ K −A, we set

Ek(·) ≡ 0 and αk ≡ 0.

For each l ∈ K, the service times {vl(i) : i = 2, 3, · · · } are i.i.d. positive random
variables with mean ml = 1/µl > 0 and finite variance bl ≥ 0. The term vl(1) denotes
the residual service time of the class l customer initially served. (We set vl(1) = 0 if
and only if the number of class l customers is zero.) The cumulative service time process
V(n) = (Vl(nl) : l ∈ K), n = (n1, · · · , nK), nl ∈ N0, l ∈ K, is defined by

Vl(nl) =
nl∑

i=1

vl(i)
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where Vl(0) ≡ 0, l ∈ K. For each l ∈ K and each t ≥ 0, let Sl(t) denote the number of
service completions at class l during the busy time interval [0, t]. That is,

Sl(t) =

{
max{n ∈ N : Vl(n) ≤ t} if vl(1) > 0,
max{n ∈ N : Vl(n) ≤ t} − 1 if vl(1) = 0.

The class routing vectors {φk(i) : i = 1, 2, · · · }, k ∈ K, are i.i.d. K-dimensional vectors
where φk(i) takes values in the set {0, e1, · · · , eK}, with ek denoting the k-th unit vector
in RK , k ∈ K. The non-zero component of φk(i) indicates the class to which the i-th
customer served at class k is routed, and φk(i) = 0 indicates that it leaves the queue. Let
Pkl = P{φk(i) = el} and Pk0 = P{φk(i) = 0}, k, l ∈ K. The K × K matrix P =

[
Pkl

]
,

called the class routing matrix, is assumed to have spectral radius strictly less than unity.
Thus

Q ≡ (I − P ′)−1

= I + P ′ + (P ′)2 + · · ·

is finite. The mean vector and covariance matrix of φk(1), k ∈ K, are given by

E[φk(1)] = (P ′)·k and Cov[φk(1))] = Υk

respectively, where (P ′)·k denotes the k-th column of P ′ and Υk is the K ×K matrix with

Υk
lm ≡

{
Pkl(1 − Pkl) if l = m,
−PklPkm if l 6= m.

The cumulative routing process for class k is given by

Φk(n) =
n∑

i=1

φk(i), n ∈ N .

We define λ to be the unique K-dimensional vector solution of the traffic equation:

λ = α + P ′λ

where α = (α1, · · · , αK)′,
i.e.,

λ = Qα.

Using λ and m ≡ (m1, · · · ,mK)′, we define the traffic intensity ρ as

ρ =
∑
k∈K

mkλk,

or equivalently, ρ = e′Mλ where e is the K-dimensional vector of all 1’s and M = diag(m).

For each k ∈ K, let Zk(t) denote the number of class k customers being in waiting line
or served at the queue at time t. The K-dimensional process

Z(t) = (Z1(t), · · · , ZK(t))′, t ≥ 0,
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is referred to as the queue length process. Also let W (t) denote the total amount of imme-
diate work (measured in units of service time) for the server at time t, and

W (t), t ≥ 0,

is referred to as the workload process. In addition, let Y (t) denote the cumulative amount
of time that the server is idle during the time interval [0, t]. The process

Y (t), t ≥ 0,

is referred to as the cumulative idle time process. Furthermore, the following K-dimensional
processes are defined to describe the dynamics of the queue, i.e., A(t) = (Ak(t) : k ∈ K, t ≥
0), D(t) = (Dk(t) : k ∈ K, t ≥ 0) and T (t) = (Tk(t) : k ∈ K, t ≥ 0) where for each k ∈ K,
Ak(t) denotes the total number of arrivals of class k customers during [0, t], Dk(t) denotes
the total number of service completions (departures) of class k customers during [0, t] and
Tk(t) denotes the total amount of time that the server has served customers of class k by
time t. Set X(·) ≡ (A(·), D(·), T (·),W (·), Y (·), Z(·)). With a slight abuse of notation, our
multiclass single-server queue is symbolized by X(·). Under the non-idling policy, we have
the following equations:

A(t) = E(t) +
K∑

l=1

Φl(Dl(t)),

Z(t) = Z(0) + A(t) − D(t),
W (t) = e′V(Z(0) + A(t)) − e′T (t),

e′T (t) + Y (t) = et,∫ ∞

0

W (s)dY (s) = 0,

for all t ≥ 0.

