CONVERGENCE THEOREMS FOR THE HENSTOCK-KURZWEIL INTEGRAL TAKING VALUES IN A VECTOR LATTICE

Toshinaru Kawasaki

Received June 5, 2012; revised August 25, 2012

Abstract

In previous papers we defined a Denjoy integral and a Henstock-Kurzweil integral of mappings from a vector lattice into a complete vector lattice. In this paper we consider some convergence theorems for the Henstock-Kurzweil integral of mappings from a vector lattice with unit satisfying the principal projection property, in particular the real line, into a complete vector lattice.

1 Introduction The purpose of our researches is to consider some derivatives and some integrals of mappings in vector spaces and to study their relations, for instance, the fundamental theorem of calculus, inclusive relations between integrals and so on. To this end we consider some convergence theorems for these integrals.

In previous papers $[14,15]$ we defined a Denjoy integral and a Henstock-Kurzweil integral of mappings from a vector lattice into a complete vector lattice. In this paper we consider some convergence theorems for the Henstock-Kurzweil integral of mappings from a vector lattice with unit satisfying the principal projection property, in particular the real line, into a complete vector lattice.

2 Preliminaries In this section we recall some notation and definitions in [14, 15] that will be used in this paper.

An element e of a vector lattice X is said to be a unit if $e \wedge x>0$ for any $x \in X$ with $x>0$. Let \mathcal{K}_{X} be the class of units of X. Let \mathcal{I}_{X} be the class of intervals of X and $\mathcal{I} \mathcal{K}_{X}$ the class of intervals $[a, b]$ with $b-a \in \mathcal{K}_{X}$. Two elements $x_{1}, x_{2} \in X$ are said to be orthogonal, denoted by $x_{1} \perp x_{2}$, if $\left|x_{1}\right| \wedge\left|x_{2}\right|=0$. Let A^{\perp} be the class of $x_{1} \in X$ satisfying $x_{1} \perp x$ for any $x \in A \subset X$. Let $\mathcal{L}(X, Y)$ be the class of bounded linear mappings from X into a vector lattice Y. If Y is complete, then $\mathcal{L}(X, Y)$ is also so [1, 4, 18, 22, 23]. A subset D of a vector lattice X with unit is said to be open if for any $x \in D$ and for any $e \in \mathcal{K}_{X}$ there exists $\varepsilon \in \mathcal{K}_{\mathbf{R}}$ such that $[x-\varepsilon e, x+\varepsilon e] \subset D$. Let \mathcal{O}_{X} be the class of open subsets of X. Let $\mathcal{U}_{Y}^{s}\left(\mathcal{K}_{X}, \geq\right)$ be the class of $\left\{v_{e} \mid e \in \mathcal{K}_{X}\right\}$ satisfying the following conditions:
(U1) $\quad v_{e} \in Y$ with $v_{e}>0$;
$(\mathrm{U} 2)^{d} \quad v_{e_{1}} \geq v_{e_{2}}$ if $e_{1} \geq e_{2} ;$
$(\mathrm{U} 3)^{s} \quad$ For any $e \in \mathcal{K}_{X}$ there exists $\theta(e) \in \mathcal{K}_{\mathbf{R}}$ such that $v_{\theta(e) e} \leq \frac{1}{2} v_{e}$.
Let $\left|\mathcal{K}_{X}\right|$ be the class of x satisfying $|x| \in \mathcal{K}_{X}$. For any $x \in\left|\mathcal{K}_{X}\right|$ let $x_{+}^{\perp}=\{0 \vee x\}^{\perp}$, $x_{-}^{\perp}=\{0 \vee(-x)\}^{\perp}$,

$$
Q(x)=\left\{x_{1}\left|x_{1} \in\right| \mathcal{K}_{X} \mid,\left(x_{1}\right)_{+}^{\perp}=x_{+}^{\perp},\left(x_{1}\right)_{-}^{\perp}=x_{-}^{\perp}\right\}
$$

and

$$
\bar{Q}(x)=\left(\bigcup_{x_{1}, x_{2} \in Q(x)}\left[0 \wedge x_{1}, 0 \vee x_{2}\right]\right) \backslash\{0\}
$$

