RELATIVE OPERATOR ENTROPY, OPERATOR DIVERGENCE AND SHANNON INEQUALITY

Dedicated to the memory of Professor Hisaharu Umegaki

Hiroshi Isa ${ }^{(1)}$, Masatoshi $\mathrm{Ito}^{(2)}$, Eizaburo Kamei ${ }^{(3)}$, Hiroaki Tohyama ${ }^{(4)}$ and Masayuki Watanabe ${ }^{(5)}$

Received September 27, 2012; revised October 26, 2012

Abstract

Let A and B be positive operators and $A \natural_{r} B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{r} A^{\frac{1}{2}}$ is a path going through A and B. The tangent of $A \natural_{r} B$ at r is given by $S_{r}(A \mid B)=$ $A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{r}\left(\log A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right) A^{\frac{1}{2}}$ and especially the case $r=0$ is the relative operator entropy. We can find the behavior of $S_{r}(A \mid B)$, for $r \in[n, n+1]$, is similar to the case $r \in[0,1]$. So we can extend several relations known for $r \in[0,1]$ to $r \in[n, n+1]$.

1 Introduction. In [11], Umegaki introduced the relative entropy as a noncommutative version of the Kullback-Leibler entropy and Nakamura-Umegaki defined the operator entropy in [9] as an extension of the entropy formulated by von Neumann. Our discssions are based on their achievements.

Throughtout this paper, an operator means a bounded linear operator on a Hilbert space H. A bounded operator T on H is said to be positive if $(T x, x) \geq 0$ for all $x \in H$ and denote $T \geq 0$, and if T is invertible and positive, we denote $T>0$ and call it a strictly positive.

For fixed positive invertible operators A and B, we consider a path

$$
A \bigsqcup_{r} B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{r} A^{\frac{1}{2}}, r \in \mathbf{R},
$$

which is going through $A=A$ দ̆ B and $B=A$ দ1 B ([2], [3], [7] etc.). If $0<r<1$, then we denote this by $A \sharp_{r} B$, the generalized operator geometric mean, the operator mean is axiomatically given by Kubo-Ando [8]. Then we can give a tangent at r of this path by

$$
S_{r}(A \mid B)=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{r}\left(\log A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right) A^{\frac{1}{2}}
$$

If $r=0$, then $S_{0}(A \mid B)=A^{\frac{1}{2}}\left(\log A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right) A^{\frac{1}{2}}=S(A \mid B)$, the relative operator entropy which we introduced in [1] as a relative version of the operator entropy given by NakamuraUmegaki [9]. Furuta introduced $S_{r}(A \mid B)$ in [4] and Yanagi, Kuriyama and Furuichi called this the generalized relative operator entropy [12].

In section 2, we show several relations $S(A \mid B)$ and $S_{r}(A \mid B)$, for example, if $r=2 n$, n is an integer, then $S_{2 n}(A \mid B)=\left(B A^{-1}\right)^{n} S(A \mid B)\left(A^{-1} B\right)^{n}$, etc..

The Tsallis relative operator entropy introduced by Furuichi-Yanagi-Kuriyama [12] is given by

[^0]$$
T_{r}(A \mid B)=\frac{A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{r} A^{\frac{1}{2}}-A}{r}, \quad \text { for } 0<r \leq 1
$$
that is,
$$
T_{r}(A \mid B)=\frac{A \not \sharp_{r} B-A}{r}, \text { for } r \in \mathbf{R}, \quad \text { and } \quad \lim _{r \rightarrow 0} T_{r}(A \mid B)=S(A \mid B) \text {. }
$$

In section 3, we show the following essential relation for $0<r<1$;

$$
\begin{equation*}
S(A \mid B) \leq T_{r}(A \mid B) \leq S_{r}(A \mid B) \leq-T_{1-r}(B \mid A) \leq-S(B \mid A)=S_{1}(A \mid B) \tag{*}
\end{equation*}
$$

and similar phenomena to $(*)$ can be observed for $n \leq r \leq n+1$, for an integer n.
In section 4, we try to extend the Bregman operator divergence

$$
\begin{equation*}
D_{F K}(A \mid B)=B-A-S(A \mid B) \tag{**}
\end{equation*}
$$

which is given by Petz [10]. Our proposal is to extend $(* *)$ to

$$
D_{r}(A \mid B)=B \natural_{-r} A-A \natural_{r} B-S_{r}(A \mid B) .
$$

Finally, we inspect the operator version of the Shannon inequality introduced by Furuta [4].