As is well known, in order to describe by use of some Markov process the dynamics of
related queueing system in which the interarrival and service times are i.i.d. with general
distributions, one has to add to the queue length process two elapsed time processes, i.e.,
the elapsed interarrival time process Ea(·) and the elapsed service time process Ev(·). In our
multiclass single-server queue case, the processes Ea

k (t), k ∈ A, and Ev
l (t), l ∈ K, measure

the elapsed time since the most recent exogeneous arrival and most recent service comple-
tion prior to time t, respectively, at the corresponding customer class. However, in such
Markovian representation of multiclass queueing systems under the service disciplines such
as the FIFO one, one has to add one more component to the process (Z(·), Ea(·), Ev(·)),
which specifies the ordering of different classes for the customers processed by each server.
That is, in the case of our multiclass single-server queue, we introduce the process

O(t) ≡ (O1(t), O2(t), · · · )′, t ≥ 0,

with Oi(t), 1 ≤ i ≤
∑

k∈K Zk(t), designating the class of the i-th customer at time t, and
Oi(t) ≡ 0 for i ≥

∑
k∈K Zk(t) + 1. For example, O1(t) designates the class of the customer

that arrived at the queue the longest time ago of the customers staying there at time t, etc.
In §4, we consider the Markov process

X(t) ≡ (Z(t), Ea(t), Ev(t), O(t)), t ≥ 0,
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in order to show the desired tightness of stationary scaled workload.

2.3 Heavy-traffic model of a multiclass single-server queue.

In this subsection, we introduce a sequence of multiclass single-server queues, denoted
by {Xn(·)}∞n=1, satisfying the heavy-traffic condition. First, consider a multiclass single-
server queue X(·) with traffic intensity equal to unity. To this queue, the interarrival times,
the service times and the class routing vectors are introduced as in §2.2. We impose the
following assumptions on the primitive variables and the associated renewal processes in X.
These are assumed throughout this paper even when not mentioned.

(A1) For each k ∈ A, {ak(i) : i ≥ 2} are unbounded and spread out. That is, there exist
some integer jk > 0 and some function pk(x) ≥ 0, x ∈ R+, with

∫ ∞
0

pk(x)dx > 0, such that

P(ak(2) ≥ x) > 0 for any x > 0

and

P
(

c1 ≤
jk∑

i=2

ak(i) ≤ c2

)
≥

∫ c2

c1

pk(x)dx

for any 0 ≤ c1 < c2.

(A2) For each l ∈ K,
sup
z≥0

E
[
vl(2) − z | vl(2) > z

]
< ∞.

The next assumption (A3-p) is employed in Budhiraja and Lee [4] to show the tightness
of queue length in a GJN for the purpose of its stationary heavy-traffic analysis. We also
use the condition, which plays a key role in the derivation of the tightness of queue length
in a multiclass single-server queue.

(A3-p-(i)) There exists a constant p ∈ [2,∞) such that

E
[
ak(2)p + vl(2)p

]
< ∞, ∀k ∈ A,∀l ∈ K.

(A3-p-(ii)) For the constant p ∈ [2,∞) in (A3-p-(i)), there exists a constant cp > 0 such
that for any t ≥ 0,

E
[

sup
0≤s≤t

|Ek,0(s) − αks|p
]
≤ cp(1 + t

p
2 ), ∀k ∈ A,

E
[

sup
0≤s≤t

|Sl,0(s) − µls|p
]
≤ cp(1 + t

p
2 ), ∀l ∈ K,

E
[

sup
0≤s≤t

|Φl
m(Sl,0(s)) − PlmSl,0(s)|p

]
≤ cp(1 + t

p
2 ), ∀l,m ∈ K,

where Ek,0(·) and Sl,0(·) denote zero-delayed renewal processes corresponding to {ak(i), i ≥
2} and {vl(i), i ≥ 2}, respectively, k ∈ A, l ∈ K.

In particular, when p = 2, condition (A3-p-(i)), which has already been assumed in §2.2,
implies (A3-p-(ii)). (Cf. Budhiraja and Ghosh [3], and Krichagina [12].)

