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INTERPOLATIONALITY FOR SYMMETRIC OPERATOR MEANS
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Abstract. Interpolational path of an operator mean has importance in the geometric
sense. Here we give an equivalent condition that a symmetric operator mean in the
sense of Kubo-Ando forms an interpolational path. Also we discuss some properties for
interpolational means including those of another type of operator means. In addition,
integral means induced by interpolational ones are introduced.

1 Introduction. Recall that an operator mean m in the sense of Kubo-Ando [12]
is defined by a positive operator monotone function fm on the half interval (0,∞) with
fm(1) = 1;

Am B = A
1
2 fm

(
A− 1

2 BA− 1
2

)
A

1
2

for positive invertible operators A and B on a Hilbert space. Then the monotonicity holds,

A ≤ C and B ≤ D imply A m B ≤ C m D.

One of important examples is the geometric operator mean # defined by

A#B = A
1
2

(
A− 1

2 BA− 1
2

) 1
2

A
1
2 .

Another typical property for Kubo-Ando means is the ‘transformer equality’,

C∗(Am B)C = C∗AC m C∗BC

for any invertible operator C. In particular, the homogeneity

c(Am B) = cAm cB

holds for all positive numbers c. Thus this mean can be constructed by a numerical function
fm(x) = 1m x which is called the representing function of m.

Let m be a symmetric operator mean; Am B = B m A, or equivalently

(1) fm(x) = 1m x = x

(
1
x

m1
)

= x

(
1m

1
x

)
= xfm

(
1
x

)
.

Then, the initial conditions

A m0B = A, A m1/2B = Am B, A m1B = B

and the following inductive relation

(2) Am(2k+1)/2n+1B = (Amk/2nB) m (Am(k+1)/2nB) = (A m(k+1)/2nB)m (Amk/2nB)
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for natural numbers n and k with 2k + 1 < 2n+1 determines the continuous path AmtB
from A to B of operator means. (Note that this argument can be reduced to the numerical
one by the transformer equality.) If this path satisfies

(AmrB)mt(AmsB) = Am(1−t)r+tsB

for all weights r, s, t ∈ [0, 1], then we call it an interporational path and also call the original
mean an interpolational one as in [7, 8, 11]. For r ∈ [−1, 1], the following parametrized
operator means #(r)

t , which are also called the quasi-arithmetic ones,

A#(r)
t B = A

1
2

(
(1 − t)I +

(
A− 1

2 BA− 1
2

)r) 1
r

A
1
2

are interpolational. The path #(0)
t = limε↓0 #(ε)

t is that of the geometric operator mean
and it is also the geodesic of the Finsler manifold of the positive invertible operators by
Corach-Porta-Recht [1], see also [2]. It is shown in [8] that all interpolational paths are
differentiable. As Corach-Porta-Recht [1] pointed out, the derivatives of an interpolational
path at the end points are closely related to the relative operator entropy, cf. [7, 8, 11, 15, 16].
Thus interpolational paths are significant in the geometric sense.

In this paper, we give an equivalent condition to the interpolationality for symmetric
operator means and discuss the related properties for interpolational means.

2 Mixing property. Now we give an equivalent condition that a symmetric operator
mean forms an interpolational path,

Theorem 1. A symmetric operator mean m is interpolational if and only if

mixing property, (a m b)m (cm d) = (a m c) m (bm d)

holds for all positive numbers a, b, c and d.

Proof. Suppose mt is an interpolational path. By the homogeneity, we may assume that
d = 1, a > b, c > 1. Then there exist r, s > 0 with b = 1mra and c = 1msa. It follows that

(a m b)m (cm1) = (am (1mra))m ((1msa)m1)
= (1m(r+1)/2a)m (1ms/2a) = 1m(r+s+1)/4a

= (1m(s+1)/2a)m (1mr/2a)
= (am (1msa))m ((1mra)m1) = (a m c)m (bm1).

