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INTEGRAL TAKING VALUES IN A VECTOR LATTICE

TOSHIHARU KAWASAKI

Received June 5, 2012; revised August 25, 2012

ABSTRACT. In previous papers we defined a Denjoy integral and a Henstock-Kurzweil
integral of mappings from a vector lattice into a complete vector lattice. In this
paper we consider some convergence theorems for the Henstock-Kurzweil integral of
mappings from a vector lattice with unit satisfying the principal projection property,
in particular the real line, into a complete vector lattice.

1 Introduction The purpose of our researches is to consider some derivatives and some
integrals of mappings in vector spaces and to study their relations, for instance, the funda-
mental theorem of calculus, inclusive relations between integrals and so on. To this end we
consider some convergence theorems for these integrals.

In previous papers [14,15] we defined a Denjoy integral and a Henstock-Kurzweil integral
of mappings from a vector lattice into a complete vector lattice. In this paper we consider
some convergence theorems for the Henstock-Kurzweil integral of mappings from a vector
lattice with unit satisfying the principal projection property, in particular the real line, into
a complete vector lattice.

2 Preliminaries In this section we recall some notation and definitions in [14,15] that
will be used in this paper.

An element e of a vector lattice X is said to be a unit if e A2 > 0 for any z € X with
x > 0. Let x be the class of units of X. Let Zx be the class of intervals of X and ZK x the
class of intervals [a, b] with b—a € Kx. Two elements x1, 25 € X are said to be orthogonal,
denoted by 1 L xo, if |21]| A |2o] = 0. Let At be the class of x; € X satisfying 1 L z
for any z € A C X. Let £L(X,Y) be the class of bounded linear mappings from X into a
vector lattice Y. If Y is complete, then £(X,Y) is also so [1,4,18,22,23]. A subset D of
a vector lattice X with unit is said to be open if for any z € D and for any e € Kx there
exists ¢ € Kr such that [z — ce,z + ce] C D. Let Ox be the class of open subsets of X.
Let U3 (Kx,>) be the class of {v, | e € Kx} satisfying the following conditions:

(Ul) v €Y with v, > 0;
(U2)% v, > ., if €1 > eo;
(U3)*  For any e € Kx there exists 6(e) € Kr such that vg(e)e < 3ve.

Let |[Kx| be the class of z satisfying |z| € Kx. For any = € |Kx| let 2+ = {0V z}*,
zt ={0V (-2)}t,
Q(z) ={z1 | 21 € |[Kx], (ilfl)i = xi, (x1)t =2t}
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and

Qz) = U [0Az,0vas] |\ {0}

z1,52€Q(T)

For e € Kx, a,b € D C X with a # b let CSIP.(a,b) be the class of mappings ¢ from
[0,1] into D satisfying the following conditions (P), (CP.) and (SI), CSDP.(a,b) the class
of mappings ¢ form [0, 1] into D satisfying the following conditions (P), (CP.) and (SD),
and CSMP.(a,b) = CSIP.(a,b) UCSDP.(a,b):

(P)  »(0) =a and (1) =b;

(CP.) for anyt € [0,1] and for any € € Kg there exists § € Kgr such that for any s € [0, 1]
if |[s —¢] <6, then |p(s) — p(t)] < €e;

(SI) (p(tl) < (p(tg) if t1 < tQ;
(SD) @(tl) > <p(t2) if t1 < to.

Let CSSMP(a,b) be the class of mappings ¢ from [0, 1] into D satisfying the following
conditions:

(CS1) there exist a natural number r, and {e}, | e/, € Kx for i =1,...,7,} such that the
following mapping

ot 0,1 — D

w w
+i—1
s (el

belongs to CSMP..;. (1), 0(-2));

(CS2) there exists € |Kx| such that ¢'(1) — ¢*(0) € Q(x) for any i = 1,...,7y;
(CS3) ©([0,1]) C [aAb,aVb].

