SUBSPACE-OPERATIONS ON TOPOLOGICAL SPACES *

HARUO MAKI, G.SAI SUNDARA KRISHNAN AND HAYAO OGATA

Received June 25, 2012; revised November 8, 2012

ABSTRACT. Some concepts of *operations on a subspace-topology* are presented on a subspace of a given topological space (Definitions 2.1, 2.3) and some operation-open sets on the subspace are introduced (Definition 3.2). And we investigate some relationships among families of such operation-open sets (Theorem 3.9, Corollary 3.11). As an application, we have an operation-closure formula for a subspace (cf. Theorem 4.5).

1 Introduction In 1979, Kasahara [2] introduced the concepts of operation in topological spaces and operation-closed graph of a function; and he unified several characterizations of compact spaces, nearly-compact spaces and H-closed spaces. In 1983, Janković [1] introduced and studied the concept of operation-closures of a subset, operation-closed sets (in the sense of Janković) in a topological space and several related topics. After the works above, in 1991, Ogata [4] introduced the concept of operation-open sets and investigated the related topological properties of the associated family of all the operation-open sets with a given topology and a given operation. Moreover he introduced the concept of operation- T_i spaces, where $i \in \{0, 1/2, 1, 2\}$.

Throughout the present paper, for a nonempty set X, (X, τ) always denote a topological space on which no separation axioms are assumed unless explicitly stated. In the present paper, we use the notation in Ogata's papers [4], [5]: a function $\gamma : \tau \to P(X)$ is called an *operation on* τ , if $U \subset U^{\gamma}$ holds for every set $U \in \tau$, where $U^{\gamma} := \gamma(U)$ (the value of U by γ) and P(X) denotes the power set of X. Let τ^{γ} be the family of all γ -open sets in (X, τ) .

The purpose of the present paper is to present and study the concept of subspace-operations (i.e., operations on subspaces) and subspace-operation-open sets for a given operation; and also we study some topological properties of such subspace-operation-open sets (cf. Section 2, Section 3). In Section 2, two operations $\gamma_H^O: \tau | H \to P(H)$ (Definition 2.1 below) and $\gamma_{(H)}: \tau_{(H)} \to P(H)$ (Definition 2.3 below) are introduced and studied. In Section 3, the concept of operation-open sets relative to H is introduced (Definition 3.2) and basic properties are investigated (cf. Theorem 3.5). And we investigate some relationships among the family τ_H^{γ} of all operation γ -open sets relative to H, the family of all γ_H^O -open sets on $\tau | H$, the family $\tau^{\gamma} | H$ and the subspace topology $\tau | H$ (Theorem 3.8(ii), Theorem 3.9, Theorem 3.10, Corollary 3.11). In Section 4, we give an operation-closure formula for such subspace-operation γ_H^O on $\tau | H$ and a given operation γ on τ (Theorem 4.5).

2 Some operations on subspaces In the present section, we introduce the following two subspace-operations (Definition 2.1, Definition 2.3). Namely, we define some concepts of operations, say γ_H^O and $\gamma_{(H)}$, on a subspace $(H, \tau | H)$ of a topological space (X, τ) for a given operation $\gamma : \tau \to P(X)$ and a subset H of X (note: we assume $H \in \tau$ if $\gamma \neq$ "*id*" in the concept of Definition 2.1 below and $\tau | H := \{U \cap H | U \in \tau\}$). Let "*id*" : $\tau \to P(X)$ be the identity operation defined by "*id*"(U) = U for every $U \in \tau$.

^{*2000} Math. Subject Classification :54A05

Key words and phrases — Topological operation, γ -open sets, Operation open sets, Operation-closures, Subspace-operation, Operation-closure formula in subspaces

Definition 2.1 Let $\gamma : \tau \to P(X)$ be an operation on τ . Suppose that H is an open subset of (X, τ) if $\gamma \neq "id"$. An operation $\gamma_H^O : \tau | H \to P(H)$ is well defined as follows:

• if $\gamma \neq \text{``id''}: \tau \to P(X)$, then $\gamma_H^O(U \cap H) := (U \cap H)^{\gamma} \cap H$ for every $U \cap H \in \tau | H$, where $(U \cap H)^{\gamma} := \gamma(U \cap H)$ (the value of γ at $U \cap H \in \tau$); and

• if $\gamma = "id" : \tau \to P(X)$, then $\gamma_H^O(U \cap H) := U \cap H$ for every $U \cap H \in \tau | H$.

The former is well defined, because of $U \cap H \in \tau$ by assumption. This operation γ_H^O is said to be the restriction of γ on $\tau | H$.

Remark 2.2 When we consider the operation $\gamma_H^O : \tau | H \to P(H)$, we assume $H \in \tau$ if $\gamma \neq \text{``id''}$. And, if $\gamma = \text{``id''} : \tau \to P(X)$, then we do not assume that $H \in \tau$. Namely, even if $H \notin \tau$, by definition, for any subset H of (X, τ) , $\text{``id''}_H^O : \tau | H \to P(H)$ is the identity operation on $\tau | H$. Indeed, $\text{``id''}_H^O(U) = U = U^{\text{``id''}}$ for any $U \in \tau | H$.

We note that, in the following Definition 2.3, the openness of H is not assumed.

Definition 2.3 Let $(H, \tau | H)$ be a subspace of a topological space (X, τ) .