Conversely suppose m satisfies the mixing property. First we show

(3) (1mk/2na)m (1m`/2na) = 1m(k+`)/2n+1a

inductively. It holds for n = 1. Suppose it holds for not greater than n. We may assume
that the k and ` are odd numbers 2k + 1 and 2` + 1 respectively. Then, by the definition
(2), the mixing property and symmetry, we get

(1m(2k+1)/2n+1a)m (1m(2`+1)/2n+1a)

=
(
(1mk/2na)m (1m(k+1)/2na)

)
m

(
(1 m(`+1)/2na) m (1m`/2na)

)
=

(
(1mk/2na)m (1m(`+1)/2na)

)
m

(
(1m(k+1)/2na) m (1m`/2na)

)
= (1m(k+`+1)/2n+1a)m (1m(k+`+1)/2n+1a) = 1m(k+`+1)/2n+1a,
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so that (3) holds for all n. By the continuity, we have

(3′) (1mra)m (1msa) = 1m(r+s)/2a

for all r, s ∈ [0, 1]. Similarly we show

(4) (1mra)mk/2n(1msa) = 1m(1−k/2n)r+(k/2n)sa

inductively. In fact,

(1mra)m(2k+1)/2n+1(1msa)

=
(
(1mra)mk/2n(1msa)

)
m

(
(1mra)m(k+1)/2n(1msa)

)
=

(
(1m(

(2n−k)r+ks
)
/2n

a)
)

m
(

(1m(
(2n−(k+1))r+(k+1)s

)
/2n

a)
)

= 1m(
(2n+1−(2k+1))r+(2k+1)s

)
/2n+1

a = 1m(
1−(2k+1)/2n+1

)
r+

(
(2k+1)/2n+1

)
s
a,

so that (4) holds, and hence we have the interpolationality by the continuity.

Remark 1. Essentially the interpolationality would be obtained by the special case;

(Am1/4B)m1/2(A m3/4B) = A m1/2B, that is, (1m f(x))m (f(x)m x) = f(x)

holds for all x > 0. Note that two equations

(f(x)m f(x))m (1m x) = f(x)m f(x) = f(x) and
(f(x)m1)m (f(x)m x) = (f(x)m1)m (f(x)m x) = (1m f(x))m (f(x)m x)

hold. Then the first terms of them are equal if m has the mixing property and the last ones
are equal if m is interpolational. Thus the equivalence follows immediately from the above
two equations.

Putting b = x, c = y and a = d = 1, we immediately obtain,

Corollary 2. If m is interpolational, then

(5) f(xm y) = f(x)m f(y), or equivalently xm y = f−1
(
f(x)m f(y)

)
.

The above theorem shows that the mean of two interpolational ones is not always in-
terpolational. Though

A+B
2 +A#B

2 is interpolational since it coincides with A#(1/2)B, the
following example does not satisfy even the condition (5),

Example 1. Put a symmetric operator mean M defined by the representing operator
monotone function

f(x) =
1+x
2 +

(
1+

√
x

2

)2

2
=

3 + 3x + 2
√

x

8
,

which is the mean for two quasi-arithmetic means. Since aM b = 3a+3b+2
√

ab
8 , we have

f(aM b) =
24 + 9a + 9b + 6

√
ab + 2

√
8(3a + 3b + 2

√
ab)

64
and

f(a)M f(b) =
3f(a) + 3f(b) + 2

√
f(a)f(b)

8

=
18 + 9a + 9b + 6

√
a + 6

√
b + 2

√
(3 + 3a + 2

√
a)(3 + 3b + 2

√
b)

64
are not equal.
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One of the useful operation among operator means is the adjoint m∗ for m,

Am∗B =
(
A−1 m B−1

)−1
, and f∗(x) =

1
f

(
1
x

)
for invertible operators A and B and x > 0. The arithmetic mean ∇ and the harmonic one !
are adjoint each other and the geometric one # is ‘self-adjoint’. Then it follows immediately
from Theorem 1 that the interpolationality preserves this operation,

Corollary 3. The adjoint m∗ is interpolational if and only if m is interpolational.

3 Operator mixing property. Here we discuss the following property stronger than
the mixing one

operator mixing property, (Am B)m (C m D) = (Am C) m (B m D).

The arithmetic mean ∇ and the harmonic one ! satisfy it. Immediately we have this is
invariant for the adjoint,

Lemma 4. If m satisfies the operator mixing property, then so does m∗.

We will show later in this section that other operator means do not.
Let m be a symmetric operator mean with the representing function f . When m satisfies

the above, it coincides with the quasi-mean for f and m like (5),

Lemma 5. If m satisfies the operator mixing property, then

(5′) f(Am B) = f(A)m f(B), or equivalently Am B = f−1
(
f(A)m f(B)

)
.

It is shown in [12, 6] that the maximum (resp. minimum) is the arithmetic (resp.
harmonic) mean ∇ (resp. !) in the symmetric operator ones. Note that a(0) ≡ lim

ε↓0
a(ε) =

1/2 and h(0) = 0 for the representing functions for ∇ and ! respectively, a(x) = (1 + x)/2
and h(x) = 2x/(1 + x). Here we also use the following result for the adjoint,

Lemma 6. If f is a positive operator monotone function for symmetric operator mean,
then f∗(0) = 0 or f(0) = 0.