Note that ¢ satisfies either (SI) or (SD). For convenience, ¢’ is said to be CSIP if ¢°
satiefies (SI) and ' is CSDP if ¢° satisfies (SD), respectively. A subset D C X is said to
be connected if CSSMP(a,b) # () for any a,b € D with a # b. Let COx be the class of
connected open subsets of X. For a,b € D € COx the following subset

{a|b) = { L{JaﬁECSSMP(a’b) »([0,1]) E Z i l;,

is said to be a stepwise interval from a to b. A mapping § form D x Kx into (0, 00) is said
to be a gauge. For £ € D C X and J a gauge the following subset

Op(£,8) = ( U [5—6<s,e>e,5+6<£,e>er> nD
eelx

is said to be a §-neighborhood of £ in D, where

[a,b]® = {z | there exists ¢ € Kg such that z — a > ee and b — = > ee}.
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When D = X, it is denoted by O(¢,§) simply. If a # b, then the following set

xi € (alb) (k

{tanaton.) | £ 50

0,....K),zg = a,xx = b,
1,...,K)

is said to be a d-fine division of (a|b) if it satisfies the following (NOL) and (DF), and it is
said to be a d-fine McShane division of {(a|b) if it satisfies the following (NOL) and (DFMS),
respectively:

(NOL)  there exists = € |[Kx| such that 2 — 21 € Q(z) for any k=1,...,K;
(DF) &k € (wh—1|zk) C Op (&, 6) for any k=1,..., K
(DFMS) (xk—1|zk) C Op(&,d) for any k=1,..., K.

If a = b, then {({(ala),&)} is said to be a d-fine division of (a|b) if it satisfies (DF), and
a d-fine McShane division of (a|b) if it satisfies (DFMS), respectively. A mapping f is
said to be Henstock-Kurzweil integrable on (a|b) if there exists I(f;a,b) € Y and {v.} €
Uy (Kx,>) such that for any e € Kx there exists a gauge d such that for any d-fine division
{(<xk—1|mk>a€k) | k= 17 s >K} of <a|b>

< Ve.

> fER) @k = zr-1) = I(f;0,0)
h=1

I(f;a,b) is said to be a Henstock-Kurzweil integral of f on (a|b), denoted by

b
I(f;a,b) = 0—(HK)/ f(z)dx.

If for any a,b € D a mapping f is Henstock-Kurzweil integrable on (a|b), then it is said
to be Henstock-Kurzweil integrable on D. Let (HK)({(a|b),Y) and (HK)(D,Y) be the
class of Henstock-Kurzweil integrable mappings on (a|b) and D, respectively. The following
mapping

F,: D — Y
w w
x +— I(fja,z) = 0—(HK)fff(:1:)d:c

is said to be a Henstock-Kurzweil primitive of f. For £(X,Y) we consider the following
condition:

(CB) there exists {l,, | n =1,2,...} C L(X,Y) satisfying the following conditions:

(CB1) Iy, <lp, if n; < ng;
(CB2) for any | € L(X,Y) there exists a natural number n such that |I] <1,;
(CB3) there exists {e,} C Kg such that >~ e,l, € L(X,Y).

3 Convergence theorems In this section we consider some convergence theorems. Since
there is some difficulty, we often consider the case of X = R endowed with the Lebesgue
measure. See [14, Definition 3.8] for the concept of “null sets” in a vector lattice.
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Lemma 3.1. Let X be a vector lattice with unit satisfying the principal projection property,
Y a complete vector lattice, a,b € D € COx with a <b and f € (HK)((ald),Y).
If f(x) > 0 for any = € (alb), then

b
o-(HK) / F@)dz > 0.

Proof. Since f € (HK)((a|b),Y), there exists {vc} € Uz y(Kx, =) such that for any e €

Kx there exists a gauge d such that for any o-fine division {((zx—1|2k), &) |k =1,..., K}
of {(a|b)

< Ve.