(i) Let $\tau_{(H)}$ denotes the following family of subsets of H:

• $\tau_{(H)} := \{ U \mid U \subset H, U \in \tau \}.$

(ii) (cf. Remark 2.4 (ii) below) For an operation $\gamma : \tau \to P(X)$, the following operation $\gamma_{(H)}$ on the family $\tau_{(H)}$ is well defined:

• $\gamma_{(H)}: \tau_{(H)} \to P(H)$ is defined by $\gamma_{(H)}(U) := U^{\gamma} \cap H \in P(H)$ for every $U \in \tau_{(H)}$, where $U^{\gamma}:=\gamma(U)$ (the value of γ at $U \in \tau_{(H)} \subset \tau$).

Remark 2.4 (i) The following properties are well known.

(i-1) $\tau_{(H)} \subset \tau | H \subset P(H).$

(i-2) If H is open in (X, τ) , then $\tau_{(H)}$ is a topology of H and $\tau_{(H)} = \tau | H$.

(ii) Let $\gamma: \tau \to P(X)$ be an operation on τ . The following properties are shown.

(ii-1) (cf. Definition 2.3(ii)) $\gamma_{(H)} : \tau_{(H)} \to P(H)$ is an operation on $\tau_{(H)}$, because $\gamma_{(H)}(U) = U^{\gamma} \cap H \supset U \cap H = U$ hold for a subset $U \in \tau_{(H)}$.

(ii-2) If H is open in (X, τ) , then $\gamma_{(H)} = \gamma_H^O : \tau | H \to P(H)$.

(iii) A correspondence from $\tau|H$ into P(H), say $f: \tau|H \to P(H)$, defined by $f(W \cap H) := W^{\gamma} \cap H$ is not well defined, where $W \in \tau$ and $\gamma: \tau \to P(X)$ is a given operation on τ . Indeed, for some topological space (X, τ) and a subset H of X, we can take two open sets W and S of (X, τ) such that $W \cap H = S \cap H$ and $W^{\gamma} \cap H \neq S^{\gamma} \cap H$; thus f is not well defined.

For example, let $X := \{a, b, c\}, \tau := \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$ and $H := \{a, c\}$. And let $\gamma : \tau \to P(X)$ be a given operation defined by $\gamma(U) := U$ if $b \in U; \gamma(U) := Cl(U)$ if $b \notin U$. Then, we take $W := \{a, b\} \in \tau, S := \{a\} \in \tau$; then $W \cap H = \{a\} = S \cap H$ and $W^{\gamma} \cap H = \{a, b\}^{\gamma} \cap H = \{a, b\} \cap H = \{a\}$ and $S^{\gamma} \cap H = \{a\}^{\gamma} \cap H = Cl(\{a\}) \cap H = \{a, c\} \cap H = \{a, c\}$. Thus, $W^{\gamma} \cap H \neq S^{\gamma} \cap H$ and so $f(W \cap H) \neq f(S \cap H)$, even if $W \cap H = S \cap H$ holds.

(iii)' We note that our operation $\gamma_H^O : \tau | H \to P(H)$ of Definition 2.1 is well defined. Indeed, in the case where $\gamma \neq "id"$, we assume $H \in \tau$ and so we have $W \cap H \in \tau$ for any $W \in \tau$ and $(W \cap H)^{\gamma}$ is well defined; and hence $\gamma_H^O(W \cap H) := (W \cap H)^{\gamma} \cap H$ is well defined. We note the difference of definitions of γ_H^O (cf. Definition 2.1) and f of (iii) above. In the case where $\gamma = "id"$, even if $H \notin \tau$, we have $\gamma_H^O(W \cap H) = W \cap H$ and so γ_H^O is well defined.

3 Operation-open sets relative to subspaces In the present section, we introduce the concept of γ -open sets relative to a subset H, where $\gamma : \tau \to P(X)$ is a given operation on τ , and we investigate general properties of them. For an operation $\gamma : \tau \to P(X)$ on τ , we recall the definition of γ -open sets in (X, τ) as follow (cf. [4, Definition 2.2]). It is well known that every γ -open set of (X, τ) is open in (X, τ) , where γ is an operation on τ . **Definition 3.1** [4] (i) A nonempty subset A of (X, τ) is said to be γ -open in (X, τ) , if for each point $x \in A$ there exists a subset $U \in \tau$ such that $x \in U$ and $U^{\gamma} \subset A$. We suppose that the emptyset \emptyset is γ -open in (X, τ) . A subset F of (X, τ) is called γ -closed in (X, τ) if $X \setminus F$ is γ -open in (X, τ) in the sense of the above.

(ii) Let τ^{γ} denotes the collection of all γ -open sets of (X, τ) . Namely,

• $A \in \tau^{\gamma}$ if and only if $A = \emptyset$ or for any point $x \in A$ there exists a subset $U \in \tau$ such that $x \in U$ and $U^{\gamma} \subset A$.

(Note: the notation τ^{γ} above is denoted by τ_{γ} in [4] (e.g.,[3])).

Definition 3.2 Let $(H, \tau | H)$ be a subspace of (X, τ) and $\gamma : \tau \to P(X)$ be an operation on τ .

(i) A nonempty subset A of a subspace $(H, \tau | H)$ is said to be γ -open relative to H, if for each point $x \in A$ there exists a subset $U \in \tau$ such that $x \in U$ and $U^{\gamma} \cap H \subset A$. Suppose that the empty set \emptyset is γ -open relative to H. A subset F of $(H, \tau | H)$ is said to be γ -closed relative to H, if $H \setminus F$ is γ -open relative to H.