$$
0 \geq \sum_{i=1}^{n} S\left(A_{i} \mid B_{i}\right)
$$

Moreover Yanagi, Kuriyama and Furuichi [12] improved it to

$$
0 \geq \sum_{i=1}^{n} T_{r}\left(A_{i} \mid B_{i}\right) \geq \sum_{i=1}^{n} S\left(A_{i} \mid B_{i}\right)
$$

for $A_{i}, B_{i}>0$ with $\sum_{i=1}^{n} A_{i}=\sum_{i=1}^{n} B_{i}=I$. Related to this, we show

$$
\sum_{i=1}^{n} S\left(A_{i} \mid B_{i}\right) \leq \sum_{i=1}^{n} T_{r}\left(A_{i} \mid B_{i}\right) \leq \sum_{i=1}^{n} S_{r}\left(A_{i} \mid B_{i}\right) \leq-\sum_{i=1}^{n} T_{1-r}\left(B_{i} \mid A_{i}\right) \leq-\sum_{i=1}^{n} S\left(B_{i} \mid A_{i}\right)
$$

2 Derivative of the path $A \bigsqcup_{r} B$. We introduced a path $A \bigsqcup_{r} B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{r} A^{\frac{1}{2}}$ for $r \in \mathbf{R}$, which is going through $A=A \natural_{0} B$ and $B=A \natural_{1} B$ and if $0<r<1$ we usually denote by $A \sharp_{r} B$, the power operator mean or generalized geometric operator mean. The relative operator entropy $S(A \mid B)$, we introduced in [1], is given by the derivative of $A \natural_{r} B$ at $r=0$. In [4], Furuta introduced the following $S_{r}(A \mid B), r \in \mathbf{R}$, as a generalized form of $S(A \mid B)$.
Definition 1. For $A>0, B>0$ and $r \in \mathbf{R}$, we give $S_{r}(A \mid B)$ as follows:

$$
S_{r}(A \mid B)=\lim _{\epsilon \rightarrow 0} \frac{A \bigsqcup_{r+\epsilon} B-A দ_{r} B}{\epsilon}=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{r}\left(\log A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right) A^{\frac{1}{2}}
$$

where $A \bigsqcup_{r} B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{r} A^{\frac{1}{2}}, \quad r \in \mathbf{R}$, and if $0 \leq r \leq 1, A \natural_{r} B=A \not \sharp_{r} B$.
As a special case, $S_{0}(A \mid B)=S(A \mid B)$ and $S(A \mid I)=-A \log A$, the operator entropy [9].
Yanagi, Kuriyama and Furuichi [12] called $S_{r}(A \mid B)$ the generalized relative operator entropy. We have to note that $F_{r}(x)=x^{r} \log x$ is not operator concave function except $r=0$.

For given positive operators A, B, if we put $\Phi(t)=A \natural_{t} B$, then the convexity of this function is known, so the following theorem is natural and fundamental in our discussion.

Theorem 1. For $A>0, B>0, S_{r}(A \mid B)$ is monotone increasing for $r \in \mathbf{R}$, and the following holds.

$$
\begin{equation*}
S_{r}(A \mid B) \leq \frac{A \natural_{q} B-A \natural_{r} B}{q-r} \leq S_{q}(A \mid B) \quad \text { for } q, r \in \mathbf{R}, q>r \text {. } \tag{1}
\end{equation*}
$$

Especially, in the case $r=0$ and $0<q<1$, (1) is expressed as follows:

$$
\begin{equation*}
S(A \mid B) \leq \frac{A \sharp_{q} B-A}{q}=T_{q}(A \mid B) \leq S_{q}(A \mid B) . \tag{2}
\end{equation*}
$$

To prove Theorem 1, we need the next Lemma.
Lemma 2. Let $a>0$. Then the following holds for $q, r \in \mathbf{R}$.

$$
a^{r} \log a \leq \frac{a^{q}-a^{r}}{q-r} \leq a^{q} \log a, \quad \text { for } \quad q>r
$$

Since a^{t} is convex function, this is easily given, but we give an elementary proof.
Proof. We show this inequality as follows:

$$
\frac{a^{q}}{a^{r}} \log \frac{a^{q}}{a^{r}}=-\frac{a^{q}}{a^{r}} \log \frac{a^{r}}{a^{q}} \geq-\frac{a^{q}}{a^{r}}\left(\frac{a^{r}}{a^{q}}-1\right)=\frac{a^{q}}{a^{r}}-1 \geq \log \frac{a^{q}}{a^{r}},
$$

that is,

$$
a^{q}\left(\log a^{q}-\log a^{r}\right) \geq a^{q}-a^{r} \geq a^{r}\left(\log a^{q}-\log a^{r}\right)
$$

So we have

$$
(q-r) a^{q} \log a \geq a^{q}-a^{r} \geq(q-r) a^{r} \log a
$$

Proof of Thorem 1. In Lemma 2, we can easily draw (1) replacing a by $A^{-\frac{1}{2}} B A^{-\frac{1}{2}}$ and multiplying $A^{\frac{1}{2}}$ to both sides, and (2) is a special case of (1).