Proof. Suppose f(0) > 0. Then (1) shows that f must diverge at infinity, so that

f∗(0) = lim
ε↓0

f∗(ε) = lim
ε↓0

1
f

(
1
ε

) = 0.

Thus we completes the proof.

Noting that f(P ) = P and f(tP ) = f(t)P for a projection P if f(0) = 0, we easily
obtain the operator mean Am P if rankP = 1,

Lemma 7. Let m be an operator mean whose representiong function f satisfies f(0) = 0.
If A is invertible and B = ξ ⊗ ξ∗ is a projection of rank 1 (ξ is a unit vector), then

Am B = f∗
(

1
‖A− 1

2 ξ‖2

)
ξ ⊗ ξ∗ = f∗

(
1

‖BA−1B‖

)
B.



INTERPOLATIONALITY FOR SYMMETRIC OPERATOR MEANS 349

Proof. Let η be the unit vector A− 1
2 ξ/‖A− 1

2 ξ‖. Then

A− 1
2 (ξ ⊗ ξ∗)A− 1

2 = A− 1
2 ξ ⊗ (A− 1

2 ξ)∗ = ‖A− 1
2 ξ‖2η ⊗ η∗,

so that f(A− 1
2 (ξ ⊗ ξ∗)A− 1

2 ) = f(‖A− 1
2 ξ‖2)η ⊗ η∗. Since f∗(y) = yf(1/y), we have

Am B = A
1
2 f(‖A− 1

2 ξ‖2)η ⊗ η∗A
1
2 = f(‖A− 1

2 ξ‖2)A
1
2 η ⊗ (A

1
2 η)∗

= f(‖A− 1
2 ξ‖2)

1
‖A− 1

2 ξ‖2
ξ ⊗ ξ∗ = f∗

(
1

‖A− 1
2 ξ‖2

)
(ξ ⊗ ξ∗).

It is well-known that ‖A− 1
2 ξ‖2 = ‖BA−1B‖.

Now we show that the operator mixing property holds only for ∇ and !,

Theorem 8. If a symmetric operator mean m satisfies the operator mixing property, then
it coincides with the arithmetic mean ∇ or the harmonic one !.

Proof. For the representing function f of m, we may assume f(0) = 0 by Corollary 2 and
Lemmas 4 and 6. Now we will show m is the harmonic mean. For x > 0 and projections
of rank one

P =
1
2

(
1 1
1 1

)
, Q =

1
1 + x

(
x

√
x√

x 1

)
and R =

1
1 + f(x)

(
f(x)

√
f(x)√

f(x) 1

)
,

put

A =
(

1 0
0 x

)
and B = P.

Since ‖BA−1B‖ = 1
2 (1 + 1/x) = 1+x

2x and f∗ = f , we have by the above lemma

Am B = f

(
1 + x

2x

)
2x

1 + x
P = f

(
2x

1 + x

)
P,

f (Am B) = f

(
f

(
2x

1 + x

))
P = f(f(h(x)))P and

f(A)m f(B) = f(A)m B = f

(
2f(x)

1 + f(x)

)
P = f(h(f(x)))P,

so that f(h(x)) = h(f(x)), or equivalently, f∗(a(x)) = a(f∗(x)). Since f∗ is concave, then
f∗ is affine on the interval between 1 and x, and hence f∗(x) = α + βx for all x > 0. By
the symmetric condition (1), we have

α + βx = f∗(x) = xf∗(1/x) = αx + β

for all x > 0. Thus α = β = 1/2 by f∗(1) = 1, that is, m∗ is the arithmetic mean. Therefore
m is the harmonic one.

For the numerical case, it is uncertain whether (5) implies the mixing property or not.
But, by the proof of Theorem 8, we have that (5’) implies the operator mixing property
since the means ∇ and ! have its property.