(ii) Let τ_H^{γ} denotes the collection of all γ -open sets relative to H. Namely,

• $A \in \tau_H^{\gamma}$ if and only if $A = \emptyset$ or for each point $x \in A$ there exists an open set U of (X, τ) such that $x \in U$ and $U^{\gamma} \cap H \subset A$.

Remark 3.3 In Definition 3.1 and Definition 3.2, we assume that $\gamma : \tau \to P(X)$ is the identity operation, say "*id*", i.e., "*id*" (U) = U for every $U \in \tau$. Then, we have the following property:

(i) $\tau^{"id"} = \tau$; (ii) $\tau^{"id"}_{H} = \tau | H.$

We recall the following well known definition.

Definition 3.4 (i) ([2], e.g., [4, Definition 2.5]) An operation $\gamma : \tau \to P(X)$ is regular on τ [2] (e.g., [4]) if for every open neighbourhoods U and V of each point $x \in X$ there exists an open set W such that $x \in W$ and $W^{\gamma} \subset U^{\gamma} \cap V^{\gamma}$.

(ii) An operation $\gamma : \tau \to P(X)$ is said to be *monotone* if $A^{\gamma} \subset B^{\gamma}$ whenever $A \subset B$, $A \in \tau$ and $B \in \tau$.

It is well known that: every monotone operation is regular; and if $\gamma : \tau \to P(X)$ is regular on τ , then the collection τ^{γ} of all γ -open sets forms a topology of X (cf. [4, Proposition 2.9]).

Theorem 3.5 Let $\gamma : \tau \to P(X)$ be an operation on τ and H a subset of X.

(i) The union of any family of γ -open sets relative to H is a γ -open set relative to H.

(ii) If $\gamma : \tau \to P(X)$ is regular on τ , then the intersection of two γ -open sets relative to H is also γ -open relative to H.

(iii) If $\gamma: \tau \to P(X)$ is regular on τ , then the family τ_H^{γ} forms a topology of H.

Proof. (i) Let $\{A_i | i \in \Omega\}$ be a family of γ -open sets relative to H, where Ω is an index set. Put $A := \bigcup \{A_i | i \in \Omega\}$. Let $x \in A$. There exists a γ -open set A_i relative to H such that $x \in A_i$, where $i \in \Omega$. Then, there exists a subset $U(i) \in \tau$ such that $x \in U(i)$ and $U(i)^{\gamma} \cap H \subset A_i \subset A$. We prove that A is γ -open relative to H.

(ii) Let B and E be γ -open sets relative to H. Let $x \in B \cap E$. There exist two open neighbourhoods U and V of the point x such that $U^{\gamma} \cap H \subset B$ and $V^{\gamma} \cap H \subset E$. Since γ is regular on τ , there exists an open neighbourhood W of x such that $W^{\gamma} \subset U^{\gamma} \cap V^{\gamma}$; then $W^{\gamma} \cap H \subset (U^{\gamma} \cap H) \cap (V^{\gamma} \cap H) \subset B \cap E$. Therefore, $B \cap E$ is γ -open relative to H. (iii) For the set H, we have $H \in \tau_H^{\gamma}$. Indeed, for a point $x \in H, X$ is the open neighbourhood of x such that $X^{\gamma} \cap H \subset H$. Since $\emptyset \in \tau_H^{\gamma}$ by definition, using (i) and (ii) above, it is concluded that τ_H^{γ} is a topology of H.

We need the following notation.

Definition 3.6 (i) For a subset H of (X, τ) and an operation $\gamma : \tau \to P(X)$,

• $\tau^{\gamma}|H := \{V \cap H \in P(H) | V \text{ is } \gamma \text{-open in } (X, \tau), \text{ i.e., } V \in \tau^{\gamma}\} \text{ (cf. Definiton 3.1).}$

(ii) Suppose that H is open in (X, τ) if $\gamma \neq "id"$. For an operation $\gamma_H^O : \tau | H \to P(H)$ (cf. Definition 2.1),

• $(\tau|H)^{\gamma_H^O} := \{A \in P(H)|A \text{ is } \gamma_H^O \text{-open in } (H, \tau|H)\}$ (cf. Definition 2.1, Definition 3.1 for a topological subspace $(H, \tau|H)$).

Remark 3.7 In Definition 3.6, especially we assume that $\gamma : \tau \to P(X)$ is the identity operation. Note: we do not assume that $H \in \tau$ (cf. Definition 2.1, Definition 3.6 (ii)). Then, we have the following properties:

(i) $\tau^{``id"}|H = \tau|H;$

(ii) $(\tau|H)^{"id"_{H}^{O}} = \{A \in P(H) | A \text{ is } "id"_{H}^{O} \text{-open in } (H, \tau|H)\} = \{A \in P(H) | A \text{ is } "id" \text{-open in } (H, \tau|H)\} = \tau|H, \text{ because } "id"_{H}^{O} \text{ is the identity operation by Definition 2.1.}$

The following Theorem 3.8, Theorem 3.9, Theorem 3.10 and Corollary 3.11 show some properties on the relations among the families $\tau^{\gamma}|H$, τ^{γ}_{H} , $(\tau|H)^{\gamma^{O}_{H}}$ and $\tau|H$ under some assumptions.

Theorem 3.8 (i) Let $\gamma : \tau \to P(X)$ be an operation on τ and let H subsets of X.