Next, we prepare several properties of $S_{r}(A \mid B)$ to show the results in the following section, some of them are already shown in [4], [12].
Lemma 3. $A>0, B>0$ and $r \in R$, n is an integer. Then $S_{r}(A \mid B)$ has the following properties:

$$
\begin{gather*}
S_{r}(A \mid B)=-S_{1-r}(B \mid A)=B S_{r-1}\left(B^{-1} \mid A^{-1}\right) B=-A S_{-r}\left(A^{-1} \mid B^{-1}\right) A \tag{1}\\
S_{n}(A \mid B)=\left(B A^{-1}\right)^{n} S(A \mid B)=S(A \mid B)\left(A^{-1} B\right)^{n} \tag{2}\\
S_{2 n}(A \mid B)=\left(B A^{-1}\right)^{n} S(A \mid B)\left(A^{-1} B\right)^{n} \tag{3}\\
S_{2 n+1}(A \mid B)=\left(B A^{-1}\right)^{n} S_{1}(A \mid B)\left(A^{-1} B\right)^{n} \tag{4}
\end{gather*}
$$

Proof. (1) is given as follows:

$$
\begin{aligned}
S_{r}(A \mid B) & =A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{r}\left(\log A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right) A^{\frac{1}{2}} \\
& =-B^{\frac{1}{2}} B^{-\frac{1}{2}} A^{\frac{1}{2}}\left(A^{\frac{1}{2}} B^{-1} A^{\frac{1}{2}}\right)^{-r}\left(\log A^{\frac{1}{2}} B^{-1} A^{\frac{1}{2}}\right) A^{\frac{1}{2}} B^{-\frac{1}{2}} B^{\frac{1}{2}} \\
& =-B^{\frac{1}{2}}\left(B^{-\frac{1}{2}} A B^{-\frac{1}{2}}\right)^{-r}\left(\log B^{-\frac{1}{2}} A B^{-\frac{1}{2}}\right)\left(B^{-\frac{1}{2}} A B^{-\frac{1}{2}}\right) B^{\frac{1}{2}} \\
& =-B^{\frac{1}{2}}\left(B^{-\frac{1}{2}} A B^{-\frac{1}{2}}\right)^{-r+1}\left(\log B^{-\frac{1}{2}} A B^{-\frac{1}{2}}\right) B^{\frac{1}{2}}=-S_{-r+1}(B \mid A) \\
& \text { or } \\
& =B^{\frac{1}{2}}\left(B^{\frac{1}{2}} A^{-1} B^{\frac{1}{2}}\right)^{r-1}\left(\log B^{\frac{1}{2}} A^{-1} B^{\frac{1}{2}}\right) B^{\frac{1}{2}} \\
& =B B^{-\frac{1}{2}}\left(B^{\frac{1}{2}} A^{-1} B^{\frac{1}{2}}\right)^{r-1}\left(\log B^{\frac{1}{2}} A^{-1} B^{\frac{1}{2}}\right) B^{-\frac{1}{2}} B=B S_{r-1}\left(B^{-1} \mid A^{-1}\right) B
\end{aligned}
$$

The last equation is shown by the similar way.
(2) is shown as follows:

$$
\begin{aligned}
& S_{n}(A \mid B)=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{n}\left(\log A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right) A^{\frac{1}{2}} \\
& \quad=\left(B A^{-1}\right)^{n} A^{\frac{1}{2}}\left(\log A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right) A^{\frac{1}{2}}=\left(B A^{-1}\right)^{n} S(A \mid B)
\end{aligned}
$$

and

$$
\begin{aligned}
S_{n}(A \mid B)=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{n} & \left(\log A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right) A^{\frac{1}{2}} \\
& =A^{\frac{1}{2}}\left(\log A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{n} A^{\frac{1}{2}}=S(A \mid B)\left(A^{-1} B\right)^{n} .
\end{aligned}
$$

We show (3) and (4) as follows:

$$
\begin{aligned}
S_{2 n}(A \mid B) & =A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{2 n}\left(\log A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right) A^{\frac{1}{2}} \\
& =A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{n}\left(\log A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{n} A^{\frac{1}{2}} \\
& =\left(B A^{-1}\right)^{n} A^{\frac{1}{2}}\left(\log A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right) A^{\frac{1}{2}}\left(A^{-1} B\right)^{n}=\left(B A^{-1}\right)^{n} S(A \mid B)\left(A^{-1} B\right)^{n} . \\
S_{2 n+1}(A \mid B) & =A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{2 n+1}\left(\log A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right) A^{\frac{1}{2}} \\
& =A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{n}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)\left(\log A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{n} A^{\frac{1}{2}} \\
& =\left(B A^{-1}\right)^{n} A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)\left(\log A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right) A^{\frac{1}{2}}\left(A^{-1} B\right)^{n} \\
& =\left(B A^{-1}\right)^{n} S_{1}(A \mid B)\left(A^{-1} B\right)^{n} .
\end{aligned}
$$

Remark 1. We list up some special cases of Lemma 3;

$$
\begin{equation*}
S_{1}(A \mid B)=-S(B \mid A)=\left(B A^{-1}\right) S(A \mid B)=S(A \mid B)\left(A^{-1} B\right)=B S\left(B^{-1} \mid A^{-1}\right) B \tag{1}
\end{equation*}
$$

$$
\begin{gather*}
S_{2}(A \mid B)=B A^{-1} S(A \mid B) A^{-1} B \tag{2}\\
S_{3}(A \mid B)=B A^{-1} S_{1}(A \mid B) A^{-1} B \tag{3}
\end{gather*}
$$

$$
\begin{equation*}
S_{-1}(A \mid B)=B S_{-2}\left(B^{-1} \mid A^{-1}\right) B \tag{4}
\end{equation*}
$$

3 Tsallis relative operator entropy and $S_{r}(A \mid B)$. First, we exhibit fundamental relations which are essential in our following discussions.