K b
> £(&0) an — 1) o-(HE) [ (o)
k=1 @

Since x;_1 < xj by [15, Remark 2.3] and f(x) > 0, it holds that

K
> FER) @k —zr-1) 2 0.
k=1
Therefore
b K
oHE) [ Jla)de= Y f(@)on — )~ v 2 o
@ k=1
Since e is arbitrary, it holds that

b
0—(HK)/ f(z)dz > 0.
O

Lemma 3.2. Let X = R, Y a complete vector lattice, a,b € D € COx with a < b and
f € (HK)((alb),Y). Suppose that L(X,Y) satisfies (CB).
If f(x) > 0 for almost every x € (a|b), then

b
0-(HK)/ f(z)dz > 0.

Proof. Let N = {z | f(x) # 0}, xn the characteristic function of N and g(x) = xn (2)|f(x)|.
Since g(x) = 0 for almost every z € D, by [15, Lemma 4.1] it holds that g € (HK)({a|b),Y")
and

b
0—(HK)/ g(x)dz = 0.
Since f(z) 4+ g(x) > 0 for any « € D, by Lemma 3.1 and [15, Theorem 2.2] it holds that
b b
0—(HK)/ flz)de = 0—(HK)/ f(z)dx 4+ o-(HK) /g(m)daﬁ

b
— o(HK) / (f(2) + g(x))dz > 0.
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Definition 3.1. Let X and Y be vector lattices, D C X, A an upward directed set, Uy (A)
the class of {vy | A € A} satisfying the following conditions:

(Ul) vy €Y with vy > 0;
(U2)u Ux, Z VX, if )\1 S )\2;

(U3) /\)\EA U\ = Oa

and {fx | f is a mapping from D into Y, A € A} a net of mappings and f a mapping from
D into Y.

The net {f\} is said to be pointwise convergent to f if for any z € D there exists
{vg.a} € Uy (A) such that |fa(z) — f(z)| < vy, for any A € A. The net {f)} is said to be
almost pointwise convergent to f if for almost every = € D there exists {vy 2} € Uy (A)
such that |fi(x) — f(z)| < vy, for any A € A. The net {fy} is said to be uniformly
pointwise convergent on A C D if there exists {vy} € Uy (A) such that for any z € A
there exists {vy 2} € Uy (A) such that for any A € A there exists p(z,A) € A such that
| foe ) (@) = f(2)] < vz om0 < va. The net {f1} is said to be uniformly almost pointwise
convergent on A C D if there exists {vx} € Uy (A) such that for almost every z € A
there exists {vy 2} € Uy (A) such that for any A € A there exists p(z,A\) € A such that

|fp(a:,)\) (l‘) - f(l‘)| < Uz, p(z,\) < U
For U (Kx,>) we consider the following conditions:

(U4) for any {v,..} € Ui (Kx,>) with n € N there exists {n,} C Kgr such that
E:Lozl TInUn.e € U}Q/(K:Xv 2)7

(U5)  for any {va} € Uy (A) there exists {ve} € Ui (Kx,>) such that for any e € Kx
there exists A(e) € A such that vy < ve.

Theorem 3.1. Let X be a vector lattice with unit satisfying the principal projection prop-
erty, Y a complete vector lattice and a,b € D € COx with a < b. Suppose that Uy (Kx,>)
satisfies (U4) and (UB) and Uy x v\ (Kx, >) satisfies (U5).

If fn, € (HK)({alb),Y), {fn} is monotone increasing and uniformly pointwise convergent
to f on (a|b) and there exists I € Y such that

b
oK) [ fula)dn 1 1

then f € (HK)((alb),Y) and

b
0-(HK)/ f(z)dx =1.