(i-1) If a subset B of (X, τ) is γ -open in (X, τ) , then $B \cap H$ is γ -open relative to H; namely,

• $\tau^{\gamma}|H \subset \tau^{\gamma}_H \text{ holds (cf. Definition 3.2(ii)).}$

(i-2) Every γ -open set relative to H is open in $(H, \tau | H)$; namely,

• $au_H^{\gamma} \subset \tau | H \text{ holds.}$

(ii) •
$$\tau^{\gamma}|H \subset \tau_{H}^{\gamma} \subset \tau|H$$
 hold for any subset H of (X, τ) and any operation $\gamma : \tau \to P(X)$.

Proof. (i) (i-1) Let $x \in B \cap H$. It follows from assumption that there exists an open subset U of (X, τ) such that $x \in U$ and $U^{\gamma} \subset B$ and hence $U^{\gamma} \cap H \subset B \cap H$. Thus, $B \cap H$ is γ -open relative to H (cf. Definition 3.2(i)). Let $V \in \tau^{\gamma}|H$. There exists a subset $B \in \tau^{\gamma}$ such that $V = B \cap H$; and so $V \in \tau_{H}^{\gamma}$ (cf. the former result above and Definition 3.2(ii)). Thus we have the implication $\tau^{\gamma}|H \subset \tau_{H}^{\gamma}$.

(i-2) Let V be a nonempty γ -open set relative to H. For each point $x \in V$, there exists a subset $U(x) \in \tau$ such that $x \in U(x)$ and $U(x)^{\gamma} \cap H \subset V$. Using the above subsets U(x) for each point $x \in V$, we define a family $\mathcal{U}_V := \{U(x) \cap H | x \in V, x \in U(x), U(x) \in \tau, U(x)^{\gamma} \cap H \subset V\}$. First we claim that (*1) $V = \bigcup \{U | U \in \mathcal{U}_V\}$ holds. By the definition of \mathcal{U}_V , it is obtained that (*2) $V \subset \bigcup \{U | U \in \mathcal{U}_V\}$. Conversely, we have (*3) $\bigcup \{U | U \in \mathcal{U}_V\} \subset V$. Indeed, let $y \in \bigcup \{U | U \in \mathcal{U}_V\}$; then there exists a subset $W \in \mathcal{U}_V$ such that $y \in W$. This means that there exists a subset $U(x) \subset U(x)^{\gamma}$ and $y \in U(x) \cap H, x \in V, x \in U(x), U(x)^{\gamma} \cap H \subset V$; and so $y \in H, y \in U(x) \subset U(x)^{\gamma}$ and $y \in U(x)^{\gamma} \cap H$, because γ is an operation on τ . Since $U(x)^{\gamma} \cap H \subset V$, we have $y \in V$; and hence we have (*3) above. By (*2) and (*3) above, the property (*1) is obtained. Finally, by definitions, it is shown that $V = \bigcup \{U | U \in \mathcal{U}_V\} = U_1 \cap H$ and $U_1 \in \tau$, where $U_1 := \bigcup \{U(x) | x \in V, x \in U(x), U(x) \in \tau, U(x)^{\gamma} \cap H \subset V\}$. Thus, V is open in $(H, \tau | H)$. Using Definition 3.2(ii), we have the implication $\tau_H^{\gamma} \subset \tau | H$.

(ii) By (i-1) (resp. (i-2)), it is obtained that $\tau^{\gamma} | H \subset \tau_H^{\gamma}$ (resp. $\tau_H^{\gamma} \subset \tau | H$) hold. \Box

Theorem 3.9 (i) Suppose that $\gamma \neq$ "id" and H is open in (X, τ) . Then, every γ_H^O -open set in $(H, \tau | H)$ is γ -open relative to H; namely,

•

 $(\tau|H)^{\gamma_{H}^{O}} \subset \tau_{H}^{\gamma} \text{ holds (cf. Definition 2.1).}$ (ii) Suppose that $\gamma : \tau \to P(X)$ is a monotone operation such that $\gamma \neq \text{``id''}$ and H is open in (X, τ) . Under the assumptions above, we have the following properties.

(ii-1) Every γ -open set relative to H is γ_H^O -open in $(H, \tau | H)$.

(ii-2) • $\tau_H^{\gamma} \subset (\tau|H)^{\gamma_H^O}$ holds; and hence • $\tau_H^{\gamma} = (\tau|H)^{\gamma_H^O}$ holds under the assumption of (ii).

Proof. (i) Let A be a γ_H^O -open set in $(H, \tau | H)$ (i.e., $A \in (\tau | H)^{\gamma_H^O}$), where $\gamma_H^O : \tau | H \to P(H)$ is an operation on $\tau | H$ and $\gamma \neq "id"$. Let $x \in A$. There exists a subset $W \in \tau | H$ such that $x \in W$ and $\gamma_H^O(W) = W^{\gamma} \cap H \subset A$ (Note: $\gamma \neq "id"$ and using the assumption that H is open, we have $W \in \tau$). Thus, for the point $x \in A$, $W \in \tau$ such that $W^{\gamma} \cap H \subset A$. This shows that A is γ -open relative to H, i.e., $A \in \tau_H^{\gamma}$.

(ii) (ii-1) Let A be a γ -open set relative to H (i.e., $A \in \tau_H^{\gamma}$). Let $x \in A$. There exists a subset $U(x) \in \tau$ such that $x \in U(x)$ and $U(x)^{\gamma} \cap H \subset A$. Since $\gamma \neq$ "id", $H \in \tau$ and γ is monotone, we have $\gamma_H^O(U(x) \cap H) = (U(x) \cap H)^{\gamma} \cap H \subset U(x)^{\gamma} \cap H \subset A$. This shows that for the point $x \in A$, we have $\gamma_H^O(U(x) \cap H) \subset A$ and $U(x) \cap H \in \tau | H$; and so A is γ_H^O -open in $(H, \tau | H)$ (i.e., $A \in (\tau | H)^{\gamma_H^O}$).

