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Abstract. Let A and B be positive operators and A \r B = A
1
2 (A− 1

2 BA− 1
2 )rA

1
2 is

a path going through A and B. The tangent of A \r B at r is given by Sr(A|B) =

A
1
2 (A− 1

2 BA− 1
2 )r(log A− 1

2 BA− 1
2 )A

1
2 and especially the case r = 0 is the relative op-

erator entropy. We can find the behavior of Sr(A|B), for r ∈ [n, n + 1], is similar
to the case r ∈ [0, 1]. So we can extend several relations known for r ∈ [0, 1] to
r ∈ [n, n + 1].

1 Introduction. In [11], Umegaki introduced the relative entropy as a noncommutative
version of the Kullback-Leibler entropy and Nakamura-Umegaki defined the operator en-
tropy in [9] as an extension of the entropy formulated by von Neumann. Our discssions are
based on their achievements.

Throughtout this paper, an operator means a bounded linear operator on a Hilbert
space H. A bounded operator T on H is said to be positive if (Tx, x) ≥ 0 for all x ∈ H
and denote T ≥ 0, and if T is invertible and positive, we denote T > 0 and call it a strictly
positive.

For fixed positive invertible operators A and B, we consider a path

A \r B = A
1
2 (A− 1

2 BA− 1
2 )rA

1
2 , r ∈ R,

which is going through A = A \0 B and B = A \1 B ([2], [3], [7] etc.). If 0 < r < 1, then
we denote this by A ]r B, the generalized operator geometric mean, the operator mean is
axiomatically given by Kubo-Ando [8]. Then we can give a tangent at r of this path by

Sr(A|B) = A
1
2 (A− 1

2 BA− 1
2 )r(log A− 1

2 BA− 1
2 )A

1
2 .

If r = 0, then S0(A|B) = A
1
2 (log A− 1

2 BA− 1
2 )A

1
2 = S(A|B), the relative operator entropy

which we introduced in [1] as a relative version of the operator entropy given by Nakamura-
Umegaki [9]. Furuta introduced Sr(A|B) in [4] and Yanagi, Kuriyama and Furuichi called
this the generalized relative operator entropy [12].

In section 2, we show several relations S(A|B) and Sr(A|B), for example, if r = 2n, n
is an integer, then S2n(A|B) = (BA−1)nS(A|B)(A−1B)n, etc..

The Tsallis relative operator entropy introduced by Furuichi-Yanagi-Kuriyama [12] is
given by
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Tr(A|B) =
A

1
2 (A− 1

2 BA− 1
2 )rA

1
2 − A

r
, for 0 < r ≤ 1,

that is,

Tr(A|B) =
A ]r B − A

r
, for r ∈ R, and lim

r→0
Tr(A|B) = S(A|B).

In section 3, we show the following essential relation for 0 < r < 1;

(∗) S(A|B) ≤ Tr(A|B) ≤ Sr(A|B) ≤ −T1−r(B|A) ≤ −S(B|A) = S1(A|B)

and similar phenomena to (∗) can be observed for n ≤ r ≤ n + 1, for an integer n.
In section 4, we try to extend the Bregman operator divergence

(∗∗) DFK(A|B) = B − A − S(A|B),

which is given by Petz [10]. Our proposal is to extend (∗∗) to

Dr(A|B) = B \−r A − A \r B − Sr(A|B).

Finally, we inspect the operator version of the Shannon inequality introduced by Furuta
[4].

0 ≥
n∑

i=1

S(Ai|Bi)

Moreover Yanagi, Kuriyama and Furuichi [12] improved it to

0 ≥
n∑

i=1

Tr(Ai|Bi) ≥
n∑

i=1

S(Ai|Bi),

for Ai, Bi > 0 with
∑n

i=1 Ai =
∑n

i=1 Bi = I. Related to this, we show

n∑
i=1

S(Ai|Bi) ≤
n∑

i=1

Tr(Ai|Bi) ≤
n∑

i=1

Sr(Ai|Bi) ≤ −
n∑

i=1

T1−r(Bi|Ai) ≤ −
n∑

i=1

S(Bi|Ai).

