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CONVERGENCE THEOREMS FOR THE HENSTOCK-KURZWEIL
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Abstract. In previous papers we defined a Denjoy integral and a Henstock-Kurzweil
integral of mappings from a vector lattice into a complete vector lattice. In this
paper we consider some convergence theorems for the Henstock-Kurzweil integral of
mappings from a vector lattice with unit satisfying the principal projection property,
in particular the real line, into a complete vector lattice.

1 Introduction The purpose of our researches is to consider some derivatives and some
integrals of mappings in vector spaces and to study their relations, for instance, the funda-
mental theorem of calculus, inclusive relations between integrals and so on. To this end we
consider some convergence theorems for these integrals.

In previous papers [14,15] we defined a Denjoy integral and a Henstock-Kurzweil integral
of mappings from a vector lattice into a complete vector lattice. In this paper we consider
some convergence theorems for the Henstock-Kurzweil integral of mappings from a vector
lattice with unit satisfying the principal projection property, in particular the real line, into
a complete vector lattice.

2 Preliminaries In this section we recall some notation and definitions in [14, 15] that
will be used in this paper.

An element e of a vector lattice X is said to be a unit if e ∧ x > 0 for any x ∈ X with
x > 0. Let KX be the class of units of X. Let IX be the class of intervals of X and IKX the
class of intervals [a, b] with b−a ∈ KX . Two elements x1, x2 ∈ X are said to be orthogonal,
denoted by x1 ⊥ x2, if |x1| ∧ |x2| = 0. Let A⊥ be the class of x1 ∈ X satisfying x1 ⊥ x
for any x ∈ A ⊂ X. Let L(X,Y ) be the class of bounded linear mappings from X into a
vector lattice Y . If Y is complete, then L(X,Y ) is also so [1, 4, 18, 22, 23]. A subset D of
a vector lattice X with unit is said to be open if for any x ∈ D and for any e ∈ KX there
exists ε ∈ KR such that [x − εe, x + εe] ⊂ D. Let OX be the class of open subsets of X.
Let Us

Y (KX ,≥) be the class of {ve | e ∈ KX} satisfying the following conditions:

(U1) ve ∈ Y with ve > 0;

(U2)d ve1 ≥ ve2 if e1 ≥ e2;

(U3)s For any e ∈ KX there exists θ(e) ∈ KR such that vθ(e)e ≤ 1
2ve.

Let |KX | be the class of x satisfying |x| ∈ KX . For any x ∈ |KX | let x⊥
+ = {0 ∨ x}⊥,

x⊥
− = {0 ∨ (−x)}⊥,

Q(x) = {x1 | x1 ∈ |KX |, (x1)⊥+ = x⊥
+, (x1)⊥− = x⊥

−}
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and

Q(x) =

 ⋃
x1,x2∈Q(x)

[0 ∧ x1, 0 ∨ x2]

 \ {0}.

For e ∈ KX , a, b ∈ D ⊂ X with a 6= b let CSIPe(a, b) be the class of mappings ϕ from
[0, 1] into D satisfying the following conditions (P), (CPe) and (SI), CSDPe(a, b) the class
of mappings ϕ form [0, 1] into D satisfying the following conditions (P), (CPe) and (SD),
and CSMPe(a, b) = CSIPe(a, b) ∪ CSDPe(a, b):

(P) ϕ(0) = a and ϕ(1) = b;

(CPe) for any t ∈ [0, 1] and for any ε ∈ KR there exists δ ∈ KR such that for any s ∈ [0, 1]
if |s − t| ≤ δ, then |ϕ(s) − ϕ(t)| ≤ εe;

(SI) ϕ(t1) < ϕ(t2) if t1 < t2;

(SD) ϕ(t1) > ϕ(t2) if t1 < t2.

Let CSSMP(a, b) be the class of mappings ϕ from [0, 1] into D satisfying the following
conditions:

(CS1) there exist a natural number rϕ and {ei
ϕ | ei

ϕ ∈ KX for i = 1, . . . , rϕ} such that the
following mapping

ϕi : [0, 1] −→ D

∈ ∈

s 7−→ ϕ( s+i−1
rϕ

)

belongs to CSMPei
ϕ
(ϕ( i−1

rϕ
), ϕ( i

rϕ
));

(CS2) there exists x ∈ |KX | such that ϕi(1) − ϕi(0) ∈ Q(x) for any i = 1, . . . , rϕ;

(CS3) ϕ([0, 1]) ⊂ [a ∧ b, a ∨ b].