(ii-2) By (ii-1) above, Definition 3.2(ii) and Definition 3.1(ii) for $(H, \tau | H)$, it is obtained that $\tau_H^{\gamma} \subset (\tau | H)^{\gamma_H^O}$. Using (i), we have the required equality under the assumption of (ii).

Theorem 3.10 Let $A \subset H \subset X$ and $\gamma : \tau \to P(X)$ be an operation on τ such that $\gamma \neq$ "id".

(i) If A is γ -open in (X, τ) and H is open in (X, τ) , then A is γ_H^O -open in $(H, \tau | H)$ (i.e., $A \in (\tau | H)^{\gamma_H^O}$.

(i), If H is γ -open in (X, τ) and $\gamma : \tau \to P(X)$ is a regular operation, then $\bullet \tau^{\gamma}|H \subset$ $(\tau|H)^{\gamma_H^O}$ holds.

(ii) If $\gamma : \tau \to P(X)$ is a regular operation on τ , A is γ_H^O -open in $(H,\tau|H)$ and H is γ -open in (X, τ) , then A is γ -open in (X, τ) (i.e., $A \in \tau^{\gamma}$).

(ii)' If H is γ -open in (X,τ) and $\gamma: \tau \to P(X)$ is a regular operation on τ , then (τ|H)^{γ^O_H} ⊂ τ^γ|H holds.
(iii) If γ : τ → P(X) is regular on τ and H is γ-open in (X,τ), then
(τ|H)^{γ^O_H} = τ^γ|H holds.

Proof. (i) Let $x \in A$. There exists a subset U of X such that $x \in U, U \in \tau$ and $U^{\gamma} \subset A$. We have $x \in U \cap H = U$ and $U \in \tau | H$; and so $\gamma_H^O(U) = U^\gamma \cap H \subset A \cap H = A$. Thus, we show $A \in (\tau | H)^{\gamma_H^O}$.

(i) Let $A \in \tau^{\gamma}|H$; then there exists a subset B of X such that $B \in \tau^{\gamma}$ and $A = B \cap H$. Since γ is regular, τ^{γ} forms a topology of X ([4, Proposition 2.9]). Thus, we have $B \cap H \in \tau^{\gamma}$ and so $A \in \tau^{\gamma}$, because $B \in \tau^{\gamma}$ and $H \in \tau^{\gamma}$. By (i) above, it is obtained that $A \in (\tau|H)^{\gamma_H^O}$ (because of the fact that $\tau^{\gamma} \subset \tau$ in general and so $H \in \tau$). Thus, we prove $\tau^{\gamma}|H \subset (\tau|H)^{\gamma_{H}^{o}}$.

(ii) Let $x \in A$. There exists a subset $U \in \tau$ such that $x \in U, \gamma_H^O(U \cap H) = (U \cap H)^{\gamma} \cap H \subset U$ A, because $A \in (\tau|H)^{\gamma_H^O}$, $\gamma \neq "id"$, $U \cap H \in \tau|H$ and $U \cap H \in \tau$. Since $H \in \tau^{\gamma}$ and $x \in A \subset H$, for the point $x \in H$, there exists a subset $V \in \tau$ such that $x \in V$ and $V^{\gamma} \subset H$. By the regularity of γ , for two open subsets $U \cap H$ and V containing x, there exists a subset $W \in \tau$ such that $x \in W$ and $W^{\gamma} \subset (U \cap H)^{\gamma} \cap V^{\gamma}$ (cf. the place between Remark 3.3 and Theorem 3.5); and so $W^{\gamma} \subset (U \cap H)^{\gamma} \cap H \subset A$. Therefore, for each point $x \in A$, we have a subset W such that $W \in \tau, x \in W$ and $W^{\gamma} \subset A$; and so A is γ -open in (X, τ) (i.e., $A \in \tau^{\gamma}$).

(ii) Let $A \in (\tau|H)^{\gamma_H^O}$; then it follows from (ii) above that $A \in \tau^{\gamma}$ and $A = A \cap H \in \tau^{\gamma}|H$. Thus, we have the implication $(\tau|H)^{\gamma_H^O} \subset \tau^{\gamma}|H$.

(iii) By (i)' and (ii)', the required equality is obtained.

Corollary 3.11 (i) If $\gamma : \tau \to P(X)$ is a monotone operation on τ such that $\gamma \neq$ "id" and H is γ -open in (X, τ) , then we have the following equality:

- $(\tau|H)^{\gamma_H^O} = \tau^{\gamma}|H = \tau_H^{\gamma} hold.$
 - (ii) If $\gamma = \text{``id''}$, then $\tau^{\gamma}|H = \tau_H^{\gamma} = (\tau|H)^{\gamma_H^O} = \tau|H$ hold for any subset H of (X, τ) .

Proof. (i) Since γ is monotone with $\gamma \neq$ "*id*" and H is open in (X, τ) , we have $\tau_H^{\gamma} = (\tau | H)^{\gamma_H^O}$ holds (cf. Theorem 3.9(ii)(ii-2)). And, we recall that every monotone operation is regular. Then, by Theorem 3.10(iii), it is shown that $(\tau | H)^{\gamma_H^O} = \tau^{\gamma} | H$.