(A4) The following families of random variables,

{Z(0), Rv(0), O(0)}, Ra
k(0), k ∈ A, ak′ , k′ ∈ A,

v1, · · · , vK , φ1, · · · , φK
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are mutually independent, where ak ≡ {ak(i) : i ≥ 2}, k ∈ A, vl ≡ {vl(i) : i ≥ 2}, l ∈ K,
and φj ≡ {φj(i) : i ≥ 1}, j ∈ K.

Using this independence assumption and the i.i.d. property of primitive variables, one can
describe the dynamics of a multiclass single-server queue in virtue of some Markov process
in Appendix 1.

Based on the queue X, we provide a sequence of multiclass single-server queues Xn(·), n ∈
N , in which

(i) the interarrival times {an
k (i) : i ≥ 2, k ∈ A} for the n-th queue in the sequence are

defined as

an
k (i) = ak(i)

(
1 − κ0

k√
n

)−1

, i ≥ 2, k ∈ A,

where {ak(i) : i ≥ 2, k ∈ A} are the interarrival times in X(·) and κ0
k(> 0), k ∈ A, is

a constant,

(ii) the service times {vl(i) : i ≥ 2, l ∈ K} and the class routing vectors {φl(i) : i ≥
1, l ∈ K} for the n-th queue are those for X(·). (That is, they are independent of the
sequence parameter n.)

Then the vector of arrival rates for the n-th queue is given by

αn = (αn
1 , · · · , αn

K)′

where

αn
k = αk

(
1 − κ0

k√
n

)
, k ∈ A,

= 0, k ∈ K −A,

with αk = 1/E(ak(2)), k ∈ A. Thus, for the n-th queue, the vector solution to the traffic
equation is given by

λn = (I − P ′)−1αn

and the traffic intensity is also given by

ρn = e′Mλn

= 1 − κ√
n

(4)

where κ = e′M(I − P ′)−1K0α > 0 with M = diag(m) and K0 = diag(κ0). For each
n ∈ N , since ρn < 1, the n-th multiclass single-server queue Xn is fluid-stable under any
non-idling service discipline. Therefore, under assumption (A1), the underlying Markov
process for Xn has the unique stationary distribution, which is also identical to the steady-
state distribution. (Cf. Dai[7], Dai and Meyn [8], and Katsuda [11].)

Scaling.

For the sequences of queue lengths, workloads, cumulative idle time processes, and the
renewal processes associated with the primitive triples, we scale them as follows in order to
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obtain their proper limits as the sequence parameter n tends to infinity. For any n ∈ N
and any t ≥ 0,

Ẑn(t) ≡ 1√
n

Zn(nt),

Ŵn(t) ≡ 1√
n

Wn(nt),

Ŷ n(t) ≡ 1√
n

Y n(nt),

Ên(t) ≡ 1√
n

(En(nt) − αnnt),

Ŝn(t) ≡ 1√
n

(S(nt) − µnt),

Φ̂n(t) ≡ 1√
n
{Φ([nt]) − (P )′[nt]}

where the processes defined in association with Xn are indexed by the sequence parameter
n, n ∈ N , and [nt] denotes the integer part of nt.

3 State-space collapse in stationarity and heavy-traffic approximation for sta-
tionary distribution.

As established in Williams [13] and Bramson and Dai [2], state-space collapse is the
main sufficient condition under which heavy-traffic stochastic-process limit theorem with
general initial condition holds for some important multiclass queueing networks, including
our multiclass single-server queues under the FIFO, GHLPPS and SBP service disciplines.
It is also the necessary condition for such queueing networks under the FIFO discipline.

In this work, we are concerned with heavy-traffic approximation for the stationary dis-
tribution in a multiclass single-server queue, which is often symbolized by the interchange
of limits in distributions:

lim
n→∞

lim
t→∞

Ŵn(t) = lim
t→∞

lim
n→∞

Ŵn(t).