2 Derivative of the path A \r B. We introduced a path A \r B = A
1
2 (A− 1

2 BA− 1
2 )rA

1
2

for r ∈ R, which is going through A = A \0 B and B = A \1 B and if 0 < r < 1 we usually
denote by A ]r B, the power operator mean or generalized geometric operator mean. The
relative operator entropy S(A|B), we introduced in [1], is given by the derivative of A \r B
at r = 0. In [4], Furuta introduced the following Sr(A|B), r ∈ R, as a generalized form of
S(A|B).

Definition 1. For A > 0, B > 0 and r ∈ R, we give Sr(A|B) as follows:

Sr(A|B) = lim
ε→0

A \r+ε B − A \r B

ε
= A

1
2 (A− 1

2 BA− 1
2 )r(log A− 1

2 BA− 1
2 )A

1
2 ,

where A \r B = A
1
2 (A− 1

2 BA− 1
2 )rA

1
2 , r ∈ R, and if 0 ≤ r ≤ 1, A \r B = A ]r B.

As a special case, S0(A|B) = S(A|B) and S(A|I) = −A log A, the operator entropy [9].

Yanagi, Kuriyama and Furuichi [12] called Sr(A|B) the generalized relative operator
entropy. We have to note that Fr(x) = xr log x is not operator concave function except
r = 0.

For given positive operators A, B, if we put Φ(t) = A \t B, then the convexity of this
function is known, so the following theorem is natural and fundamental in our discussion.
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Theorem 1. For A > 0, B > 0, Sr(A|B) is monotone increasing for r ∈ R, and the
following holds.

(1) Sr(A|B) ≤ A \q B − A \r B

q − r
≤ Sq(A|B) for q, r ∈ R, q > r.

Especially, in the case r = 0 and 0 < q < 1, (1) is expressed as follows:

(2) S(A|B) ≤ A ]q B − A

q
= Tq(A|B) ≤ Sq(A|B).

To prove Theorem 1, we need the next Lemma.

Lemma 2. Let a > 0. Then the following holds for q, r ∈ R.

ar log a ≤ aq − ar

q − r
≤ aq log a, for q > r.

Since at is convex function, this is easily given, but we give an elementary proof.

Proof. We show this inequality as follows:

aq

ar
log

aq

ar
= −aq

ar
log

ar

aq
≥ −aq

ar
(
ar

aq
− 1) =

aq

ar
− 1 ≥ log

aq

ar
,

that is,
aq(log aq − log ar) ≥ aq − ar ≥ ar(log aq − log ar).

So we have
(q − r)aq log a ≥ aq − ar ≥ (q − r)ar log a.

Proof of Thorem 1. In Lemma 2, we can easily draw (1) replacing a by A− 1
2 BA− 1

2 and
multiplying A

1
2 to both sides, and (2) is a special case of (1).

Next, we prepare several properties of Sr(A|B) to show the results in the following
section, some of them are already shown in [4], [12] .

Lemma 3. A > 0, B > 0 and r ∈ R, n is an integer. Then Sr(A|B) has the following
properties:

(1) Sr(A|B) = −S1−r(B|A) = BSr−1(B−1|A−1)B = −AS−r(A−1|B−1)A,

(2) Sn(A|B) = (BA−1)nS(A|B) = S(A|B)(A−1B)n,

(3) S2n(A|B) = (BA−1)nS(A|B)(A−1B)n,

(4) S2n+1(A|B) = (BA−1)nS1(A|B)(A−1B)n.