Theorem 4. Let $A>0, B>0$. Then the following hold;
(1) for $0<r<1$,
$(*) \quad S(A \mid B) \leq T_{r}(A \mid B) \leq S_{r}(A \mid B) \leq-T_{1-r}(B \mid A) \leq-S(B \mid A)=S_{1}(A \mid B)$.
(2) for $1<r<2$,

$$
S_{1}(A \mid B) \leq \frac{A \natural_{r} B-B}{r-1} \leq S_{r}(A \mid B) \leq \frac{A দ_{2} B-A দ_{r} B}{2-r} \leq S_{2}(A \mid B) .
$$

or equivalently,
(2')

$$
S\left(B^{-1} \mid A^{-1}\right) \leq T_{r-1}\left(B^{-1} \mid A^{-1}\right) \leq S_{r-1}\left(B^{-1} \mid A^{-1}\right) \leq-T_{2-r}\left(A^{-1} \mid B^{-1}\right) \leq-S\left(A^{-1} \mid B^{-1}\right)
$$

Proof of Theorem 4. (1) and (2) are easy results of Theorem 1, so we show (2'). By (1) in Lemma 3, we have

$$
\begin{gathered}
S_{1}(A \mid B)=B S\left(B^{-1} \mid A^{-1}\right) B, S_{r}(A \mid B)=B S_{r-1}\left(B^{-1} \mid A^{-1}\right) B, S_{2}(A \mid B)=B S_{1}\left(B^{-1} \mid A^{-1}\right) B \\
\text { and } A দ_{r} B=B দ_{1-r} A=B^{\frac{1}{2}}\left(B^{-\frac{1}{2}} A B^{-\frac{1}{2}}\right)^{1-r} B^{\frac{1}{2}}=B\left(B^{-1} \not \sharp_{r-1} A^{-1}\right) B .
\end{gathered}
$$

So we obtaine (2').
General cases are given by the use of (2) in Lemma 3 as follows:
Theorem 5. Let $A>0, B>0$ and $n<r<n+1$ for an integer n. Then the following hold and they are equivalent:
(1) $\quad S_{n}(A \mid B) \leq \frac{A \natural_{r} B-A \natural_{n} B}{r-n} \leq S_{r}(A \mid B) \leq \frac{A \natural_{n+1} B-A \natural_{r} B}{n+1-r} \leq S_{n+1}(A \mid B)$,
(2) $\left(B A^{-1}\right)^{n} S(A \mid B) \leq\left(B A^{-1}\right)^{n} T_{r-n}(A \mid B) \leq\left(B A^{-1}\right)^{n} S_{r-n}(A \mid B)$

$$
\leq-\left(B A^{-1}\right)^{n} T_{n+1-r}(B \mid A) \leq-\left(B A^{-1}\right)^{n} S(B \mid A)=\left(B A^{-1}\right)^{n} S_{1}(A \mid B)
$$

(3) $\quad S(A \mid B)\left(A^{-1} B\right)^{n} \leq T_{r-n}(A \mid B)\left(A^{-1} B\right)^{n} \leq S_{r-n}(A \mid B)\left(A^{-1} B\right)^{n}$

$$
\leq \quad-T_{n+1-r}(B \mid A)\left(A^{-1} B\right)^{n} \leq-S(B \mid A)\left(A^{-1} B\right)^{n}=S_{1}(A \mid B)\left(A^{-1} B\right)^{n}
$$

To prove this theorem, we prepare the next lemma concerning to $T_{r}(A \mid B)$.