Note that ϕi satisfies either (SI) or (SD). For convenience, ϕi is said to be CSIP if ϕi

satiefies (SI) and ϕi is CSDP if ϕi satisfies (SD), respectively. A subset D ⊂ X is said to
be connected if CSSMP(a, b) 6= ∅ for any a, b ∈ D with a 6= b. Let COX be the class of
connected open subsets of X. For a, b ∈ D ∈ COX the following subset

〈a|b〉 =
{ ⋃

ϕ∈CSSMP(a,b) ϕ([0, 1]) if a 6= b,

{a} if a = b

is said to be a stepwise interval from a to b. A mapping δ form D ×KX into (0,∞) is said
to be a gauge. For ξ ∈ D ⊂ X and δ a gauge the following subset

OD(ξ, δ) =

( ⋃
e∈KX

[ξ − δ(ξ, e)e, ξ + δ(ξ, e)e]e
)

∩ D

is said to be a δ-neighborhood of ξ in D, where

[a, b]e = {x | there exists ε ∈ KR such that x − a ≥ εe and b − x ≥ εe}.
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When D = X, it is denoted by O(ξ, δ) simply. If a 6= b, then the following set{
(〈xk−1|xk〉, ξk)

∣∣∣∣ xk ∈ 〈a|b〉 (k = 0, . . . ,K), x0 = a, xK = b,
ξk ∈ D (k = 1, . . . ,K)

}
is said to be a δ-fine division of 〈a|b〉 if it satisfies the following (NOL) and (DF), and it is
said to be a δ-fine McShane division of 〈a|b〉 if it satisfies the following (NOL) and (DFMS),
respectively:

(NOL) there exists x ∈ |KX | such that xk − xk−1 ∈ Q(x) for any k = 1, . . . ,K;

(DF) ξk ∈ 〈xk−1|xk〉 ⊂ OD(ξk, δ) for any k = 1, . . . ,K;

(DFMS) 〈xk−1|xk〉 ⊂ OD(ξk, δ) for any k = 1, . . . ,K.

If a = b, then {(〈a|a〉, ξ)} is said to be a δ-fine division of 〈a|b〉 if it satisfies (DF), and
a δ-fine McShane division of 〈a|b〉 if it satisfies (DFMS), respectively. A mapping f is
said to be Henstock-Kurzweil integrable on 〈a|b〉 if there exists I(f ; a, b) ∈ Y and {ve} ∈
Us

Y (KX ,≥) such that for any e ∈ KX there exists a gauge δ such that for any δ-fine division
{(〈xk−1|xk〉, ξk) | k = 1, . . . ,K} of 〈a|b〉∣∣∣∣∣

K∑
k=1

f(ξk)(xk − xk−1) − I(f ; a, b)

∣∣∣∣∣ ≤ ve.

I(f ; a, b) is said to be a Henstock-Kurzweil integral of f on 〈a|b〉, denoted by

I(f ; a, b) = o-(HK)
∫ b

a

f(x)dx.

If for any a, b ∈ D a mapping f is Henstock-Kurzweil integrable on 〈a|b〉, then it is said
to be Henstock-Kurzweil integrable on D. Let (HK)(〈a|b〉, Y ) and (HK)(D,Y ) be the
class of Henstock-Kurzweil integrable mappings on 〈a|b〉 and D, respectively. The following
mapping

Fa : D −→ Y

∈ ∈

x 7−→ I(f ; a, x) = o-(HK)
∫ x

a
f(x)dx

is said to be a Henstock-Kurzweil primitive of f . For L(X,Y ) we consider the following
condition:

(CB) there exists {ln | n = 1, 2, . . .} ⊂ L(X,Y ) satisfying the following conditions:

(CB1) ln1 ≤ ln2 if n1 < n2;

(CB2) for any l ∈ L(X,Y ) there exists a natural number n such that |l| ≤ ln;

(CB3) there exists {εn} ⊂ KR such that
∑∞

n=1 εnln ∈ L(X,Y ).