Proof. (1) is given as follows:

Sr(A|B) = A
1
2 (A− 1

2 BA− 1
2 )r(log A− 1

2 BA− 1
2 )A

1
2

= −B
1
2 B− 1

2 A
1
2 (A

1
2 B−1A

1
2 )−r(log A

1
2 B−1A

1
2 )A

1
2 B− 1

2 B
1
2

= −B
1
2 (B− 1

2 AB− 1
2 )−r(log B− 1

2 AB− 1
2 )(B− 1

2 AB− 1
2 )B

1
2

= −B
1
2 (B− 1

2 AB− 1
2 )−r+1(log B− 1

2 AB− 1
2 )B

1
2 = −S−r+1(B|A),

or

= B
1
2 (B

1
2 A−1B

1
2 )r−1(log B

1
2 A−1B

1
2 )B

1
2

= BB− 1
2 (B

1
2 A−1B

1
2 )r−1(log B

1
2 A−1B

1
2 )B− 1

2 B = BSr−1(B−1|A−1)B.
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The last equation is shown by the similar way.
(2) is shown as follows:

Sn(A|B) = A
1
2 (A− 1

2 BA− 1
2 )n(log A− 1

2 BA− 1
2 )A

1
2

= (BA−1)nA
1
2 (log A− 1

2 BA− 1
2 )A

1
2 = (BA−1)nS(A|B)

and

Sn(A|B) = A
1
2 (A− 1

2 BA− 1
2 )n(log A− 1

2 BA− 1
2 )A

1
2

= A
1
2 (log A− 1

2 BA− 1
2 )(A− 1

2 BA− 1
2 )nA

1
2 = S(A|B)(A−1B)n.

We show (3) and (4) as follows:

S2n(A|B) = A
1
2 (A− 1

2 BA− 1
2 )2n(log A− 1

2 BA− 1
2 )A

1
2

= A
1
2 (A− 1

2 BA− 1
2 )n(log A− 1

2 BA− 1
2 )(A− 1

2 BA− 1
2 )nA

1
2

= (BA−1)nA
1
2 (log A− 1

2 BA− 1
2 )A

1
2 (A−1B)n = (BA−1)nS(A|B)(A−1B)n.

S2n+1(A|B) = A
1
2 (A− 1

2 BA− 1
2 )2n+1(log A− 1

2 BA− 1
2 )A

1
2

= A
1
2 (A− 1

2 BA− 1
2 )n(A− 1

2 BA− 1
2 )(log A− 1

2 BA− 1
2 )(A− 1

2 BA− 1
2 )nA

1
2

= (BA−1)nA
1
2 (A− 1

2 BA− 1
2 )(log A− 1

2 BA− 1
2 )A

1
2 (A−1B)n

= (BA−1)nS1(A|B)(A−1B)n.

Remark 1. We list up some special cases of Lemma 3;

(1) S1(A|B) = −S(B|A) = (BA−1)S(A|B) = S(A|B)(A−1B) = BS(B−1|A−1)B,

(2) S2(A|B) = BA−1S(A|B)A−1B,

(3) S3(A|B) = BA−1S1(A|B)A−1B,

(4) S−1(A|B) = BS−2(B−1|A−1)B.

3 Tsallis relative operator entropy and Sr(A|B). First, we exhibit fundamental re-
lations which are essential in our following discussions.

Theorem 4. Let A > 0, B > 0. Then the following hold;
(1) for 0 < r < 1,

(∗) S(A|B) ≤ Tr(A|B) ≤ Sr(A|B) ≤ −T1−r(B|A) ≤ −S(B|A) = S1(A|B).

(2) for 1 < r < 2,

S1(A|B) ≤ A \r B − B

r − 1
≤ Sr(A|B) ≤ A \2 B − A \r B

2 − r
≤ S2(A|B).

or equivalently,
(2’)

S(B−1|A−1) ≤ Tr−1(B−1|A−1) ≤ Sr−1(B−1|A−1) ≤ −T2−r(A−1|B−1) ≤ −S(A−1|B−1).
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Proof of Theorem 4. (1) and (2) are easy results of Theorem 1, so we show (2’). By (1) in
Lemma 3, we have

S1(A|B) = BS(B−1|A−1)B, Sr(A|B) = BSr−1(B−1|A−1)B, S2(A|B) = BS1(B−1|A−1)B

and A \r B = B \1−r A = B
1
2 (B− 1

2 AB− 1
2 )1−rB

1
2 = B(B−1 ]r−1 A−1)B.