For $e \in \mathcal{K}_{X}, a, b \in D \subset X$ with $a \neq b$ let $\operatorname{CSIP}_{e}(a, b)$ be the class of mappings φ from $[0,1]$ into D satisfying the following conditions $(\mathrm{P}),\left(\mathrm{CP}_{e}\right)$ and $(\mathrm{SI}), \operatorname{CSDP}_{e}(a, b)$ the class of mappings φ form $[0,1]$ into D satisfying the following conditions (P), $\left(\mathrm{CP}_{e}\right)$ and (SD), and $\operatorname{CSMP}_{e}(a, b)=\operatorname{CSIP}_{e}(a, b) \cup \operatorname{CSDP}_{e}(a, b)$:
(P) $\quad \varphi(0)=a$ and $\varphi(1)=b$;
$\left(\mathrm{CP}_{e}\right)$ for any $t \in[0,1]$ and for any $\varepsilon \in \mathcal{K}_{\mathbf{R}}$ there exists $\delta \in \mathcal{K}_{\mathbf{R}}$ such that for any $s \in[0,1]$ if $|s-t| \leq \delta$, then $|\varphi(s)-\varphi(t)| \leq \varepsilon e ;$
(SI) $\varphi\left(t_{1}\right)<\varphi\left(t_{2}\right)$ if $t_{1}<t_{2}$;
(SD) $\varphi\left(t_{1}\right)>\varphi\left(t_{2}\right)$ if $t_{1}<t_{2}$.
Let $\operatorname{CSSMP}(a, b)$ be the class of mappings φ from $[0,1]$ into D satisfying the following conditions:
(CS1) there exist a natural number r_{φ} and $\left\{e_{\varphi}^{i} \mid e_{\varphi}^{i} \in \mathcal{K}_{X}\right.$ for $\left.i=1, \ldots, r_{\varphi}\right\}$ such that the following mapping

belongs to $\operatorname{CSMP}_{e_{\varphi}^{i}}\left(\varphi\left(\frac{i-1}{r_{\varphi}}\right), \varphi\left(\frac{i}{r_{\varphi}}\right)\right)$;
(CS2) there exists $x \in\left|\mathcal{K}_{X}\right|$ such that $\varphi^{i}(1)-\varphi^{i}(0) \in \bar{Q}(x)$ for any $i=1, \ldots, r_{\varphi}$;
$(\mathrm{CS} 3) \quad \varphi([0,1]) \subset[a \wedge b, a \vee b]$.
Note that φ^{i} satisfies either (SI) or (SD). For convenience, φ^{i} is said to be CSIP if φ^{i} satiefies (SI) and φ^{i} is CSDP if φ^{i} satisfies (SD), respectively. A subset $D \subset X$ is said to be connected if $\operatorname{CSSMP}(a, b) \neq \emptyset$ for any $a, b \in D$ with $a \neq b$. Let $\mathcal{C} \mathcal{O}_{X}$ be the class of connected open subsets of X. For $a, b \in D \in \mathcal{C} \mathcal{O}_{X}$ the following subset

$$
\langle a \mid b\rangle= \begin{cases}\bigcup_{\varphi \in \operatorname{CSSMP}(a, b)} \varphi([0,1]) & \text { if } a \neq b \\ \{a\} & \text { if } a=b\end{cases}
$$

is said to be a stepwise interval from a to b. A mapping δ form $D \times \mathcal{K}_{X}$ into $(0, \infty)$ is said to be a gauge. For $\xi \in D \subset X$ and δ a gauge the following subset

$$
O_{D}(\xi, \delta)=\left(\bigcup_{e \in \mathcal{K}_{X}}[\xi-\delta(\xi, e) e, \xi+\delta(\xi, e) e]^{e}\right) \cap D
$$

is said to be a δ-neighborhood of ξ in D, where

$$
[a, b]^{e}=\left\{x \mid \text { there exists } \varepsilon \in \mathcal{K}_{\mathbf{R}} \text { such that } x-a \geq \varepsilon e \text { and } b-x \geq \varepsilon e\right\} .
$$