For this purpose, we apply the heavy-traffic stochastic-process limit theorem to our sequence
of multiclass single-server queues, {Xn}, in stationarity. In this application, as mentioned
above, we have to see that state-space collapse occurs for {Xn} in stationarity, which has
been proved under the assumption of the tightness of stationary workload. (Note that
assumption (A2) is used in this proof. See Proposition 3.2, its proof and Remark 3.1 in
Katsuda [11].) As a result, we have the following proposition, i.e., Proposition 3.1 below, on
the heavy-traffic approximation for the stationary distribution in our multiclass single-server
queue, as established in a more general context in [11].

State-space collapse is said to hold for our sequence of multiclass single-server queues,
{Xn}, if for each T > 0 and each k ∈ K,

sup
0≤t≤T

| Ẑn
k (t) − δkŴn(t) |−→ 0 in probability as n → ∞,

where the constant δk, k ∈ K, is given according to the associated service discipline:
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For the FIFO discipline,

(5) δk = λk, k ∈ K,

and for the SBP discipline,

(6) δk =

{
1/mk if k is the lowest priority class,
0 otherwise,

for each k ∈ K.
For the GHLPPS discipline,

(7) δk =
λkmk/βk∑
l∈K λlm2

l /βl
, k ∈ K,

where the nonnegative constant βk, k ∈ K, denotes the weight coefficient for the discipline,
i.e., for each t ≥ 0 and each k ∈ K,

Ṫk(t) =

{
βkZk(t)

P

l∈K βlZl(t)
if

∑
l∈K βlZl(t) > 0,

0 otherwise.

(Cf. Bramson [1] and Bramson and Dai [2].)

Let Ξn(t), t ≥ 0, denote the Markovian description process for our multiclass single-
server queue Xn, n ∈ N , whose definition is summerized in Appendix 1. Also denote by
S the state space of Ξn(·), n ∈ N . According to §3 in [11], under assumption (A1), we see
that the stationary distribution of Ξn(·) exists uniquely for each n ∈ N , because of (4). In
taking the heavy-traffic limit, we scale the process Ξn(t) as

Ξ̂n(t) =
1√
n

Ξn(nt), t ≥ 0, n ∈ N .

For each fixed n ∈ N , let Pξ( · ) denote the probability law of {Ξ̂n(t) : t ≥ 0} such that
Pξ(Ξ̂n(0) = ξ) = 1, ξ ∈ S, and let πn denote the stationary distribution of Ξ̂n(·). In addition,
let Pπn( · ) denote the probability law of Ξ̂n(·) with initial measure πn and let Eπn [ · ] denote
the expectation w.r.t. Pπn( · ), n ∈ N .

Let W (t), t ≥ 0, denote the heavy-traffic stochastic-process limit of
{
Ŵn(t), t ≥ 0

}∞
n=1

,
and also let π denote the stationary distribution of W (·). More specifically, since W (·) is
the one-dimensional reflected Brownian motion with negative drift coefficient in our single-
server case, π is the exponential distribution with rate 2Rκ/Γ where

R = (1 + G)−1,(8)
Γ = RHR′(9)

with

G = e′MQP ′δ,

H = e′
{
ΛΣ + MQ

(
Π +

∑
k∈K

λkΥk
)
Q′M

}
e,

δ = (δ1, · · · , δK)′,
Λ = diag(λ),
Σ = diag(b1, · · · , bK),

Π = diag(α3
1a1, · · · , α3

KaK).

(Cf. Williams [13].)
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Proposition 3.1.
For the sequence of multiclass single-server queues,

{
Xn

}∞
n=1

, under each of the FIFO,
GHLPPS and SBP service disciplines, suppose that{

Pπn(Ŵn(0) ∈ ∗)
}∞

n=1

is tight in R1. Then, under the assumptions imposed so far,

Pπn(Ŵn(0) ∈ ∗) D−→ π(∗)

as n → ∞.

4 Uniform moment bounds for the stationary queue length in a multiclass
single-server queue.

In this section, we establish uniform moment bounds for the stationary scaled queue
length in our multiclass single-server queue in §2, which yields the sought tightness of
stationary scaled workload for the heavy-traffic approximation of the stationary distribution
in the queue.

Set
Xn(t) ≡ (Zn(t), Ea,n(t), Ev,n(t), On(t)), t ≥ 0, n ∈ N .