3 Convergence theorems In this section we consider some convergence theorems. Since
there is some difficulty, we often consider the case of X = R endowed with the Lebesgue
measure. See [14, Definition 3.8] for the concept of “null sets” in a vector lattice.
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Lemma 3.1. Let X be a vector lattice with unit satisfying the principal projection property,
Y a complete vector lattice, a, b ∈ D ∈ COX with a < b and f ∈ (HK)(〈a|b〉, Y ).

If f(x) ≥ 0 for any x ∈ 〈a|b〉, then

o-(HK)
∫ b

a

f(x)dx ≥ 0.

Proof. Since f ∈ (HK)(〈a|b〉, Y ), there exists {ve} ∈ Us
L(X,Y )(KX ,≥) such that for any e ∈

KX there exists a gauge δ such that for any δ-fine division {(〈xk−1|xk〉, ξk) | k = 1, . . . ,K}
of 〈a|b〉 ∣∣∣∣∣

K∑
k=1

f(ξk)(xk − xk−1) − o-(HK)
∫ b

a

f(x)dx

∣∣∣∣∣ ≤ ve.

Since xk−1 < xk by [15, Remark 2.3] and f(x) ≥ 0, it holds that

K∑
k=1

f(ξk)(xk − xk−1) ≥ 0.

Therefore

o-(HK)
∫ b

a

f(x)dx ≥
K∑

k=1

f(ξk)(xk − xk−1) − ve ≥ −ve.

Since e is arbitrary, it holds that

o-(HK)
∫ b

a

f(x)dx ≥ 0.

Lemma 3.2. Let X = R, Y a complete vector lattice, a, b ∈ D ∈ COX with a < b and
f ∈ (HK)(〈a|b〉, Y ). Suppose that L(X,Y ) satisfies (CB).

If f(x) ≥ 0 for almost every x ∈ 〈a|b〉, then

o-(HK)
∫ b

a

f(x)dx ≥ 0.

Proof. Let N = {x | f(x) 6≥ 0}, χN the characteristic function of N and g(x) = χN (x)|f(x)|.
Since g(x) = 0 for almost every x ∈ D, by [15, Lemma 4.1] it holds that g ∈ (HK)(〈a|b〉, Y )
and

o-(HK)
∫ b

a

g(x)dx = 0.

Since f(x) + g(x) ≥ 0 for any x ∈ D, by Lemma 3.1 and [15, Theorem 2.2] it holds that

o-(HK)
∫ b

a

f(x)dx = o-(HK)
∫ b

a

f(x)dx + o-(HK)
∫

g(x)dx

= o-(HK)
∫ b

a

(f(x) + g(x))dx ≥ 0.
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Definition 3.1. Let X and Y be vector lattices, D ⊂ X, Λ an upward directed set, UY (Λ)
the class of {vλ | λ ∈ Λ} satisfying the following conditions:

(U1) vλ ∈ Y with vλ > 0;

(U2)u vλ1 ≥ vλ2 if λ1 ≤ λ2;

(U3)
∧

λ∈Λ vλ = 0,

and {fλ | fλ is a mapping from D into Y, λ ∈ Λ} a net of mappings and f a mapping from
D into Y .

The net {fλ} is said to be pointwise convergent to f if for any x ∈ D there exists
{vx,λ} ∈ UY (Λ) such that |fλ(x) − f(x)| ≤ vx,λ for any λ ∈ Λ. The net {fλ} is said to be
almost pointwise convergent to f if for almost every x ∈ D there exists {vx,λ} ∈ UY (Λ)
such that |fλ(x) − f(x)| ≤ vx,λ for any λ ∈ Λ. The net {fλ} is said to be uniformly
pointwise convergent on A ⊂ D if there exists {vλ} ∈ UY (Λ) such that for any x ∈ A
there exists {vx,λ} ∈ UY (Λ) such that for any λ ∈ Λ there exists ρ(x, λ) ∈ Λ such that
|fρ(x,λ)(x) − f(x)| ≤ vx,ρ(x,λ) ≤ vλ. The net {fλ} is said to be uniformly almost pointwise
convergent on A ⊂ D if there exists {vλ} ∈ UY (Λ) such that for almost every x ∈ A
there exists {vx,λ} ∈ UY (Λ) such that for any λ ∈ Λ there exists ρ(x, λ) ∈ Λ such that
|fρ(x,λ)(x) − f(x)| ≤ vx,ρ(x,λ) ≤ vλ.