Proof. Let F, be the primitive of f,,. Since U5 (Kx,>) satisfies (U5), there exists {v.} €
U3 (Kx,>) such that for any e € Kx there exists a natural number n;(e) such that

0<1- (Fm(e)(b) - Fm(e)(a)) < Ve

Since {f,} is uniformly convergent to f on {alb) and U} y y(Kx, =) satisfies (U5), there
exists {we} € Uz x.y)(Kx,>) such that for any e € Kx there exists a natural number nz(e)
such that for any £ € (a|b) there exists a natural number p(§,n2(e)) such that

0 < f(€) = fotena(e) (§) < we.
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Without loss of generality it may be assumed that ni(e) < p(&,na(e)) for any e € Kx and
for any € € (alb). By [15, Theorem 3.1] for any natural number n there exists {v, .} €
U3y (Kx,>) such that for any e € Kx there exists a gauge d,, such that for any d,-fine
division {({(zx—1|zk),&k) |k =1,..., K}

K
D (&) (@r — 2re1) = (Fu(@r) — Fal(@k-1))| < v .
k=1

Since Us (K x, >) satisfies (U4), there exists {n,,} C Kr such that > | n,vn € Us (Kx,>).
Let p(n) be a natural number with 2-7(") < 5, Denote 6, corresponding 6(e, p(n))e instead
of e by the same symbol again, where 0(e,n) = 0(0(---0(0(e)e) - - - e)e). Then

————

n

K
Z | (&) (@h — zi—1) — (Fu(@k) — Fo(zr—1))] < 40n6(cp(n))e
S 4- 27:0(”)@77.,6 S 477nvn,e'

Since {F,,(zx) — Fn(zr—1) | n=1,2,...} is monotone increasing for any k, it holds that

K
0 < Z p(Ek,n2(e)) ) FP(EkJm(e))(xk*l))
k=1
K
< I- Tbl(e) Ik Fnl(e)(gjk—l))
k:l

= I- ( m(e)( )7Fn1(e)(a))gve~
Let 6(§,€) = dp(ema(e)) (€, €). Then for any d-fine division {((zr—1|zx), &) [k =1,...,K}

since without loss of generality it may be assumed that there exists a natural number n
such that the §-fine division is also d,-fine, it holds that

K
Z &)@k — ap—1) — 1

] >

<

|f(&r) (@ — zh-1) = fogrna(e)) (Er) (@ — T—1)]

=~
Il
MR

K
+ D | fatenmae) (G (@r — Tr-1)

k=1
_(Fp(fkmz(e))(xk) - Fp(&;c,ng(e))(xkfl)”
K

+ 1> (Fotermaten (@) = Fperma(en (@r1)) = 1
k=1

Mw

|£(§k) = Foenmate)) (§p) (T — Th—1)

k

1
00

247771@11 et |Fn1(e) b) - Fm(e)(a) - I}

n=1
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< we(b—a)+ 4Znnvn7e + Ve

n=1

By [14, Remark 2.1] f € (HK)({(a|b),Y) and

b
0—(HK)/ flzx)dz =1.
O

Theorem 3.2. Let X = R, Y a complete vector lattice and a,b € D € COx with a < b.
Suppose that L(X,Y') satisfies (CB) and U}« y(Kx,>) = Uy (Kx, >) satisfies (U4) and
(U5).

If fr, € (HK)({(a|b),Y), {fn} is monotone increasing for almost every x € {(a|b) and
uniformly almost pointwise convergent to f on (a|b) and there exists I € Y such that

b
o-(HEK) / fulw)dz 1T,

then f € (HK)({(alb),Y) and

b
0-(HK)/ flx)dx = 1.

Proof. Since by [15, Lemma 4.1] without loss of generality it may be assumed f,(z) 1 f(z)
for every = € (alb), it is clear by Theorem 3.1. O

Lemma 3.3. Let X = R, Y a complete vector lattice and a,b € D € COx. Suppose that
Us (Kx,>) satisfies (U5).

If 1, f2,9,h € (HK)({a[b),Y) satisfy that g(z) < f1(x) < h(z) and g(z) < fa(z) < h(z)
for any x € (alb), then f1 V fo, f1 A fo € (HK)({a|b),Y).