Lemma 6. For $A>0, B>0, r \in \mathbf{R}$ and an integer n,

$$
\begin{gather*}
\frac{A \bigsqcup_{r} B-A দ_{n} B}{r-n}=\left(B A^{-1}\right)^{n} T_{r-n}(A \mid B)=T_{r-n}(A \mid B)\left(A^{-1} B\right)^{n}, \tag{1}\\
\frac{A \bigsqcup_{n+1} B-A দ_{r} B}{n+1-r}=-\left(B A^{-1}\right)^{n} T_{n+1-r}(B \mid A)=-T_{n+1-r}(B \mid A)\left(A^{-1} B\right)^{n}, \\
\frac{A \bigsqcup_{r} B-A দ_{2 n} B}{r-2 n}=\left(B A^{-1}\right)^{n} T_{r-2 n}(A \mid B)\left(A^{-1} B\right)^{n}, \\
\frac{A দ_{2 n+1} B-A দ_{r} B}{2 n+1-r}=-\left(B A^{-1}\right)^{n} T_{2 n+1-r}(B \mid A)\left(A^{-1} B\right)^{n}, \tag{4}\\
S_{r}(A \mid B)=\left(B A^{-1}\right)^{n} S_{r-n}(A \mid B)=S_{r-n}(A \mid B)\left(A^{-1} B\right)^{n}, \tag{5}\\
S_{r}(A \mid B)=\left(B A^{-1}\right)^{n} S_{r-2 n}(A \mid B)\left(A^{-1} B\right)^{n} . \tag{6}
\end{gather*}
$$

Proof. (1) and (2) are shown as follows:

$$
\begin{aligned}
\frac{A দ_{r} B-A দ_{n} B}{r-n} & =\frac{A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{n}\left\{\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{r-n}-I\right\} A^{\frac{1}{2}}}{r-n} \\
& =\frac{\left(B A^{-1}\right)^{n} A^{\frac{1}{2}}\left\{\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{r-n}-I\right\} A^{\frac{1}{2}}}{r-n} \\
& =\frac{\left(B A^{-1}\right)^{n}\left(A \not \sharp_{r-n} B-A\right)}{r-n}=\left(B A^{-1}\right)^{n} T_{r-n}(A \mid B),
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{A \bigsqcup_{n+1} B-A \bigsqcup_{r} B}{n+1-r} & =\frac{A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{n+1} A^{\frac{1}{2}}-A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{r} A^{\frac{1}{2}}}{n+1-r} \\
& =\frac{A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{n}\left\{A^{-\frac{1}{2}} B A^{-\frac{1}{2}}-\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{r-n}\right\} A^{\frac{1}{2}}}{n+1-r} \\
& =\frac{\left(B A^{-1}\right)^{n} A^{\frac{1}{2}}\left\{A^{-\frac{1}{2}} B A^{-\frac{1}{2}}-\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{r-n}\right\} A^{\frac{1}{2}}}{n+1-r} \\
& =\frac{\left(B A^{-1}\right)^{n}\left(B-A \not \sharp_{r-n} B\right)}{n+1-r}=\frac{\left(B A^{-1}\right)^{n}\left(B-B \not \sharp_{n+1-r} A\right)}{n+1-r} \\
& =-\left(B A^{-1}\right)^{n} T_{n+1-r}(B \mid A)
\end{aligned}
$$

The rest can be obtained by a similar method to the proof of Lemma 3.
Proof of Theorem 5. The first half inequalities of (1) are obtained by replacing $r=n$ and $q=r$ in Theorem 1 (1), and the second ones are the case $q=n+1$.

Equivalence among (1), (2) and (3) is obtained by Lemma 3 and Lemma 6.
Theorem 5 says that the same form as that of Theorem 4 comes over and over again like waves, so we want to call it a waving property. More precisely, we have the following:

Theorem 7. Let $A>0, B>0$. Then the following hold.
(1) In the case where $2 n \leq r \leq 2 n+1$,

$$
S_{2 n}(A \mid B) \leq \frac{A \natural_{r} B-A \natural_{2 n} B}{r-2 n} \leq S_{r}(A \mid B) \leq \frac{A \natural_{2 n+1} B-A দ_{r} B}{2 n+1-r} \leq S_{2 n+1}(A \mid B),
$$

or equivalently,

$$
\begin{aligned}
\left(B A^{-1}\right)^{n} S(A \mid B)\left(A^{-1} B\right)^{n} & \leq\left(B A^{-1}\right)^{n} T_{r-2 n}(A \mid B)\left(A^{-1} B\right)^{n} \leq\left(B A^{-1}\right)^{n} S_{r-2 n}(A \mid B)\left(A^{-1} B\right)^{n} \\
& \leq-\left(B A^{-1}\right)^{n} T_{2 n+1-r}(B \mid A)\left(A^{-1} B\right)^{n} \leq\left(B A^{-1}\right)^{n} S_{1}(A \mid B)\left(A^{-1} B\right)^{n}
\end{aligned}
$$

(2) In the case where $2 n+1 \leq r \leq 2(n+1)$,
$S_{2 n+1}(A \mid B) \leq \frac{A \natural_{r} B-A \natural_{2 n+1} B}{r-(2 n+1)} \leq S_{r}(A \mid B) \leq \frac{A \natural_{2(n+1)} B-A \natural_{r} B}{2(n+1)-r} \leq S_{2(n+1)}(A \mid B)$,
or equivalently,

$$
\begin{aligned}
& \left(B A^{-1}\right)^{n} S_{1}(A \mid B)\left(A^{-1} B\right)^{n} \leq \frac{\left(B A^{-1}\right)^{n}\left(A \natural_{r-2 n} B-B\right)\left(A^{-1} B\right)^{n}}{r-(2 n+1)} \\
\leq & \left(B A^{-1}\right)^{n} S_{r-2 n}(A \mid B)\left(A^{-1} B\right)^{n} \\
\leq & \frac{\left(B A^{-1}\right)^{n}\left(A \natural_{2} B-A \natural_{r-2 n} B\right)\left(A^{-1} B\right)^{n}}{2(n+1)-r} \leq\left(B A^{-1}\right)^{n} S_{2}(A \mid B)\left(A^{-1} B\right)^{n} .
\end{aligned}
$$