(ii) By using Remark 3.3 and Remark 3.7, it is shown that $\tau^{"id"}|H = \tau_H^{"id"} = (\tau|H)^{"id"_H} = \tau|H$ hold.

4 **Operation-closures in subspaces** In the end of the present paper, we investigate some forms of *operation-closures in subspaces*. We recall here that, for a topological space (X, τ) , a subset H of X and a subset B of H,

· $\operatorname{Cl}_H(B) = H \cap \operatorname{Cl}(B)$ holds, where $\operatorname{Cl}(B) := \tau \operatorname{-Cl}(B) = \bigcap \{F | B \subset F, F \text{ is closed in } (X, \tau)\}$ and $\operatorname{Cl}_H(B) := (\tau | H) \operatorname{-Cl}(B) = \bigcap \{F | B \subset F, F \text{ is closed in } (H, \tau | H)\}$. Moreover, for a point $x \in X$ and a subset E of (X, τ) ,

· $x \in Cl(E)$ if and only if $U \cap E \neq \emptyset$ holds for every open set U of (X, τ) such that $x \in U$; and for a point $y \in H$ and a subset B of $(H, \tau | H)$,

· $y \in \operatorname{Cl}_H(B)$ if and only if $V \cap B \neq \emptyset$ holds for every open set V of $(H, \tau | H)$ such that $y \in V$.

By Janković [1], the concept of operation-closures in topological spaces is introduced.

Definition 4.1 (i) (Janković [1]) For a subset A of a topological space (X, τ) and an operation $\gamma : \tau \to P(X)$, the γ -closure of A, say $\operatorname{Cl}_{\gamma}(A)$, is defined as follows:

Cl_γ(A) = {x ∈ X | U^γ ∩ A ≠ Ø for every open set U of (X, τ) with x ∈ U}.
(ii) Let γ : τ → P(X) be a given operation. Let (H, τ|H) be a subspace of (X, τ)

and B a subset of H. Suppose that H is open in (X, τ) if $\gamma \neq "id"$. For the restriction $\gamma_H^O: \tau \mid H \to P(H)$ of γ (cf. Definition 2.1) and a subset B of H, we can define the concept of the operation-closure of B in a subspace $(H, \tau \mid H)$, say $\operatorname{Cl}_{\gamma_H^O}(B)$, as follows:

• $\operatorname{Cl}_{\gamma_{H}^{O}}(B) := \{x \in H | \gamma_{H}^{O}(U) \cap B \neq \emptyset \text{ holds for every open set } U \text{ of } (H, \tau | H) \text{ with } x \in U \}.$ (Note: $\operatorname{Cl}_{\gamma_{H}^{O}}(B) \subset H$ for every subset $B \subset H$).

We need the following concept of the open operation defined by Ogata [4, Definition 2.6].

Definition 4.2 (Ogata [4, Definition 2.6]) An operation $\gamma : \tau \to P(X)$ is said to be *open* on τ if for every open neighbourhood U of each point $x \in X$ there exists a γ -open set Ssuch that $x \in S$ and $S \subset U^{\gamma}$, where $U^{\gamma} := \gamma(U)$ (the value of γ at U).

Any "Int \circ Cl"-operation, say $\gamma : \tau \to P(X)$, is open on τ , where $\gamma(U) := \text{Int}(\text{Cl}(U))$ for every set $U \in \tau$ ([4, Example 2.7]). By definition, it is known that every identity operation "*id*" : $\tau \to P(X)$ is open on τ , where τ is a topology of X.

Remark 4.3 (i) For families τ^{γ} and $(\tau|H)^{\gamma_{H}^{O}}$, other operation-closures are defined, respectively (e.g., [4, (3.2), Proposition 3.3]):

- τ^{γ} -Cl(A) := $\bigcap \{F | A \subset F, F \text{ is } \gamma\text{-closed in } (X, \tau)\}, \text{ where } A \subset X;$
- $(\tau|H)^{\gamma_H^O}$ -Cl $(B) := \bigcap \{F_1|B \subset F_1, F_1 \text{ is } \gamma_H^O$ -closed in $(H, \tau|H)\}$, where $B \subset H$.

(ii) It is well known that $A \subset Cl(A) \subset Cl_{\gamma}(A) \subset \tau^{\gamma}$ -Cl(A) holds for any subset $A \subset X$, any topology τ and any operation $\gamma : \tau \to P(X)$ (e.g., [4, (3.4)]). And the example in [4, Remark 3.5] shows that $Cl_{\gamma}(A) \neq \tau^{\gamma}$ -Cl(A) in general.

(iii) If $\gamma : \tau \to P(X)$ is open on τ (cf. Definition 4.2 above), then $\operatorname{Cl}_{\gamma}(A) = \tau^{\gamma} - \operatorname{Cl}(A)$ holds for any subset A of X ([4, Theorem 3.6 (iii)]).

(iv) Moreover, in [4, Proposition 3.3], $x \in \tau^{\gamma}$ -Cl(A) if and only if $U \cap A \neq \emptyset$ holds for any γ -open set U of (X, τ) (i.e., $U \in \tau^{\gamma}$) such that $x \in U$, where γ is a given operation on τ .

We need the following lemma.

