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ON ZERO-DIMENSIONALITY OF WIJSMAN TOPOLOGIES ON
DISCRETE SPACES
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Abstract. In this paper, we give an example of a uniformly discrete metric space whose
Wijsman hyperspace is not zero-dimensional, which answers a question posed by Cao,
Junnila and Moors [3] negatively.

1. Introduction

Let (X, d) be a nonempty metric space and CL(X) the set of nonempty closed subsets
of X . For each x ∈ X and A ∈ CL(X), put d(x,A) = inf{d(x, y) : y ∈ A}, and let
d(x, ·) denote the real-valued function on CL(X) assigning A ∈ CL(X) to d(x,A). The
Wijsman hyperspace (CL(X), τw(d)) is equipped with the Wijsman topology τw(d) which is
the weak topology determined by the family {d(x, ·) : x ∈ X}. This topology is suggested
by the set convergence introduced by Wijsman [4] (see also [2]). For properties of Wijsman
hyperspaces, we refer to [1] and [2].

In [3], Cao, Junnila and Moors proved some theorems on Wijsman hyperspaces of discrete
spaces. In particular, they proved that if (X, d) is a finite-valued discrete metric space, then
(CL(X), τw(d)) is zero-dimensional. On the other hand, it is also proved in [3] that if (X, d)
is a discrete metric space, then (CL(X), τw(d)) is totally disconnected. Concerning these
theorems, they asked the following question.

Question 1 (Cao, Junnila and Moors [3]). Is (CL(X), τw(d)) zero-dimensional even if
(X, d) is a uniformly discrete metric space or a discrete metric space?

In this note, we give a counterexample which answers Question 1 negatively.

2. A counterexample

A topological space X is said to be zero-dimensional if it has a clopen base. A metric
space (X, d) is said to be uniformly discrete if there exists ε > 0 such that d(x, y) > ε for
every x, y ∈ X with x 6= y. Let R denote the set of all real numbers and set R+ = {x ∈ R :
x ≥ 0}.

Example 2.1. There exists a uniformly discrete metric d on R+ such that the Wijsman
topology τw(d) on CL(R+) is not zero-dimensional.

Proof. Define d : R+ × R+ → R+ by setting

d(x, y) =


0 if x = y,

1 if 0 < |x − y| ≤ 1, and
|x − y| if |x − y| > 1.
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Then d is a uniformly discrete metric on R+. For x ∈ R+ and a, b ∈ R, put Sx
(a,b) = {F ∈

CL(R+) : a < d(x, F ) < b}. Then {Sx
(a,b) : x ∈ R+, a, b ∈ R} is a subbase for the Wijsman

topology τw(d) on CL(R+) (see [1, §2.1]). To see that τw(d) is not zero-dimensional, it
suffices to show that every nonempty open subset U of (CL(R+), τw(d)) with U ⊂ S0

(1,3) is
not closed in (CL(R+), τw(d)).

Let U be a nonempty open subset of (CL(R+), τw(d)) with U ⊂ S0
(1,3). First we claim

that the partial ordered set (U ,⊂) has a maximal element where U denotes the closure of
U in (CL(R+), τw(d)). Let E be a chain in U . We show that

∪
E ∈ U .

Indeed, assume
∪

E /∈ U . Then there exist xi ∈ R+ and ai, bi,∈ R, i ∈ {1, 2, . . . n}, such
that

∪
E ∈

∩n
i=1 Sxi

(ai,bi)
and

n∩
i=1

Sxi

(ai,bi)
∩ U = ∅.(1)

For every i ∈ {1, . . . , n}, choose ei ∈
∪
E such that ai < d(xi, ei) < bi. Since E is a

chain, there exists F ∈ E such that {e1, e2, . . . , en} ⊂ F . Since {e1, e2, . . . , en} ⊂ F ⊂
∪

E ,
we have ai < d(xi,

∪
E) ≤ d(xi, F ) ≤ d(xi, ei) < bi for every i ∈ {1, · · · , n} , which implies

F ∈
∩n

i=1 Sxi

(ai,bi)
. Because F ∈ E ⊂ U , we have

∩n
i=1 Sxi

(ai,bi)
∩U 6= ∅. This contradicts (1).

Therefore
∪
E ∈ U .

Thus,
∪

E is an upper bound of E in U . By Zorn’s lemma, there exists a maximal element
E0 ∈ U .

Next, we claim that E0 /∈ U , which implies U is not closed. Suppose E0 ∈ U . Then
E0 ∈ S0

(1,3), and we have inf E0 > 1. Since U is open in (CL(R+), τw(d)), there exist
xi ∈ R+ and ai, bi,∈ R, i ∈ {1, 2, . . . n}, such that E0 ∈

∩n
i=1 Sxi

(ai,bi)
⊂ U . Without loss of

generality, we may assume that x1 = 0, a1 = 1, and b1 = 3. Put
I1 = {i ∈ {1, 2, . . . , n} : d(xi, E0) > 1, xi ≤ inf E0},
I2 = {i ∈ {1, 2, . . . , n} : d(xi, E0) = 1, xi ≤ inf E0},
I3 = {i ∈ {1, 2, . . . , n} : d(xi, E0) = 0, xi ≤ inf E0},
I4 = {i ∈ {1, 2, . . . , n} : xi > inf E0},

and
c = max{1 + xi, ai + xi : i ∈ I1}.

Since max{ai, 1} < d(xi, E0) = inf E0 − xi for every i ∈ I1, we have c < inf E0. Take
z ∈ (c, inf E0) \ {xi : i ∈ I2} and let E1 = {z} ∪ E0. To show that E1 ∈

∩n
i=1 Sxi

(ai,bi)
, let

i ∈ {1, 2, . . . , n}. Since E0 ⊂ E1, we have d(xi, E1) ≤ d(xi, E0) < bi. To see ai < d(xi, E1),
we consider four cases.

If i ∈ I1, then d(xi, z) = d(xi, E1) since xi < z < inf E0 and E1 = {z} ∪ E0. Therefore
ai ≤ c − xi < z − xi ≤ d(xi, z) = d(xi, E1).

If i ∈ I2, then 1 = d(xi, E1) since xi 6= z and d(xi, E0) = 1. Hence ai < d(xi, E0) = 1 =
d(xi, E1).

If i ∈ I3, then xi ∈ E1 since xi ∈ E0 ⊂ E1. Thus ai < d(xi, E0) = 0 = d(xi, E1).
If i ∈ I4, then ai < d(xi, E0) = d(xi, E1) since z < inf E0 < xi.
Therefore we have E1 ∈

∩n
i=1 Sxi

(ai,bi)
, which implies E1 ∈

∩n
i=1 Sxi

(ai,bi)
⊂ U ⊂ U . This

contradicts with the maximality of E0 in (U ,⊂). Hence we have E0 /∈ U . ¤
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