Proof. Since f1 A fo = —((—=f1) V (=f2)), we show only f1 V fo € (HK)({a|b),Y). Since X
satisfies the principal projection property, we consider in the case of a < b.

Let Fy and F» be primitives of f1 and fo on (a|b), respectively. For u,v € (alb) let
F*(u,v) = (F1(v) — F1(u)) V (Fa(v) — Fo(u)). Note that (a+b)V(c+d) <aVe+bVd for
any a,b, c,d in a vector lattice. Then F*(u,w) < F*(u,v)+ F*(v,w) for any u,v,w € (alb).
Let Ata=x9 < - - <zg =b,x € (alb). Since by Lemma 3.1 and [15, Theorem 2.3]

K K Tk
> Fr(zporar) < Zo—(HK)/ h(z)da
k=1 k=1 Th-1
b
= o—(HK)/ h(z)dx

and Y is complete, there exists

K

I= \/ F*(xp_1, ).
A k=1

Let A be the class of divisions of {(a|b). It is an upward directed set with respect to inclusive
relation of division points. Then there exists {va} € Uy (A) such that for any A € A

K

0<I— ZF*(kal,mk) < VA.
k=1
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Since U3 (Kx,>) satisfies (U5), there exists {vo .} € U5 (Kx,>) such that for any e € Kx
there exists a gauge 7 such that va < v, for any dp-fine division {((xx—1|zk),&k) | k =
L K}and for A:a =< - <xzg =b. Moreover by [15, Theorem 3.1] there exists

{v1,e} € U3 (Kx,>) such that for any e € Kx there exists a gauge d; such that for any
01-fine division {({xx—1|zi), &) |k =1,..., K}

D 1A @k — zpo1) — (Filag) — Fi(ap-1))| < 4o
k=1

and there exists {vs .} € U5 (Kx,>) such that for any e € Kx there exists a gauge dy such
that for any do-fine division {({xx—1|zk),&k) | k=1,..., K}

Do) (@ = wro1) = (Falan) = Fa(zp—n))| < dvae.
k=1

Let §(-,+) = do(-,+) Ad1(+,-) Ad2(+,-). Then the above three inequalities are satisfied for any
d-fine division. Since X = R, it holds that ({1 Viz)(x) = l1(x) Via(z) for any I4,13 € L(X,Y)
and for any # € X with « > 0. Note that [a Vb —cVd| <l|a—c|+ |b—d] for any a,b,c,d
in a vector lattice. Then

K
S ((f1V f2) (&) (@r — zeo1) — F* (21, 21))
k=1 p
<Y A& @n —wp1) V fa(&r) (zr — ap1) — F*(wp1,23))|
k;l
< (i) (@ — 1) = (Pilar) = Fi(ag-))|

>
I
—

+f2(k) @k — 2p—1) — (Fa(zk) — Fa(zk-1))])
§ 41}173 -+ 4U2,e-

Therefore

K

Z fi v f2) (&) (@ —ap—1) — 1

B K

Z (f1V f2)(&k)(@r — zp—1) — F* (zp-1,2x))
+ ZF*(l‘k_l,xk) -1
k=1
S 4v1,e + 4”2,6 + V0,e

and hence f1 V fo € (HK)((alb),Y) and its integral is equal to I. O

Lemma 3.4. Let X = R, Y a complete vector lattice and a,b € D € COx. Suppose that
L(X,Y) satisfies (CB) and U5 (Kx,>) satisfies (U5).