When $D=X$, it is denoted by $O(\xi, \delta)$ simply. If $a \neq b$, then the following set

$$
\left\{\begin{array}{l|l}
\left(\left\langle x_{k-1} \mid x_{k}\right\rangle, \xi_{k}\right) & \begin{array}{l}
x_{k} \in\langle a \mid b\rangle(k=0, \ldots, K), x_{0}=a, x_{K}=b, \\
\xi_{k} \in D(k=1, \ldots, K)
\end{array}
\end{array}\right\}
$$

is said to be a δ-fine division of $\langle a \mid b\rangle$ if it satisfies the following (NOL) and (DF), and it is said to be a δ-fine McShane division of $\langle a \mid b\rangle$ if it satisfies the following (NOL) and (DFMS), respectively:
(NOL) there exists $x \in\left|\mathcal{K}_{X}\right|$ such that $x_{k}-x_{k-1} \in \bar{Q}(x)$ for any $k=1, \ldots, K$;
(DF)

$$
\xi_{k} \in\left\langle x_{k-1} \mid x_{k}\right\rangle \subset O_{D}\left(\xi_{k}, \delta\right) \text { for any } k=1, \ldots, K
$$

(DFMS) $\left\langle x_{k-1} \mid x_{k}\right\rangle \subset O_{D}\left(\xi_{k}, \delta\right)$ for any $k=1, \ldots, K$.
If $a=b$, then $\{(\langle a \mid a\rangle, \xi)\}$ is said to be a δ-fine division of $\langle a \mid b\rangle$ if it satisfies (DF), and a δ-fine McShane division of $\langle a \mid b\rangle$ if it satisfies (DFMS), respectively. A mapping f is said to be Henstock-Kurzweil integrable on $\langle a \mid b\rangle$ if there exists $I(f ; a, b) \in Y$ and $\left\{v_{e}\right\} \in$ $\mathcal{U}_{Y}^{s}\left(\mathcal{K}_{X}, \geq\right)$ such that for any $e \in \mathcal{K}_{X}$ there exists a gauge δ such that for any δ-fine division $\left\{\left(\left\langle x_{k-1} \mid x_{k}\right\rangle, \xi_{k}\right) \mid k=1, \ldots, K\right\}$ of $\langle a \mid b\rangle$

$$
\left|\sum_{k=1}^{K} f\left(\xi_{k}\right)\left(x_{k}-x_{k-1}\right)-I(f ; a, b)\right| \leq v_{e}
$$

$I(f ; a, b)$ is said to be a Henstock-Kurzweil integral of f on $\langle a \mid b\rangle$, denoted by

$$
I(f ; a, b)=o-(H K) \int_{a}^{b} f(x) d x
$$

If for any $a, b \in D$ a mapping f is Henstock-Kurzweil integrable on $\langle a \mid b\rangle$, then it is said to be Henstock-Kurzweil integrable on D. Let (HK) $(\langle a \mid b\rangle, Y)$ and (HK) (D, Y) be the class of Henstock-Kurzweil integrable mappings on $\langle a \mid b\rangle$ and D, respectively. The following mapping

$$
\begin{array}{rlcc}
F_{a}: & D & \longrightarrow & Y \\
& \longrightarrow & & \\
& & \longmapsto & I(f ; a, x)=o-(H K) \int_{a}^{x} f(x) d x
\end{array}
$$

is said to be a Henstock-Kurzweil primitive of f. For $\mathcal{L}(X, Y)$ we consider the following condition:
(CB) there exists $\left\{l_{n} \mid n=1,2, \ldots\right\} \subset \mathcal{L}(X, Y)$ satisfying the following conditions:
(CB1) $l_{n_{1}} \leq l_{n_{2}}$ if $n_{1}<n_{2}$;
(CB2) for any $l \in \mathcal{L}(X, Y)$ there exists a natural number n such that $|l| \leq l_{n}$;
$(\mathrm{CB} 3)$ there exists $\left\{\varepsilon_{n}\right\} \subset \mathcal{K}_{\mathbf{R}}$ such that $\sum_{n=1}^{\infty} \varepsilon_{n} l_{n} \in \mathcal{L}(X, Y)$.
3 Convergence theorems In this section we consider some convergence theorems. Since there is some difficulty, we often consider the case of $X=\mathbf{R}$ endowed with the Lebesgue measure. See [14, Definition 3.8] for the concept of "null sets" in a vector lattice.