Lemma 4.4 (i) Let $\gamma : \tau \to P(X)$ be a regular operation on τ such that $\gamma \neq$ "id" and H be a γ -open set of (X, τ) . If γ is open on τ , then $\gamma_H^O : \tau | H \to P(H)$ is open on $\tau | H$. (ii) If $\gamma =$ "id" and H is a subset of X, then $\gamma_H^O =$ "id" $_H^O : \tau | H \to P(H)$ is open on

(ii) If $\gamma = \text{``id''}$ and H is a subset of X, then $\gamma_H^O = \text{``id''}_H : \tau | H \to P(H)$ is open on $\tau | H$.

Proof. (i) Let $x \in H$ and V be an open set of $(H, \tau | H)$ with $x \in V$. We show that there exists a γ_H^O -open set S in $(H, \tau | H)$ such that $x \in S$ and $S \subset \gamma_H^O(V)$. Indeed, since $H \in \tau$ and $V \in \tau$, by the openness of γ , there exists a γ -open set, say T, in (X, τ) such that $x \in T$ and $T \subset V^{\gamma}$. We put $S := T \cap H$; then $x \in S$, $S \subset V^{\gamma} \cap H = \gamma_H^O(V)$ (cf. Definition 2.1) and $S \in \tau^{\gamma} | H$ (cf. Definition 3.6(i)). We claim that the subset S above is a γ_H^O -open set of $(H, \tau | H)$ (i.e., $S \in (\tau | H)^{\gamma_H^O}$). Indeed, since $\gamma \neq id$, γ is regular and $H \in \tau^{\gamma}$, we apply Theorem 3.10 (iii) to the present case; and so we have $\tau^{\gamma} | H \subset (\tau | H)^{\gamma_H^O}$. Thus, we have $S \in (\tau | H)^{\gamma_H^O}$.

Therefore, for the given point $x \in H$ and the given open set V containing x in $(H, \tau | H)$, the subset S is a γ_H^O -open set of $(H, \tau | H)$ such that $x \in S$ and $S \subset \gamma_H^O(V)$. Namely, $\gamma_H^O: \tau | H \to P(H)$ is an open operation on $\tau | H$.

(ii) For $\gamma = \text{``id"}$, by Definition 2.1 and Remark 2.2, it is known that $\gamma_H^O = \text{``id"}_H^O$: $\tau | H \to P(H)$ is the identity operation on $\tau | H$. And it is well known that the identity operation on any topology is open on the topology.

Theorem 4.5 Let $\gamma : \tau \to P(X)$ be a given operation on τ and $B \subset H \subset X$.

(I) Suppose that H is open in (X, τ) and $\gamma \neq$ "id".

(i) $\operatorname{Cl}_{\gamma^O_H}(B) \supset \operatorname{Cl}_{\gamma}(B) \cap H$ holds.

(ii) If $\gamma : \tau \to P(X)$ is monotone, then $\operatorname{Cl}_{\gamma_H^O}(B) \subset \operatorname{Cl}_{\gamma}(B) \cap H$ holds; and so $\operatorname{Cl}_{\gamma_H^O}(B) = \operatorname{Cl}_{\gamma}(B) \cap H$ holds.

(iii) Suppose that H is γ -open in (X, τ) . If $\gamma : \tau \to P(X)$ is regular and open on τ , then we have the following properties:

(iii-1) $\operatorname{Cl}_{\gamma_{H}^{O}}(B) \subset \operatorname{Cl}_{\gamma}(B) \cap H$ holds; and so $\operatorname{Cl}_{\gamma_{H}^{O}}(B) = \operatorname{Cl}_{\gamma}(B) \cap H$ holds;

(iii-2) $\operatorname{Cl}_{\gamma_{H}^{O}}(B) = (\tau | H)^{\gamma_{H}^{O}} - \operatorname{Cl}(B)$ holds for any subset B of H.

(II) If $\gamma =$ "id", then $\operatorname{Cl}_{id} (B) = \operatorname{Cl}_{id} (B) \cap H$ holds, i.e., $\operatorname{Cl}_H(B) = \operatorname{Cl}(B) \cap H$ holds.

Proof. (I) (i) Let $x \in \operatorname{Cl}_{\gamma}(B) \cap H$. In order to prove $x \in \operatorname{Cl}_{\gamma_{H}^{O}}(B)$, let U be an open set of $(H, \tau | H)$ with $x \in U$. Since H is open in (X, τ) and $x \in \operatorname{Cl}_{\gamma}(B)$, we have $U \in \tau$ and so $U^{\gamma} \cap B \neq \emptyset$. By Definition 2.1(i), it is obtained that $\gamma_{H}^{O}(U) \cap B = (U^{\gamma} \cap H) \cap B = U^{\gamma} \cap (H \cap B) = U^{\gamma} \cap B \neq \emptyset$; and so $x \in Cl_{\gamma_{H}^{O}}(B)$.

(ii) Let $x \notin \operatorname{Cl}_{\gamma}(B) \cap H$. We should show $x \notin \operatorname{Cl}_{\gamma_{H}^{O}}(B)$. For the point x, we consider the following two cases.

Case 1. $x \notin H$: for this point x, we have $x \notin \operatorname{Cl}_{\gamma_{H}^{O}}(B)$ (cf. Note in Definition 4.1).