If f1, f2.9,h € (HK)({alb), Y) satisfy that g(x) < f(2) < h(x) and g(z) < fo(x) < h(z)
for almost every x € {(alb), then f1 V fa, f1 A fo € (HK)({a|b),Y).
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Proof. Since by [15, Lemma 4.1] without loss of generality it may be assumed that g(x) <
fi(z) < h(z) and g(z) < fa(z) < h(x) for any z, it is clear by Lemma 3.3. O

Definition 3.2. Let X be a vector lattice with unit, ¥ a complete vector lattice, a,b €
D € COx with a < b and F' a mapping from D into Y.
The following value

K
V(F;a,b)=\/ \V > |F(ak) = Flag-1)|
KR g =gy < <z =b k=1
xk € (alb)
gk — Tr—1 < e(b—a)

is said to be the total variation of F' on (a|b). F is said to be of bounded variation if there
exists the above value.

Remark 3.1. When X = R and F is absolutely continuous, then it is clear that F' is of
bounded variation.

Lemma 3.5. Let X = R, Y a complete vector lattice and a,b € D € COx. Suppose that
Uy (Kx,>) satisfies (U5).

Let Fy, Fy be primitives of f1, f2 € (HK)((alb),Y), respectively. If both Fy and Fy are
of bounded variation, then f1 V fa, f1 A fo € (HK)({alb),Y).

Proof. Let F* be the same as in the proof of Lemma 3.3. Note that |a V b| < |a| + |b| for
any a, b in a vector lattice. Then

K

K
D Fr(wioa) <Y ([Fi(an) = Fu(g—)| + [Fa(ar) — Fa(ze-1)])
k=1 k=1

S V(Fl,a,b)+V(F27a7b)

Since Y is complete, there exists

K
I = \/ ZF*(xk:—hxk)-

a=zo<-<wg=bk=1
The rest of the proof is same in Lemma 3.3. O

Theorem 3.3. Let X =R, Y a complete vector lattice and a,b € D € COx. Suppose that
Up x vy (Kx,2) 2Uy(Kx, =) satisfies (U4) and (US5).

If fnrg,h € (HK)((a]b),Y), g(z) < fu(z) < h(z) and fu(x) — f(z) for any z € D,
then f € (HK)({(alb),Y) and

b b
o-(HK) / Fu(@)dz — o-(HK) / F(@)da.

Proof. We show in the case of a < b. It can be proved similarly in the case of a > b. By
Lemma 3.3 it holds that A\’ _. f, € (HK)((a|b),Y) for any natural numbers i, j with ¢ < j.
The sequence

{_/\fn,_”/\lfn,...}

n=t n=t
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is monotone increasing and its upper bound is —g. By Theorem 3.1 it holds that — A, f,, €

(HK)((alb),Y). Therefore A\, f € (HK)((a|b),Y). In the same way \/,—, f, € (HK)({a|b),

Moreover the sequence

{/\ far \ f}
n=1 n=2

is monotone increasing and its upper bound is h. By Theorem 3.1 it holds that \/;2 | A2, fr =
f € (HK)((a|b),Y). Therefore

/(/\fn> deo—HK/f

In the same way

/(\/n) da:lo—HK/f

Since by Lemma 3.1

b [ o S b
K) / ( /\‘ fn> (z)dx < /\‘o-(HK) / folx)da

<n\/lo-HK/fn dx<o-HK/ (\/fn> @,

n=1

it holds that

b b
o-(HK) / Fal@)dz — o-(HK) / F@)do

O

Theorem 3.4. Let X = R, Y a complete vector lattice and a,b € D € COx. Suppose that
L(X,Y) satisfies (CB) and U} 1 (Kx,2) = U (Kx, =) satisfies (U4) and (U5).

If fn,g,h € (HK)({(a|b),Y), g(z) < fu(z) < h(z) and f,(x) — f(x) for almost every
x € D, then f € (HK)({(a|b),Y) and

b b
0—(HK)/ fn(x)dxﬂo—(HK)/ f(x)dx

Proof. Since by [15, Lemma 4.1] without loss of generality it may be assumed that g(z) <
fu(z) < h(x) and f,(z) — f(z) for any z, it is clear by Theorem 3.3. O
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