Corollary 9. If a symmetric operator mean satisfies (5′), then it has the operator mixing
property.
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Remark 2. As a generalization of the Kubo-Ando mean, we introduced a chaotic operator
mean m in [10] which satisfies the monotonicity for the chaotic order ¿,

A ≤ C and B ≤ D imply A mB ¿ C mD

where X ¿ Y stands for log X ≤ log Y . A typical example is the path of the quasi-
arithmetic mean,

Am
(r)
t B = ((1 − t)Ar + tBr)1/r

which is ‘interpolational’ and also the geodesic of the Finsler manifold of positive invertible
operators shown in [5], see also [14, 4]. Also it has the mixing property for operators. More
generally the quasi-arithmetic mean defined by

AmB = f−1

(
f(A) + f(B)

2

)
satisfies the mixing property,

(A mB) m (C mD) = f−1

(
f(AmB) + f(C mD)

2

)
= f−1

(
f(A)+f(B)

2 + f(C)+f(D)
2

2

)

= f−1

(
f(A) + f(B) + f(C) + f(D)

4

)
= (AmC) m (B mD).

4 Integral means. Recall that the transpose m◦ of a mean is defined by A m◦B =
B m A. Then we show symmetric property for every path generated by (2),

Lemma 10. A m◦
t B = B mtA = Am1−tB.

Proof. The above relation holds for t = 0, 1/2, 1. Suppose it holds for t = k/2n for some n
and all k < 2n. Then the inductive relation (2) implies

B m(2k+1)/2n+1A = (B mk/2nA)m (B m(k+1)/2nA) = (Am1−k/2nB)m (Am1−(k+1)/2nB)

= (Am(2n−k)/2nB) m (Am(2n−k−1)/2nB) = (Am(2n−k−1)/2nB)m (Am(2n−k)/2nB)
= Am(2n+1−2k−1)/2n+1B = Am1−(2k+1)/2n+1B,

which implies the required relation.

The logarithmic mean L defined by the function fL(x) = (x − 1)/ log x is an example
that is not interpolational. In fact, by e2 L e = e2−e

log e2−log e = e(e − 1), the values

f(e2 L e) =
e2 − e − 1
log e(e − 1)

=
e2 − e − 1

1 + log(e − 1)
≈ 2.38157 and

f(e2)L f(e) =
e2 − 1

2
L (e − 1) =

e2−1
2 − (e − 1)

log e+1
2

=
(e − 1)2

2 log e+1
2

≈ 2.38060

are not equal and hence it is not interpolational by Corollary 2. It is also known that
ALB =

∫ 1

0
A#tB dt and ALB ≥ A# B, cf.[9]. In this section, we generalize this result.

For a path mt generated by (2), we define the integral mean m̃ induced by mt as

A m̃ B =
∫ 1

0

AmtB dt.

Then we extend the previous result,
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Theorem 11. The integral mean m̃ induced by an interpolational path mt for a symmetric
operator mean m is symmetric and not less than m.

Proof. The above lemma shows

A m̃ B =
∫ 1

0

AmtB dt =
∫ 1

0

B m1−tA dt =
∫ 1

0

B msAds = B m̃ A.

By the maximality of the arithmetic mean, we have

A m̃ B =
∫ 1

0

AmtB dt =

∫ 1

0
AmtB dt +

∫ 1

0
B mtAdt

2
=

∫ 1

0

AmtB + Am1−tB

2
dt

≥
∫ 1

0

(A mtB)m (A m1−tB) dt =
∫ 1

0

A m B dt = A m B. ¤

Finally we give a fruitful example of the integral mean for parametrized power one,

Example 2. Let #(r)
t be the quasi-arithmetic mean with the representing function

f
(r)
t (x) = (1 − t + txr)

1
r

for −1 5 r 5 1. Then, the representing function f̃ (r) of the integral mean #̃(r) is obtained
by

f̃ (r)(x) =
∫ 1

0

(1 − t + txr)
1
r dt =

[
(1 − t + txr)

1+r
r

(xr − 1) 1+r
r

]1

0

=
r

1 + r

xr+1 − 1
xr − 1

,

which is known as the power difference means, cf. [13]. Typical operator means we obtain
here are,

(r = 1) arithmetic mean, f̃ (1)(x) =
1 + x

2
,

(r = 0) logarithmic mean, f̃ (0)(x) ≡ lim
ε↓0

f̃ (ε)(x) =
x − 1
log x

,

(r = −1/2) geometric mean, f̃ (−1/2)(x) =
√

x,

(r = −1) adjoint logarithmic mean, f̃ (−1)(x) ≡ lim
ε↓0

f̃ (ε−1)(x) =
x log x

x − 1
.

Even for −2 5 r < −1, we can formally obtain operator means, for example, #(−2) yields
the harmonic one,

f̃ (−2)(x) =
2x

x + 1
.

But the original #(−2) itself is not operator mean in the sense of Kubo-Ando since f (−2) is
not operator monotone.
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