This is also equivalent to the following form:

$$
\begin{aligned}
& \left(B A^{-1}\right)^{n} B S\left(B^{-1} \mid A^{-1}\right) B\left(A^{-1} B\right)^{n} \leq\left(B A^{-1}\right)^{n} B T_{r-(2 n+1)}\left(B^{-1} \mid A^{-1}\right) B\left(A^{-1} B\right)^{n} \\
\leq & \left(B A^{-1}\right)^{n} B S_{r-(2 n+1)}\left(B^{-1} \mid A^{-1}\right) B\left(A^{-1} B\right)^{n} \\
\leq & -\left(B A^{-1}\right)^{n} B T_{2(n+1)-r}\left(A^{-1} \mid B^{-1}\right) B\left(A^{-1} B\right)^{n} \leq\left(B A^{-1}\right)^{n} B S_{1}\left(B^{-1} \mid A^{-1}\right) B\left(A^{-1} B\right)^{n} .
\end{aligned}
$$

Proof. We obtain Theorem 7 by using Theorem 5, Lemma 6 and the following equations.

$$
\begin{aligned}
& A \natural_{r} B-A \natural_{2 n+1} B=\left(B A^{-1}\right)^{n}\left(A \natural_{r-2 n} B-B\right)\left(A^{-1} B\right)^{n}, \\
& A \mathfrak{\bigsqcup}_{2(n+1)} B-A \bigsqcup_{r} B=\left(B A^{-1}\right)^{n}\left(A \bigsqcup_{2} B-A \bigsqcup_{r-2 n} A\right)\left(A^{-1} B\right)^{n}, \\
& A \bigsqcup_{r-2 n} B-B=B\left(B^{-1} \natural_{r-(2 n+1)} A^{-1}-B^{-1}\right) B, \\
& A \natural_{2} B-A \natural_{r-2 n} B=-B\left(A^{-1} \mathfrak{\natural}_{2(n+1)-r} B^{-1}-A^{-1}\right) B .
\end{aligned}
$$

4 Operator divergence. Petz introduced the Bregman operator divergence [10] : For an operator convex function F and positive (invertible) operators A and B,

$$
\begin{aligned}
D_{[F]}(A \mid B) & =F(A)-F(B)-\lim _{t \rightarrow+0} \frac{F(B+t(A-B))-F(B)}{t} \\
& =\lim _{t \rightarrow+0} \frac{t F(A)+(1-t) F(B)-F(t A+(1-t) B)}{t} \geq 0
\end{aligned}
$$

By hard calculation, he gave a nice representation of $D_{[F]}$. For $F(x)=x \log x$ and density matrices A and B,

$$
\operatorname{Tr} D_{[x \log x]}(A \mid B)=\operatorname{Tr} A(\log A-\log B)=s(A \mid B),
$$

the Umegaki relative entropy [11]. As a slightly modified form of $S(A \mid B)$, Petz gives also an operator divergence

$$
D_{F K}(A, B)=B-A-S(A \mid B)
$$

whose non negativity is assured by

$$
S(A \mid B)=A^{\frac{1}{2}}\left(\log A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right) A^{\frac{1}{2}} \leq A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}-I\right) A^{\frac{1}{2}}=B-A
$$

We may generalize $D_{F K}(A, B)$ as follows:

$$
D_{r}(A, B)=A \bigsqcup_{r+1} B-A \bigsqcup_{r} B-S_{r}(A \mid B)=B \natural_{-r} A-A \bigsqcup_{r} B-S_{r}(A \mid B),
$$

particularly $D_{F K}(A, B)=D_{0}(A, B)$. The following property holds by Theorem 1 and Lemma 6.