For Us
Y (KX ,≥) we consider the following conditions:

(U4) for any {vn,e} ∈ Us
Y (KX ,≥) with n ∈ N there exists {ηn} ⊂ KR such that∑∞

n=1 ηnvn,e ∈ Us
Y (KX ,≥);

(U5) for any {vλ} ∈ UY (Λ) there exists {ve} ∈ Us
Y (KX ,≥) such that for any e ∈ KX

there exists λ(e) ∈ Λ such that vλ(e) ≤ ve.

Theorem 3.1. Let X be a vector lattice with unit satisfying the principal projection prop-
erty, Y a complete vector lattice and a, b ∈ D ∈ COX with a < b. Suppose that Us

Y (KX ,≥)
satisfies (U4) and (U5) and Us

L(X,Y )(KX ,≥) satisfies (U5).
If fn ∈ (HK)(〈a|b〉, Y ), {fn} is monotone increasing and uniformly pointwise convergent

to f on 〈a|b〉 and there exists I ∈ Y such that

o-(HK)
∫ b

a

fn(x)dx ↑ I,

then f ∈ (HK)(〈a|b〉, Y ) and

o-(HK)
∫ b

a

f(x)dx = I.

Proof. Let Fn be the primitive of fn. Since Us
Y (KX ,≥) satisfies (U5), there exists {ve} ∈

Us
Y (KX ,≥) such that for any e ∈ KX there exists a natural number n1(e) such that

0 ≤ I − (Fn1(e)(b) − Fn1(e)(a)) ≤ ve.

Since {fn} is uniformly convergent to f on 〈a|b〉 and Us
L(X,Y )(KX ,≥) satisfies (U5), there

exists {we} ∈ Us
L(X,Y )(KX ,≥) such that for any e ∈ KX there exists a natural number n2(e)

such that for any ξ ∈ 〈a|b〉 there exists a natural number ρ(ξ, n2(e)) such that

0 ≤ f(ξ) − fρ(ξ,n2(e))(ξ) ≤ we.
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Without loss of generality it may be assumed that n1(e) ≤ ρ(ξ, n2(e)) for any e ∈ KX and
for any ξ ∈ 〈a|b〉. By [15, Theorem 3.1] for any natural number n there exists {vn,e} ∈
Us

Y (KX ,≥) such that for any e ∈ KX there exists a gauge δn such that for any δn-fine
division {(〈xk−1|xk〉, ξk) | k = 1, . . . ,K}

K∑
k=1

|fn(ξk)(xk − xk−1) − (Fn(xk) − Fn(xk−1))| ≤ 4vn,e.

Since Us
Y (KX ,≥) satisfies (U4), there exists {ηn} ⊂ KR such that

∑∞
n=1 ηnvn,e ∈ Us

Y (KX ,≥).
Let p(n) be a natural number with 2−p(n) ≤ ηn. Denote δn corresponding θ(e, p(n))e instead
of e by the same symbol again, where θ(e, n) = θ(θ(· · · θ(θ︸ ︷︷ ︸

n

(e)e) · · · e)e). Then

K∑
k=1

|fn(ξk)(xk − xk−1) − (Fn(xk) − Fn(xk−1))| ≤ 4vn,θ(e,p(n))e

≤ 4 · 2−p(n)vn,e ≤ 4ηnvn,e.

Since {Fn(xk) − Fn(xk−1) | n = 1, 2, . . .} is monotone increasing for any k, it holds that

0 ≤ I −
K∑

k=1

(Fρ(ξk,n2(e))(xk) − Fρ(ξk,n2(e))(xk−1))

≤ I −
K∑

k=1

(Fn1(e)(xk) − Fn1(e)(xk−1))

= I − (Fn1(e)(b) − Fn1(e)(a)) ≤ ve.