So we obtaine (2’).

General cases are given by the use of (2) in Lemma 3 as follows:

Theorem 5. Let A > 0, B > 0 and n < r < n + 1 for an integer n. Then the following
hold and they are equivalent:

(1) Sn(A|B) ≤ A \r B − A \n B

r − n
≤ Sr(A|B) ≤ A \n+1B − A \r B

n + 1 − r
≤ Sn+1(A|B),

(2) (BA−1)nS(A|B) ≤ (BA−1)nTr−n(A|B) ≤ (BA−1)nSr−n(A|B)
≤ −(BA−1)nTn+1−r(B|A) ≤ −(BA−1)nS(B|A) = (BA−1)nS1(A|B),

(3) S(A|B)(A−1B)n ≤ Tr−n(A|B)(A−1B)n ≤ Sr−n(A|B)(A−1B)n

≤ −Tn+1−r(B|A)(A−1B)n ≤ −S(B|A)(A−1B)n = S1(A|B)(A−1B)n.

To prove this theorem, we prepare the next lemma concerning to Tr(A|B).

Lemma 6. For A > 0, B > 0, r ∈ R and an integer n,

(1)
A \r B − A \n B

r − n
= (BA−1)nTr−n(A|B) = Tr−n(A|B)(A−1B)n,

(2)
A \n+1B − A \r B

n + 1 − r
= −(BA−1)nTn+1−r(B|A) = −Tn+1−r(B|A)(A−1B)n,

(3)
A \r B − A \2n B

r − 2n
= (BA−1)nTr−2n(A|B)(A−1B)n,

(4)
A \2n+1 B − A \r B

2n + 1 − r
= −(BA−1)nT2n+1−r(B|A)(A−1B)n,

(5) Sr(A|B) = (BA−1)nSr−n(A|B) = Sr−n(A|B)(A−1B)n,

(6) Sr(A|B) = (BA−1)nSr−2n(A|B)(A−1B)n.

Proof. (1) and (2) are shown as follows:

A \r B − A \n B

r − n
=

A
1
2 (A− 1

2 BA− 1
2 )n{(A− 1

2 BA− 1
2 )r−n − I}A 1

2

r − n

=
(BA−1)nA

1
2 {(A− 1

2 BA− 1
2 )r−n − I}A 1

2

r − n

=
(BA−1)n(A ]r−n B − A)

r − n
= (BA−1)nTr−n(A|B),
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and

A \n+1B − A \r B

n + 1 − r
=

A
1
2 (A− 1

2 BA− 1
2 )n+1A

1
2 − A

1
2 (A− 1

2 BA− 1
2 )rA

1
2

n + 1 − r

=
A

1
2 (A− 1

2 BA− 1
2 )n{A− 1

2 BA− 1
2 − (A− 1

2 BA− 1
2 )r−n}A 1

2

n + 1 − r

=
(BA−1)nA

1
2 {A− 1

2 BA− 1
2 − (A− 1

2 BA− 1
2 )r−n}A 1

2

n + 1 − r

=
(BA−1)n(B − A ]r−n B)

n + 1 − r
=

(BA−1)n(B − B ]n+1−r A)
n + 1 − r

= −(BA−1)nTn+1−r(B|A)

The rest can be obtained by a similar method to the proof of Lemma 3.

Proof of Theorem 5. The first half inequalities of (1) are obtained by replacing r = n and
q = r in Theorem 1 (1), and the second ones are the case q = n + 1.

Equivalence among (1), (2) and (3) is obtained by Lemma 3 and Lemma 6.