Then Xn(·), n ∈ N , is a piecewise-deterministic Markov process. It is even a strong Markov
process. Denote the state space of Xn(·), n ∈ N , by X. Similarly as in the case of Ξn(·),
we scale the process by X̂n(t) ≡ 1√

n
Xn(nt), t ≥ 0, n ∈ N . For each fixed n ∈ N , let

Px( · ) denote the probability law of {X̂n(t) : t ≥ 0} such that Px(X̂n(0) = x) = 1, x =
(z, ea, ev, o) ∈ X. In addition, Ex[ · ] denotes the expectation w.r.t. Px( · ), x ∈ X.

The next proposition is concerned with the p-th order moment stability estimate of
X̂n(·), uniform in n, with parameter p in condition (A3-p).

Proposition 4.1.
Under any non-idling service discipline, there exists a constant t0 > 0 such that for any

t ≥ t0,

lim
|x|→∞

sup
n

1
|x|p

Ex

[
|X̂n(|x|t)|p

]
= 0,

with the constant p in condition (A3−p).

Proof. In the same way as in Theorem 3.3 of [4], we can prove that for any t ≥ 0,

lim
|x|→∞

sup
n

1
|x|p

Ex

[
|Êa,n(|x|t)|p

]
= 0,

lim
|x|→∞

sup
n

1
|x|p

Ex

[
|Êv,n(|x|t)|p

]
= 0,
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in use of Wald’s identity and condition (A3-p-(i)). Thus it remains to prove that there
exists some t0 > 0 such that for any t ≥ t0,

(10) lim
|x|→∞

sup
n

1
|x|p

Ex

[
|Ẑn(|x|t)|p

]
= 0,

because
lim

|x|→∞
sup

n

1
|x|p

Ex

[
|Ôn(|x|t)|p

]
= 0

follows immediately from (10).
From

Zn
k (t) = Zn

k (0) + En
k (t) +

∑
l∈K

Φl
k(Sl(Tn

l (t))) − Sk(Tn
k (t)), k ∈ K,

we have the following scaled identity:

Ẑn
k (t) =Ẑn

k (0) + Ên
k (t) + αn

k

√
nt +

∑
l∈K

Φ̂n,l
k (S

n

l (T
n

l (t))) +
∑
l∈K

PlkŜn
l (T

n

l (t))

+
∑
l∈K

Plkµl
Tn

l (nt)√
n

− Ŝn
k (T

n

k (t)) − µk
Tn

k (nt)√
n

, k ∈ K,

or, in vector form,

Ẑn(t) =Ẑn(0) + Ên(t) + αn
√

nt +
∑
l∈K

Φ̂n,l(S
n

l (T
n

l (t))) − (I − P ′)Ŝn(T
n
(t))

− (I − P ′)
(µTn)(nt)√

n
(11)

where S
n
(t) ≡ S(nt)/n and T

n
(t) ≡ Tn(nt)/n.

Let
η ≡ (I − P )−1Me.

Then, multiplying (11) by η′ = e′M(I−P ′)−1 from the left and noting that
√

n(ρn−1) = −κ
and

Y n(t) = t −
∑
k∈K

Tn
k (t),

we have

η′Ẑn(t) ≡ e′M(I − P ′)−1Ẑn(t)

= η′Ẑn(0) + e′M(I − P ′)−1{Ên(t) +
∑
l∈K

Φ̂n,l(S
n

l (T
n

l (t)))}

− e′MŜn(T
n
(t)) − κt + Ŷ n(t).(12)

Because ∫ ∞

0

η′Ẑn(t)dŶ n(t) = 0,

from (12) we obtain

(13) η′Ẑn(t) = Ψ(χn(·))(t)
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where Ψ is the one-dimensional reflection map, i.e.,

Ψ(u)(t) = u(t) + sup
0≤s≤t

(−u(s))+, u ∈ D([0,∞),R1), u(0) ≥ 0,

and

χn(t) ≡η′Ẑn(0) + e′M(I − P ′)−1{Ên(t) +
∑
l∈K

Φ̂n,l(S
n

l (T
n

l (t)))}

− e′MŜn(T
n
(t)) − κt.(14)

In order to arrive at (10), it is enough to prove that there exists a constant t0 > 0 such
that for any t ≥ t0,

lim
|x|→∞

sup
n

1
|x|p

Ex

[
|η′Ẑn(|x|t)|p

]
= 0.