Let δ(ξ, e) = δρ(ξ,n2(e))(ξ, e). Then for any δ-fine division {(〈xk−1|xk〉, ξk) | k = 1, . . . ,K}
since without loss of generality it may be assumed that there exists a natural number n
such that the δ-fine division is also δn-fine, it holds that∣∣∣∣∣

K∑
k=1

f(ξk)(xk − xk−1) − I

∣∣∣∣∣
≤

K∑
k=1

|f(ξk)(xk − xk−1) − fρ(ξk,n2(e))(ξk)(xk − xk−1)|

+
K∑

k=1

|fρ(ξk,n2(e))(ξk)(xk − xk−1)

−(Fρ(ξk,n2(e))(xk) − Fρ(ξk,n2(e))(xk−1))|

+

∣∣∣∣∣
K∑

k=1

(Fρ(ξk,n2(e))(xk) − Fρ(ξk,n2(e))(xk−1)) − I

∣∣∣∣∣
≤

K∑
k=1

|f(ξk) − fρ(ξk,n2(e))(ξk)|(xk − xk−1)

+
∞∑

n=1

4ηnvn,e +
∣∣Fn1(e)(b) − Fn1(e)(a) − I

∣∣
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≤ we(b − a) + 4
∞∑

n=1

ηnvn,e + ve.

By [14, Remark 2.1] f ∈ (HK)(〈a|b〉, Y ) and

o-(HK)
∫ b

a

f(x)dx = I.

Theorem 3.2. Let X = R, Y a complete vector lattice and a, b ∈ D ∈ COX with a < b.
Suppose that L(X,Y ) satisfies (CB) and Us

L(X,Y )(KX ,≥) ∼= Us
Y (KX ,≥) satisfies (U4) and

(U5).
If fn ∈ (HK)(〈a|b〉, Y ), {fn} is monotone increasing for almost every x ∈ 〈a|b〉 and

uniformly almost pointwise convergent to f on 〈a|b〉 and there exists I ∈ Y such that

o-(HK)
∫ b

a

fn(x)dx ↑ I,

then f ∈ (HK)(〈a|b〉, Y ) and

o-(HK)
∫ b

a

f(x)dx = I.

Proof. Since by [15, Lemma 4.1] without loss of generality it may be assumed fn(x) ↑ f(x)
for every x ∈ 〈a|b〉, it is clear by Theorem 3.1.

Lemma 3.3. Let X = R, Y a complete vector lattice and a, b ∈ D ∈ COX . Suppose that
Us

Y (KX ,≥) satisfies (U5).
If f1, f2, g, h ∈ (HK)(〈a|b〉, Y ) satisfy that g(x) ≤ f1(x) ≤ h(x) and g(x) ≤ f2(x) ≤ h(x)

for any x ∈ 〈a|b〉, then f1 ∨ f2, f1 ∧ f2 ∈ (HK)(〈a|b〉, Y ).

Proof. Since f1 ∧ f2 = −((−f1) ∨ (−f2)), we show only f1 ∨ f2 ∈ (HK)〈a|b〉, Y ). Since X
satisfies the principal projection property, we consider in the case of a < b.

Let F1 and F2 be primitives of f1 and f2 on 〈a|b〉, respectively. For u, v ∈ 〈a|b〉 let
F ∗(u, v) = (F1(v)−F1(u))∨ (F2(v)−F2(u)). Note that (a + b)∨ (c + d) ≤ a∨ c + b∨ d for
any a, b, c, d in a vector lattice. Then F ∗(u,w) ≤ F ∗(u, v)+F ∗(v, w) for any u, v, w ∈ 〈a|b〉.
Let ∆ : a = x0 < · · · < xK = b, xk ∈ 〈a|b〉. Since by Lemma 3.1 and [15, Theorem 2.3]

K∑
k=1

F ∗(xk−1, xk) ≤
K∑

k=1

o-(HK)
∫ xk

xk−1

h(x)dx

= o-(HK)
∫ b

a

h(x)dx

and Y is complete, there exists

I =
∨
∆

K∑
k=1

F ∗(xk−1, xk).