Theorem 5 says that the same form as that of Theorem 4 comes over and over again
like waves, so we want to call it a waving property. More precisely, we have the following:

Theorem 7. Let A > 0, B > 0. Then the following hold.
(1) In the case where 2n ≤ r ≤ 2n + 1,

S2n(A|B) ≤ A \r B − A \2n B

r − 2n
≤ Sr(A|B) ≤ A \2n+1 B − A \r B

2n + 1 − r
≤ S2n+1(A|B),

or equivalently,

(BA−1)nS(A|B)(A−1B)n ≤ (BA−1)nTr−2n(A|B)(A−1B)n ≤ (BA−1)nSr−2n(A|B)(A−1B)n

≤ −(BA−1)nT2n+1−r(B|A)(A−1B)n ≤ (BA−1)nS1(A|B)(A−1B)n.

(2) In the case where 2n + 1 ≤ r ≤ 2(n + 1),

S2n+1(A|B) ≤ A \r B − A \2n+1 B

r − (2n + 1)
≤ Sr(A|B) ≤

A \2(n+1) B − A \r B

2(n + 1) − r
≤ S2(n+1)(A|B),

or equivalently,

(BA−1)nS1(A|B)(A−1B)n ≤ (BA−1)n(A \r−2n B − B)(A−1B)n

r − (2n + 1)
≤ (BA−1)nSr−2n(A|B)(A−1B)n

≤ (BA−1)n(A \2 B − A \r−2n B)(A−1B)n

2(n + 1) − r
≤ (BA−1)nS2(A|B)(A−1B)n.

This is also equivalent to the following form:

(BA−1)nBS(B−1|A−1)B(A−1B)n ≤ (BA−1)nBTr−(2n+1)(B−1|A−1)B(A−1B)n

≤ (BA−1)nBSr−(2n+1)(B−1|A−1)B(A−1B)n

≤ −(BA−1)nBT2(n+1)−r(A−1|B−1)B(A−1B)n ≤ (BA−1)nBS1(B−1|A−1)B(A−1B)n.
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Proof. We obtain Theorem 7 by using Theorem 5, Lemma 6 and the following equations.

A \r B − A \2n+1 B = (BA−1)n(A \r−2n B − B)(A−1B)n,

A \2(n+1) B − A \r B = (BA−1)n(A \2 B − A \r−2n A)(A−1B)n,

A \r−2n B − B = B(B−1 \r−(2n+1) A−1 − B−1)B,

A \2 B − A \r−2n B = −B(A−1 \2(n+1)−r B−1 − A−1)B.

4 Operator divergence. Petz introduced the Bregman operator divergence [10] : For
an operator convex function F and positive (invertible) operators A and B,

D[F ](A|B) = F (A) − F (B) − lim
t→+0

F (B + t(A − B)) − F (B)
t

= lim
t→+0

tF (A) + (1 − t)F (B) − F (tA + (1 − t)B)
t

≥ 0.

By hard calculation, he gave a nice representation of D[F ]. For F (x) = x log x and density
matrices A and B,

TrD[x log x](A|B) = TrA(log A − log B) = s(A|B),

the Umegaki relative entropy [11]. As a slightly modified form of S(A|B), Petz gives also
an operator divergence

DFK(A, B) = B − A − S(A|B),

whose non negativity is assured by

S(A|B) = A
1
2 (log A− 1

2 BA− 1
2 )A

1
2 ≤ A

1
2 (A− 1

2 BA− 1
2 − I)A

1
2 = B − A.

We may generalize DFK(A,B) as follows:

Dr(A, B) = A \r+1 B − A \r B − Sr(A|B) = B \−r A − A \r B − Sr(A|B),

particularly DFK(A, B) = D0(A, B). The following property holds by Theorem 1 and
Lemma 6.

Theorem 8. Let A and B be positive invertible operators and r ∈ R. Then

Dr(A, B) ≥ 0.