Now let
Nn(t) = Nn

1 (t) + Nn
2 (t) + Nn

3 (t)

with

Nn
1 (t) =

∑
k∈A

ηk
1√
n

{
En

k (nt) − αn
k (nt +

√
nea

k)
}
,

Nn
2 (t) = −

∑
k∈K

mk
1√
n

{
Sk(Tn

k (nt)) − µk(Tn
k (nt) +

√
nev

k)
}

and

Nn
3 (t) =

∑
k∈K

ηk
1√
n

∑
l∈K

{
Φl

k(Sl(Tn
l (nt))) − PlkSl(Tn

l (nt))
}
,

and
bn(t) =

∑
k∈A

ηkαn
kea

k −
∑
k∈K

ev
k − κt.

Also let
Fn(t) = Ψ(η′Ẑn(0) + bn(·))(t).

Then
χn(t) = η′Ẑn(0) + Nn(t) + bn(t)

and

1
|x|p

Ex

[
|η′Ẑn(|x|t)|p

]
≤ Cp

1
|x|p

Ex

[
| η′Ẑn(|x|t) − Fn(|x|t) |p

]
+ Cp

1
|x|p

Ex

[
Fn(|x|t)p

]
= Cp

1
|x|p

Ex

[
| Ψ(χn(·))(|x|t) − Ψ(η′Ẑn(0) + bn(·))(|x|t) |p

]
+ Cp

1
|x|p

Ex

[
Fn(|x|t)p

]
≤ C ′

p

1
|x|p

Ex

[
sup

0≤s≤|x|t
|Nn(s)|p

]
+ Cp

1
|x|p

Ex

[
Fn(|x|t)p

]
(15)
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where Cp, etc., are constants depending on p, and the last inequality follows from the
Lipschitz continuity of reflection map Ψ.

In virtue of assumption (A3-p-(ii)), we see that the first term in the right-hand side of (15)
is majorized by

C ′′
p

1
|x|p

Ex

[
sup

0≤s≤|x|t

(
|Nn

1 (s)|p + |Nn
2 (s)|p + |Nn

3 (s)|p
)]

≤ C ′′′
p

3
n

p
2 |x|p

cp{1 + (n|x|(t + 1))
p
2 }

for each n ∈ N , noting that for any x = (z, ea, ev, o) ∈ X, Px-a.e.,

En
k (t) = En

k,0(t +
√

nea
k), k ∈ A,

Sl(t) = Sl,0(t +
√

nev
l ), l ∈ K.

Thus we have
lim

|x|→∞
sup

n

1
|x|p

Ex

[
sup

0≤s≤|x|t
|Nn(s)|p

]
= 0

for each t ≥ 0.

To arrive at (10), we evaluate the second term in the righthand side in (15). According
to the scaling and shift properties of reflection map Ψ (cf. Chap.7 of [5].),

1
|x|

Fn
(
|x|t

)
= Ψ

( 1
|x|

Fn
(
|x|t̃

)
+

1
|x|

bn(|x|(t̃ + ·)) − 1
|x|

bn(|x|t̃)
)
(t − t̃)

for any t ≥ t̃ ≥ 0. Since

1
|x|

bn
(
|x|t

)
=

∑
k∈A

ηkαn
k

ea
k

|x|
−

∑
l∈K

ev
l

|x|
− κt,

we have
1
|x|

Fn
(
|x|t

)
= 0

for any t ≥ t0 with some constant t0 independent of x and n. Consequently the proof is
completed.

The next proposition corresponds to Theorem 3.4 in Budhiraja and Lee [4]. It can be
proved without any difficulty, using Proposition 4.1 and adapting the proof of that theorem
to our multiclass single-server queue.

Proposition 4.2.
Under any non-idling service discipline, there exist some constants c, δ̄ ∈ (0,∞) and a

compact set C ⊂ X such that for any x ∈ X,

sup
n

Ex

[ ∫ τn
C(δ̄)

0

(
1 + |X̂n(t)|p−1

)
dt

]
≤ c(1 + |x|p)

where τn
C(δ̄) = inf{t ≥ δ̄ : X̂n(t) ∈ C}.
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Let πn
X denote the stationary distribution of X̂n(·), n ∈ N . Then, applying Theorems

A.2.1 and A.2.2 in Appendix 2 to Proposition 4.2, we have the next uniform stationary
moment result for the scaled queue length in a multiclass single-server queue.