Theorem 8. Let A and B be positive invertible operators and $r \in \mathbf{R}$. Then

$$
D_{r}(A, B) \geq 0
$$

Corollary 9. Let n be an integer. Then

$$
\begin{gather*}
D_{n}(A, B)=\left(B A^{-1}\right)^{n} D_{0}(A, B)=D_{0}(A, B)\left(A^{-1} B\right)^{n} \geq 0 \tag{1}\\
D_{2 n}(A, B)=\left(B A^{-1}\right)^{n} D_{0}(A, B)\left(A^{-1} B\right)^{n} \geq 0 \tag{2}\\
D_{2 n+1}(A, B)=\left(B A^{-1}\right)^{n} B D_{0}\left(B^{-1}, A^{-1}\right) B\left(A^{-1} B\right)^{n} \geq 0 \tag{3}
\end{gather*}
$$

5 Shannon inequality. Shannon inequality is given as follows:

$$
0 \geq \sum_{i=1}^{n} a_{i} \log \frac{b_{i}}{a_{i}}
$$

for $a_{i}, b_{i}>0$ with $\sum_{i=1}^{n} a_{i}=\sum_{i=1}^{n} b_{i}=1$. Furuta [4] introduced an operator version for the Shannon inequality, that is,

$$
0 \geq \sum_{i=1}^{n} S\left(A_{i} \mid B_{i}\right)
$$

for $A_{i}, B_{i}>0$ with $\sum_{i=1}^{n} A_{i}=\sum_{i=1}^{n} B_{i}=I$.
Definition 2. Let $\left\{A_{1}, \cdots, A_{n}\right\}$ and $\left\{B_{1}, \cdots, B_{n}\right\}$ be sequences of strictly positive operators with $\sum_{i=1}^{n} A_{i}=\sum_{i=1}^{n} B_{i}=I$. We give the operator versions of relative entropy, Rényi's relative entropy, Tsallis relative entropy and $S_{r}\left(\left(A_{i}\right),\left(B_{i}\right)\right)$ as follows:

$$
\begin{gathered}
S\left(\left(A_{i}\right),\left(B_{i}\right)\right)=\sum_{i=1}^{n} S\left(A_{i} \mid B_{i}\right), \\
I_{r}\left(\left(A_{i}\right),\left(B_{i}\right)\right)=\frac{1}{r} \log \sum_{i=1}^{n} A_{i} \not \sharp_{r} B_{i}, \\
T_{r}\left(\left(A_{i}\right),\left(B_{i}\right)\right)=\sum_{i=1}^{n} \frac{A_{i} \not \sharp_{r} B_{i}-A_{i}}{r}
\end{gathered}
$$

and

$$
S_{r}\left(\left(A_{i}\right), \quad\left(B_{i}\right)\right)=\sum_{i=1}^{n} S_{r}\left(A_{i} \mid B_{i}\right)
$$

Among these quantities, the following inequalities hold.
Theorem 10. For sequences of positive operators $\left\{A_{1}, \cdots, A_{n}\right\}$ and $\left\{B_{1}, \cdots, B_{n}\right\}$ with $\sum_{i=1}^{n} A_{i}=\sum_{i=1}^{n} B_{i}=I$,

$$
\begin{aligned}
& 0 \geq T_{r}\left(\left(A_{i}\right),\left(B_{i}\right)\right) \geq I_{r}\left(\left(A_{i}\right),\left(B_{i}\right)\right) \geq S\left(\left(A_{i}\right),\left(B_{i}\right)\right), \\
& 0 \leq-T_{1-r}\left(\left(A_{i}\right),\left(B_{i}\right)\right) \leq-I_{1-r}\left(\left(A_{i}\right),\left(B_{i}\right)\right) \leq S_{1}\left(\left(A_{i}\right),\left(B_{i}\right)\right)
\end{aligned}
$$

and

$$
T_{r}\left(\left(A_{i}\right),\left(B_{i}\right)\right) \leq S_{r}\left(\left(A_{i}\right),\left(B_{i}\right)\right) \leq-T_{1-r}\left(\left(B_{i}\right),\left(A_{i}\right)\right)
$$

hold for $0<r<1$.
To prove Theorem 10, we use the next;

$$
\frac{x^{r}-1}{r} \leq x-1, \text { for } 0<r<1
$$

and the following Jensen's operator inequality [6].
Theorem 11 (Jensen's operator inequality(cf. [4], [5], [6]).). Let $f(x)$ be operator concave function and $\left\{C_{j}\right\}_{j=1}^{n}$ be operators with $\sum_{j=1}^{n} C_{j}^{*} C_{j}=I$, then

$$
f\left(\sum_{i=1}^{n} C_{j}^{*} A_{j} C_{j}\right) \geq \sum_{i=1}^{n} C_{j}^{*} f\left(A_{j}\right) C_{j}
$$

Proof of Theorem 10.

$$
\begin{aligned}
I_{r}\left(\left(A_{i}\right),\left(B_{i}\right)\right) & =\frac{1}{r} \log \sum_{i=1}^{n} A_{i} \not \sharp_{r} B_{i}=\frac{1}{r} \log \sum_{i=1}^{n} A_{i}^{\frac{1}{2}}\left(A_{i}^{-\frac{1}{2}} B_{i} A_{i}^{-\frac{1}{2}}\right)^{r} A_{i}^{\frac{1}{2}} \\
& \geq \frac{1}{r} \sum_{i=1}^{n} A_{i}^{\frac{1}{2}} \log \left(A_{i}^{-\frac{1}{2}} B_{i} A_{i}^{-\frac{1}{2}}\right)^{r} A_{i}^{\frac{1}{2}}=\sum_{i=1}^{n} A_{i}^{\frac{1}{2}} \log \left(A_{i}^{-\frac{1}{2}} B_{i} A_{i}^{-\frac{1}{2}}\right) A_{i}^{\frac{1}{2}} \\
& =S\left(\left(A_{i}\right),\left(B_{i}\right)\right)
\end{aligned}
$$