Corollary 9. Let n be an integer. Then

(1) Dn(A, B) = (BA−1)nD0(A, B) = D0(A, B)(A−1B)n ≥ 0,

(2) D2n(A, B) = (BA−1)nD0(A, B)(A−1B)n ≥ 0,

(3) D2n+1(A, B) = (BA−1)nBD0(B−1, A−1)B(A−1B)n ≥ 0.
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5 Shannon inequality. Shannon inequality is given as follows:

0 ≥
n∑

i=1

ai log
bi

ai

for ai, bi > 0 with
∑n

i=1 ai =
∑n

i=1 bi = 1. Furuta [4] introduced an operator version for
the Shannon inequality, that is,

0 ≥
n∑

i=1

S(Ai|Bi)

for Ai, Bi > 0 with
∑n

i=1 Ai =
∑n

i=1 Bi = I.

Definition 2. Let {A1, · · · , An} and {B1, · · · , Bn} be sequences of strictly positive op-
erators with

∑n
i=1 Ai =

∑n
i=1 Bi = I. We give the operator versions of relative entropy,

Rényi’s relative entropy, Tsallis relative entropy and Sr((Ai), (Bi)) as follows:

S((Ai), (Bi)) =
n∑

i=1

S(Ai|Bi),

Ir((Ai), (Bi)) =
1
r

log
n∑

i=1

Ai ]r Bi,

Tr((Ai), (Bi)) =
n∑

i=1

Ai ]r Bi − Ai

r

and

Sr((Ai), (Bi)) =
n∑

i=1

Sr(Ai|Bi).

Among these quantities, the following inequalities hold.

Theorem 10. For sequences of positive operators {A1, · · · , An} and {B1, · · · , Bn} with∑n
i=1 Ai =

∑n
i=1 Bi = I,

0 ≥ Tr((Ai), (Bi)) ≥ Ir((Ai), (Bi)) ≥ S((Ai), (Bi)),

0 ≤ −T1−r((Ai), (Bi)) ≤ −I1−r((Ai), (Bi)) ≤ S1((Ai), (Bi))

and
Tr((Ai), (Bi)) ≤ Sr((Ai), (Bi)) ≤ −T1−r((Bi), (Ai))

hold for 0 < r < 1.

To prove Theorem 10, we use the next;

xr − 1
r

≤ x − 1, for 0 < r < 1,

and the following Jensen’s operator inequality [6].

Theorem 11 (Jensen’s operator inequality(cf. [4], [5], [6]).). Let f(x) be operator concave
function and {Cj}n

j=1 be operators with
∑n

j=1 C∗
j Cj = I, then

f(
n∑

i=1

C∗
j AjCj) ≥

n∑
i=1

C∗
j f(Aj)Cj .
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Proof of Theorem 10.

Ir((Ai), (Bi)) =
1
r

log
n∑

i=1

Ai ]r Bi =
1
r

log
n∑

i=1

A
1
2
i (A− 1

2
i BiA

− 1
2

i )rA
1
2
i

≥ 1
r

n∑
i=1

A
1
2
i log(A− 1

2
i BiA

− 1
2

i )rA
1
2
i =

n∑
i=1

A
1
2
i log(A− 1

2
i BiA

− 1
2

i )A
1
2
i

= S((Ai), (Bi)).

And

Ir((Ai), (Bi)) =
1
r

log
n∑

i=1

Ai ]r Bi ≤ 1
r
(

n∑
i=1

Ai ]r Bi − I)

=
1
r

n∑
i=1

(Ai ]r Bi − Ai) =
n∑

i=1

Ai ]r Bi − Ai

r
= Tr((Ai), (Bi)).

Tr((Ai), (Bi)) =
n∑

i=1

Ai ]r Bi − Ai

r
=

n∑
i=1

A
1
2
i {(A

− 1
2

i BiA
− 1

2
i )r − I}A

1
2
i

r

≤
n∑

i=1

A
1
2
i (A− 1

2
i BiA

− 1
2

i − I)A
1
2
i =

n∑
i=1

(Bi − Ai) = 0.

The second relation is shown by similar methods to the above. By Theorem 4, we can
obtain the final inequality.
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