Corollary 4.1.
For the parameter p in (A3−p), we have

sup
n

Eπn
X

[
|Ẑn(0)|p−1

]
< ∞.

5 Stationary distribution convergence for a multiclass single-server queue in
heavy traffic.

In this section, we establish the heavy-traffic convergence for stationary distribution
as well as for stationary moment in a multiclass single-server queue, making use of the
formulation described so far. The following theorem and corollary extend Theorem 4.1
and Corollaries 4.1-4.3 in Katsuda [11] to the corresponding conclusions under our relaxed
moment assumption.

Theorem 5.1.
Suppose that (A3-p) with p = 2 holds in addition to the other conditions in §2. Then, for

the sequence
{
Xn

}∞
n=1

of multiclass single-server queues under each of the FIFO, GHLPPS
and SBP service disciplines, we have that for any t ≥ 0 and any k ∈ K,

Pπn(Ŵn(0) > t) −→ exp(−2Rκt/Γ),(16)

Pπn(Ẑn
k (0) > t) −→ exp(−2Rκt/Γδk)(17)

as n → ∞, where R, Γ and δk, k ∈ K, are given by (8), (9) and (5) − (7), respectively.

Proof. It is trivial that for each n ∈ N , πn
X is the marginal distribution of πn in §3. Thus,

in use of Corollary 4.1 with p = 2, we have

sup
n

Eπn

[
|Ẑn(0)|

]
< ∞,

from which the tightness of

(18)
{
Pπn

(
Ẑn(0) ∈ ·

)}∞
n=1

in RK follows. According to the equality

Ŵn(0) =
∑
k∈K

1√
n

Zn
k (0)∑
i=1

(vk(i) − mk) +
∑
k∈K

mkẐn
k (0),

the tightness of {
Pπn

(
Ŵn(0) ∈ ·

)}∞
n=1

in R1 follows from the tightness of (18). (Cf. The proof of Theorem 4.1 in [11].) Therefore,
in virtue of Proposition 3.1, we have the convergence (16). Because of state-space collapse
in stationarity, we also have (17).
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The following corollary, corresponding to Corollaries 4.2 and 4.3 in [11], is concerned
with the stationary moment convergence, which depends on the parameter p in assumption
(A3-p).

Corollary 5.1.
Under our assumptions, in particular, condition (A3-p) with some p ∈ [2,∞), we have

that for any r ∈ [0, p − 1) and k ∈ K,

(19) Eπn

[
Ẑn

k (0)r
]
−→ r!(Γδk)r

(2Rκ)r
,

as n → ∞. If p > 2, then we also have

(20) Eπn

[
Ŵn(0)

]
−→ Γ

2Rκ
,

as n → ∞.

Proof. According to Proposition 4.2 and Theorem A.2.2, we see that

sup
n

Eπn

[
|Ẑn(0)|p−1

]
< ∞.

Thus, in view of Theorem 4.5.2 in Chung [6], we have the convergence (19). Because Zn
k (0)

and vk(i), i ≥ 2, are independent w.r.t. Pπn( · ) for each n ∈ N and k ∈ K (cf. Lemma 3.1
of [11].), we have

Eπn

[
Ŵn(0)

]
=

∑
k∈K

1√
n

Eπn

[
vk(1)

]
+

∑
k∈K

mkEπn

[
Ẑn

k (0) − 1√
n

]
.

Therefore, from (19) and the observation that∑
k∈K

mkδk = 1

for each of our three service disciplines, the convergence (20) follows.

6 Appendices.

Appendix 1. Markovian description process for a multiclass single-server queue.

In the author’s recent work [11], some Markov process is introduced in association with
related multiclass queueing network, in order to describe the dynamics of not only the queue
length but also the workload in the network. This process constitutes the fundamental of
the stationary regime for the network. We recall its definition in the case of a multiclass
single-server queue as follows.