And

$$
\begin{aligned}
I_{r}\left(\left(A_{i}\right),\left(B_{i}\right)\right)= & \frac{1}{r} \log \sum_{i=1}^{n} A_{i} \not \sharp_{r} B_{i} \leq \frac{1}{r}\left(\sum_{i=1}^{n} A_{i} \sharp_{r} B_{i}-I\right) \\
= & \frac{1}{r} \sum_{i=1}^{n}\left(A_{i} \not \sharp_{r} B_{i}-A_{i}\right)=\sum_{i=1}^{n} \frac{A_{i} \not \sharp_{r} B_{i}-A_{i}}{r}=T_{r}\left(\left(A_{i}\right),\left(B_{i}\right)\right) . \\
T_{r}\left(\left(A_{i}\right),\left(B_{i}\right)\right)= & \sum_{i=1}^{n} \frac{A_{i} \not \sharp_{r} B_{i}-A_{i}}{r}=\sum_{i=1}^{n} \frac{A_{i}^{\frac{1}{2}}\left\{\left(A_{i}^{-\frac{1}{2}} B_{i} A_{i}^{-\frac{1}{2}}\right)^{r}-I\right\} A_{i}^{\frac{1}{2}}}{r} \\
& \leq \sum_{i=1}^{n} A_{i}^{\frac{1}{2}}\left(A_{i}^{-\frac{1}{2}} B_{i} A_{i}^{-\frac{1}{2}}-I\right) A_{i}^{\frac{1}{2}}=\sum_{i=1}^{n}\left(B_{i}-A_{i}\right)=0 .
\end{aligned}
$$

The second relation is shown by similar methods to the above. By Theorem 4, we can obtain the final inequality.

References

[1] J.I.Fujii and E.Kamei, Relative operator entropy in noncommutative information theory, Math. Japon., 34(1989), 341-348.
[2] J.I.Fujii and E.Kamei, Path of Bregman-Petz operator divergence, Sci. Math. Japon., 70(2009), 329-333.
[3] J.I.Fujii and E.Kamei, Interpolational paths and their derivatives, Math. Japon., 39(1994), 557-560.
[4] T.Furuta, Parametric extensions of Shannon inequality and its reverse one in Hilbert space operators, Linear Algebra Appl., 381(2004), 219-235.
[5] F.Hansen, An operator inequality, Math. Ann., 246(1980), 249-256.
[6] F.Hansen and G.K.Pedersen, Jensen's operator inequality, Bull. London Math. Soc., 35(2003), 553-564.
[7] E.Kamei, Paths of operators parametrized by operator means, Math. Japon., 39(1994), 395400.
[8] F.Kubo and T.Ando, Means of positive linear operators, Math. Ann., 248(1980), 205-224.
[9] M.Nakamura and H.Umegaki, A note on the entropy for operator algebra, Proc. Japan Acad., 37(1961), 149-154.
[10] D.Petz, Bregman divergence as relative operator entropy, Acta Math. Hungar., 116(2007), 127-131.
[11] H.Umegaki, Conditional expectation in operator algebra IV, Kodai Math. Sem. Rep., 14(1962), 59-85.
[12] K.Yanagi, K.Kuriyama, S.Furuichi, Generalized Shannon inequalities based on Tsallis relative operator entropy, Linear Algebra Appl., 394(2005), 109-118.

Communicated by Jun Ichi Fujii
${ }^{(1)}$ Maebashi Institute of Technology, 460-1, Kamisadori-machi, Maebashi, Gunma, JAPAN, 371-0816. isa@maebashi-it.ac.jp
${ }^{(2)}$ Maebashi Institute of Technology, 460-1, Kamisadori-machi, Maebashi, Gunma, JAPAN, 371-0816. m-ito@maebashi-it.ac.jp
${ }^{(3)}$ 1-1-3, Sakuragaoka, Kanmakicho, Kitakaturagi-gun, Nara, Japan, 639-0202. kamei@maebashi-it.ac.jp; ekamei1947@yahoo.co.jp
${ }^{(4)}$ Maebashi Institute of Technology, 460-1, Kamisadori-machi, Maebashi, Gunma, JAPAN, 371-0816. tohyama@maebashi-it.ac.jp
${ }^{(5)}$ Maebashi Institute of Technology, 460-1, Kamisadori-machi, Maebashi, Gunma, JAPAN, 371-0816. masayukiwatanabe@maebashi-it.ac.jp

[^0]: 2000 Mathematics Subject Classification. 47A63 and 47A64.
 Key words and phrases. relative operator entropy, Tsallis relative operator entropy, operator divergence, Shannon inequality.