Let Λ be the class of divisions of 〈a|b〉. It is an upward directed set with respect to inclusive
relation of division points. Then there exists {v∆} ∈ UY (Λ) such that for any ∆ ∈ Λ

0 ≤ I −
K∑

k=1

F ∗(xk−1, xk) ≤ v∆.
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Since Us
Y (KX ,≥) satisfies (U5), there exists {v0,e} ∈ Us

Y (KX ,≥) such that for any e ∈ KX

there exists a gauge δ1 such that v∆ ≤ v0,e for any δ0-fine division {(〈xk−1|xk〉, ξk) | k =
1, . . . ,K} and for ∆ : a = x0 < · · · < xK = b. Moreover by [15, Theorem 3.1] there exists
{v1,e} ∈ Us

Y (KX ,≥) such that for any e ∈ KX there exists a gauge δ1 such that for any
δ1-fine division {(〈xk−1|xk〉, ξk) | k = 1, . . . ,K}

K∑
k=1

|f1(ξk)(xk − xk−1) − (F1(xk) − F1(xk−1))| ≤ 4v1,e

and there exists {v2,e} ∈ Us
Y (KX ,≥) such that for any e ∈ KX there exists a gauge δ2 such

that for any δ2-fine division {(〈xk−1|xk〉, ξk) | k = 1, . . . ,K}

K∑
k=1

|f2(ξk)(xk − xk−1) − (F2(xk) − F2(xk−1))| ≤ 4v2,e.

Let δ(·, ·) = δ0(·, ·)∧ δ1(·, ·)∧ δ2(·, ·). Then the above three inequalities are satisfied for any
δ-fine division. Since X = R, it holds that (l1∨l2)(x) = l1(x)∨l2(x) for any l1, l2 ∈ L(X,Y )
and for any x ∈ X with x > 0. Note that |a ∨ b − c ∨ d| ≤ |a − c| + |b − d| for any a, b, c, d
in a vector lattice. Then∣∣∣∣∣

K∑
k=1

((f1 ∨ f2)(ξk)(xk − xk−1) − F ∗(xk−1, xk))

∣∣∣∣∣
≤

K∑
k=1

|f1(ξk)(xk − xk−1) ∨ f2(ξk)(xk − xk−1) − F ∗(xk−1, xk)|

≤
K∑

k=1

(|f1(ξk)(xk − xk−1) − (F1(xk) − F1(xk−1))|

+|f2(ξk)(xk − xk−1) − (F2(xk) − F2(xk−1))|)
≤ 4v1,e + 4v2,e.

Therefore ∣∣∣∣∣
K∑

k=1

(f1 ∨ f2)(ξk)(xk − xk−1) − I

∣∣∣∣∣
≤

∣∣∣∣∣
K∑

k=1

((f1 ∨ f2)(ξk)(xk − xk−1) − F ∗(xk−1, xk))

∣∣∣∣∣
+

∣∣∣∣∣
K∑

k=1

F ∗(xk−1, xk) − I

∣∣∣∣∣
≤ 4v1,e + 4v2,e + v0,e

and hence f1 ∨ f2 ∈ (HK)(〈a|b〉, Y ) and its integral is equal to I.

Lemma 3.4. Let X = R, Y a complete vector lattice and a, b ∈ D ∈ COX . Suppose that
L(X,Y ) satisfies (CB) and Us

Y (KX ,≥) satisfies (U5).
If f1, f2, g, h ∈ (HK)(〈a|b〉, Y ) satisfy that g(x) ≤ f1(x) ≤ h(x) and g(x) ≤ f2(x) ≤ h(x)

for almost every x ∈ 〈a|b〉, then f1 ∨ f2, f1 ∧ f2 ∈ (HK)(〈a|b〉, Y ).
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Proof. Since by [15, Lemma 4.1] without loss of generality it may be assumed that g(x) ≤
f1(x) ≤ h(x) and g(x) ≤ f2(x) ≤ h(x) for any x, it is clear by Lemma 3.3.

Definition 3.2. Let X be a vector lattice with unit, Y a complete vector lattice, a, b ∈
D ∈ COX with a < b and F a mapping from D into Y .

The following value

V (F ; a, b) =
∨

ε∈KR

∨
a = x0 < · · · < xK = b

xk ∈ 〈a|b〉
xk − xk−1 ≤ ε(b − a)

K∑
k=1

|F (xk) − F (xk−1)|

is said to be the total variation of F on 〈a|b〉. F is said to be of bounded variation if there
exists the above value.

Remark 3.1. When X = R and F is absolutely continuous, then it is clear that F is of
bounded variation.