Case 2. $x \in H$: for this case, we have $x \notin Cl_{\gamma}(B)$. Then, there exists a subset $U \in \tau$

such that $x \in U$ and $U^{\gamma} \cap B = \emptyset$. Since γ is monotone, we have $(U \cap H)^{\gamma} \subset U^{\gamma}$ and so $\gamma_{H}^{O}(U \cap H) \cap B = ((U \cap H)^{\gamma} \cap H) \cap B \subset U^{\gamma} \cap B = \emptyset$ (indeed, $U \cap H \in \tau$). Thus, the subset $U \cap H$ is an open set of $(H, \tau | H)$ such that $x \in U \cap H$ and $\gamma_{H}^{O}(U \cap H) \cap B = \emptyset$; and so $x \notin \operatorname{Cl}_{\gamma_{H}^{O}}(B)$.

Therefore, for both cases we show that $x \notin \operatorname{Cl}_{\gamma^O_{tr}}(B)$.

(iii) First we recall that every γ -open set of (X, τ) is open in (X, τ) for any operation γ and a topology τ .

(iii-1) Let $x \notin Cl_{\gamma}(B) \cap H$. We consider the following two cases.

Case 1. $x \notin H$: for this point x, we have $x \notin \operatorname{Cl}_{\gamma_H^O}(B)$, because $\operatorname{Cl}_{\gamma_H^O}(B) \subset H$ (cf. Definition 4.1(ii)).

Case 2. $x \in H$: for this case, we have $x \notin \operatorname{Cl}_{\gamma}(B)$. There exists a subset $U \in \tau$ such that $x \in U$ and $U^{\gamma} \cap B = \emptyset$. Since γ is open on τ , there exists a γ -open set S such that $x \in S$ and $S \subset U^{\gamma}$ and so $S \cap B \subset U^{\gamma} \cap B = \emptyset$ (i.e., $S \cap B = \emptyset$). Thus we have $S \cap H \in \tau^{\gamma}|H$ and $x \in S \cap H$. By Theorem 3.10 (i)', it is well known that $\tau^{\gamma}|H \subset (\tau|H)^{\gamma_{H}^{\circ}}$; and so we have $S \cap H \in (\tau|H)^{\gamma_{H}^{\circ}}$. Namely, the subset $S \cap H$ is a γ_{H}^{O} -open set of $(H, \tau|H)$ such that $x \in S \cap H$ and $(S \cap H) \cap B = S \cap B = \emptyset$. This shows that $x \notin (\tau|H)^{\gamma_{H}^{\circ}}$ -Cl(B) (cf. Remark 4.3 (iv)). Since $\operatorname{Cl}_{\gamma_{H}^{O}}(E) \subset (\tau|H)^{\gamma_{H}^{\circ}}$ -Cl(E) holds for any subset E of a topological space $(H, \tau|H)$ (cf. Remark 4.3 (ii)), we have $x \notin \operatorname{Cl}_{\gamma_{H}^{O}}(B)$.

Therefore, for both cases, we show that $x \notin \operatorname{Cl}_{\gamma_H^O}(B)$ for any point x with $x \notin \operatorname{Cl}_{\gamma}(B) \cap H$; and so we have the required implication $\operatorname{Cl}_{\gamma_H^O}(B) \subset \operatorname{Cl}_{\gamma}(B) \cap H$. Moreover, since any γ -open set of (X, τ) is open in (X, τ) , we can apply the result (I)(i) above to the present case; and so we have the required equality.

(iii-2) By Lemma 4.4, $\gamma_H^O : \tau \to P(H)$ is open on $\tau | H$. Using [4, Theorem 3.6] (cf. Remark 4.3 (iii)) for the topological space $(H, \tau | H)$, the subset $B \subset H$ and the operation $\gamma_H^O : \tau | H \to P(H)$, we have the required equality $\operatorname{Cl}_{\gamma_H^O}(B) = (\tau | H)^{\gamma_H^O} - \operatorname{Cl}(B)$.

(II) Since $\gamma = \text{``id''}$, we have $\text{``id''}_H^O = \text{``id}_H\text{''} : \tau|H \to P(H)$, where $\text{``id}_H\text{''}$ is the identity operation on $\tau|H$, and so $\operatorname{Cl}_{\text{``id''}_H}(B) = \operatorname{Cl}_{\text{``id}_H}(B) = \operatorname{Cl}_H(B) = (\tau|H) - \operatorname{Cl}(B) = \operatorname{Cl}(B) \cap H = \operatorname{Cl}_{\text{``id''}}(B) \cap H$ hold.

References

- [1] D.S. Janković, On functions with α -closed graphs, Glas. Mat., 18(1983), 141-148.
- [2] S. Kasahara, Operation-compact spaces, Math. Japon., 24 (1979), 97 105.
- [3] G. Sai Sundara Krishnan, M. Ganster and K. Balachandran, Operation approaches on semi-open sets and applications, Kochi J. Math., 2(2007), 21-33.
- [4] H. Ogata, Operations on topological spaces and associated topology, Math. Japon., 36(1991), 175-184.
- [5] H. Ogata, Remarks on some operation-separation axioms, Bull. Fukuoka Univ. Ed. Part III, 40(1991), 41-43.

Communicated by Kohzo Yamada

Haruo MAKI (Corresponding author) Wakagi-dai 2-10-13; Fukutsu-shi Fukuoka-ken;811-3221 Japan e-mail: makih@pop12.odn.ne.jp

SUBSPACE-OPERATIONS ON TOPOLOGICAL SPACES

G. Sai Sundara KRISHNAN Department of Mathematics and Computer Applications PSG college of Technology Coimbatore -641 004 India e-mail:g_ssk@yahoo.com

> Hayao Ogata Ijiri 1-15-1; Minami-ku, Fukuoka-shi Fukuoka-ken; 811-1302 Japan