In addition to Z(·) = (Zk(·), k ∈ K), Ea(·) = (Ea
k (·), k ∈ A), Ev(·) = (Ev

l (·), l ∈ K) and
O(·) = (Oi(·), i ∈ N ) introduced in §2.2, define the following processes:
Let Ra

k(t), k ∈ A, denote the remaining interarrival time of class k customer at time t ≥ 0
and Rv

l (t), l ∈ K, denote the remaining service time of class l customer at time t ≥ 0. (We
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set Rv
l (t) ≡ 0 if Zl(t) = 0.) In particular, Ra

k(0) = ak(1) and Rv
l (0) = vl(1) for each k ∈ A

and each l ∈ K.
Also let

V (t) ≡ (Vk(t) : k ∈ K)

where
Vk(t) ≡ (Vk1(t), Vk2(t), · · · )

with

Vk1(t) ≡ Rv
k(t),

Vki(t) ≡ vk(Dk(t) + i), 2 ≤ i ≤ Zk(t),(21)
Vki(t) ≡ 0, i ≥ Zk(t) + 1,

for each k ∈ K. (Note that for each k ∈ K, when vk(1) = 0, we have to reset Vki(t) ≡
vk(Dk(t) + i + 1), 2 ≤ i ≤ Zk(t), instead of (21).)

Using these processes, we define the description process Ξ = (Ξ(t) : t ≥ 0) by

Ξ(t) ≡ (Z(t), Ea(t),Ra(t), Ev(t), V (t), O(t)).

Then Ξ = (Ξ(t) : t ≥ 0) is a piecewise-deterministic Markov process. It is even a strong
Markov process. (Cf. Davis [9].) Let

Ft ≡ σ(Ξ(u) : 0 ≤ u ≤ t), t ≥ 0.

Then, the process
X(·) = (A(·), D(·), T (·),W (·), Y (·), Z(·))

is (Ft)-adapted. In this sense, the Markov process Ξ(·) describes the dynamics of our
multiclass single-server queue. As explained in [11], Ξ = (Ξ(t) : t ≥ 0) has the unique
stationary distribution under the assumptions in this work.

Appendix 2. Uniform bounds for the stationary moments of general strong Markov pro-
cesses.

In this appendix, we present two theorems on uniform bounds for the stationary moments
of general strong Markov processes, which are used in establishing the tightness of stationary
queue length of a generalized Jackson queueing network in Budhiraja and Lee [4]. The
details of their proofs are shown in [4].

Let Xn(t), t ≥ 0, n ∈ N , be a general strong Markov process with its state space,
denoted by X, the d-dimensional Euclidean space. Assume that Xn(·), n ∈ N , is positive
Harris recurrent and denote by πn

X the stationary distribution of Xn(·), n ∈ N , in this
appendix. The symbol Ex[ · ] denote the expectation w.r.t. the probability law Px( · ) of
Xn(·) such that Px(Xn(0) = x) = 1, x ∈ X, n ∈ N .

Theorem A.2.1 (Theorem 3.5 of [4].)

For a function f : X → R+, a constant δ̄ ∈ (0,∞) and a compact set C ⊂ X, define

V n(x) ≡ Ex

[ ∫ τn
C(δ̄)

0

f(Xn(t))dt
]
, x ∈ X, n ∈ N ,



STATIONARY DISTRIBUTION CONVERGENCE 397

where τn
C(δ̄) = inf{t ≥ δ̄ : Xn(t) ∈ C}. If supn V n(x) < ∞ for any x ∈ X and

supx∈C supn V n(x) < ∞, then there exists a constant κ̄ ∈ (0,∞) such that

(22)
1
t
Ex

[
V n(Xn(t))

]
+

1
t

∫ t

0

Ex

[
f(Xn(s))

]
ds ≤ 1

t
V n(x) + κ̄

for any n ∈ N , t ≥ 1 and x ∈ X.

(The author has corrected the range of variable t in Theorem 3.5 of [4] as above.)

Theorem A.2.2 (Theorem 3.2 of [4].)

Suppose that inequality (22) with f(x) = 1 + |x|p−1 holds for some p ∈ [2,∞). Then we
have

sup
n

∫
X

|x|p−1 πn
X(dx) < ∞.
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