Lemma 3.5. Let X = R, Y a complete vector lattice and a, b ∈ D ∈ COX . Suppose that
Us

Y (KX ,≥) satisfies (U5).
Let F1, F2 be primitives of f1, f2 ∈ (HK)(〈a|b〉, Y ), respectively. If both F1 and F2 are

of bounded variation, then f1 ∨ f2, f1 ∧ f2 ∈ (HK)(〈a|b〉, Y ).

Proof. Let F ∗ be the same as in the proof of Lemma 3.3. Note that |a ∨ b| ≤ |a| + |b| for
any a, b in a vector lattice. Then

K∑
k=1

F ∗(xk−1, xk) ≤
K∑

k=1

(|F1(xk) − F1(xk−1)| + |F2(xk) − F2(xk−1)|)

≤ V (F1; a, b) + V (F2; a, b).

Since Y is complete, there exists

I =
∨

a=x0<···<xK=b

K∑
k=1

F ∗(xk−1, xk).

The rest of the proof is same in Lemma 3.3.

Theorem 3.3. Let X = R, Y a complete vector lattice and a, b ∈ D ∈ COX . Suppose that
Us
L(X,Y )(KX ,≥) ∼= Us

Y (KX ,≥) satisfies (U4) and (U5).
If fn, g, h ∈ (HK)(〈a|b〉, Y ), g(x) ≤ fn(x) ≤ h(x) and fn(x) → f(x) for any x ∈ D,

then f ∈ (HK)(〈a|b〉, Y ) and

o-(HK)
∫ b

a

fn(x)dx → o-(HK)
∫ b

a

f(x)dx.

Proof. We show in the case of a < b. It can be proved similarly in the case of a > b. By
Lemma 3.3 it holds that

∧j
n=i fn ∈ (HK)(〈a|b〉, Y ) for any natural numbers i, j with i ≤ j.

The sequence {
−

i∧
n=i

fn,−
i+1∧
n=i

fn, . . .

}
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is monotone increasing and its upper bound is −g. By Theorem 3.1 it holds that −
∧∞

n=i fn ∈
(HK)(〈a|b〉, Y ). Therefore

∧∞
n=i fn ∈ (HK)(〈a|b〉, Y ). In the same way

∨∞
n=i fn ∈ (HK)(〈a|b〉, Y ).

Moreover the sequence { ∞∧
n=1

fn,
∞∧

n=2

fn, . . .

}

is monotone increasing and its upper bound is h. By Theorem 3.1 it holds that
∨∞

i=1

∧∞
n=i fn =

f ∈ (HK)(〈a|b〉, Y ). Therefore

o-(HK)
∫ b

a

( ∞∧
n=i

fn

)
(x)dx ↑ o-(HK)

∫ b

a

f(x)dx.

In the same way

o-(HK)
∫ b

a

( ∞∨
n=i

fn

)
(x)dx ↓ o-(HK)

∫ b

a

f(x)dx.

Since by Lemma 3.1

o-(HK)
∫ b

a

( ∞∧
n=i

fn

)
(x)dx ≤

∞∧
n=i

o-(HK)
∫ b

a

fn(x)dx

≤
∞∨

n=i

o-(HK)
∫ b

a

fn(x)dx ≤ o-(HK)
∫ b

a

( ∞∨
n=i

fn

)
(x)dx,

it holds that

o-(HK)
∫ b

a

fn(x)dx → o-(HK)
∫ b

a

f(x)dx.

Theorem 3.4. Let X = R, Y a complete vector lattice and a, b ∈ D ∈ COX . Suppose that
L(X,Y ) satisfies (CB) and Us

L(X,Y )(KX ,≥) ∼= Us
Y (KX ,≥) satisfies (U4) and (U5).

If fn, g, h ∈ (HK)(〈a|b〉, Y ), g(x) ≤ fn(x) ≤ h(x) and fn(x) → f(x) for almost every
x ∈ D, then f ∈ (HK)(〈a|b〉, Y ) and

o-(HK)
∫ b

a

fn(x)dx → o-(HK)
∫ b

a

f(x)dx.

Proof. Since by [15, Lemma 4.1] without loss of generality it may be assumed that g(x) ≤
fn(x) ≤ h(x) and fn(x) → f(x) for any x, it is clear by Theorem 3.3.
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