Lemma 3.1. Let X be a vector lattice with unit satisfying the principal projection property, Y a complete vector lattice, $a, b \in D \in \mathcal{C} \mathcal{O}_{X}$ with $a<b$ and $f \in(\mathbf{H K})(\langle a \mid b\rangle, Y)$.

If $f(x) \geq 0$ for any $x \in\langle a \mid b\rangle$, then

$$
o-(H K) \int_{a}^{b} f(x) d x \geq 0
$$

Proof. Since $f \in(\mathbf{H K})(\langle a \mid b\rangle, Y)$, there exists $\left\{v_{e}\right\} \in \mathcal{U}_{\mathcal{L}(X, Y)}^{s}\left(\mathcal{K}_{X}, \geq\right)$ such that for any $e \in$ \mathcal{K}_{X} there exists a gauge δ such that for any δ-fine division $\left\{\left(\left\langle x_{k-1} \mid x_{k}\right\rangle, \xi_{k}\right) \mid k=1, \ldots, K\right\}$ of $\langle a \mid b\rangle$

$$
\left|\sum_{k=1}^{K} f\left(\xi_{k}\right)\left(x_{k}-x_{k-1}\right)-o-(H K) \int_{a}^{b} f(x) d x\right| \leq v_{e}
$$

Since $x_{k-1}<x_{k}$ by [15, Remark 2.3] and $f(x) \geq 0$, it holds that

$$
\sum_{k=1}^{K} f\left(\xi_{k}\right)\left(x_{k}-x_{k-1}\right) \geq 0
$$

Therefore

$$
o-(H K) \int_{a}^{b} f(x) d x \geq \sum_{k=1}^{K} f\left(\xi_{k}\right)\left(x_{k}-x_{k-1}\right)-v_{e} \geq-v_{e}
$$

Since e is arbitrary, it holds that

$$
o-(H K) \int_{a}^{b} f(x) d x \geq 0
$$

Lemma 3.2. Let $X=\mathbf{R}, Y$ a complete vector lattice, $a, b \in D \in \mathcal{C} \mathcal{O}_{X}$ with $a<b$ and $f \in(\mathbf{H K})(\langle a \mid b\rangle, Y)$. Suppose that $\mathcal{L}(X, Y)$ satisfies (CB).

If $f(x) \geq 0$ for almost every $x \in\langle a \mid b\rangle$, then

$$
o-(H K) \int_{a}^{b} f(x) d x \geq 0
$$

Proof. Let $N=\{x \mid f(x) \nsupseteq 0\}, \chi_{N}$ the characteristic function of N and $g(x)=\chi_{N}(x)|f(x)|$. Since $g(x)=0$ for almost every $x \in D$, by [15, Lemma 4.1] it holds that $g \in(\mathbf{H K})(\langle a \mid b\rangle, Y)$ and

$$
o-(H K) \int_{a}^{b} g(x) d x=0
$$

Since $f(x)+g(x) \geq 0$ for any $x \in D$, by Lemma 3.1 and [15, Theorem 2.2] it holds that

$$
\begin{aligned}
o-(H K) \int_{a}^{b} f(x) d x & =o-(H K) \int_{a}^{b} f(x) d x+o-(H K) \int g(x) d x \\
& =o-(H K) \int_{a}^{b}(f(x)+g(x)) d x \geq 0
\end{aligned}
$$

Definition 3.1. Let X and Y be vector lattices, $D \subset X, \Lambda$ an upward directed set, $\mathcal{U}_{Y}(\Lambda)$ the class of $\left\{v_{\lambda} \mid \lambda \in \Lambda\right\}$ satisfying the following conditions:

$$
\begin{array}{ll}
\text { (U1) } & v_{\lambda} \in Y \text { with } v_{\lambda}>0 \tag{U1}\\
(\mathrm{U} 2)^{u} & v_{\lambda_{1}} \geq v_{\lambda_{2}} \text { if } \lambda_{1} \leq \lambda_{2} \\
\text { (U3) } & \bigwedge_{\lambda \in \Lambda} v_{\lambda}=0
\end{array}
$$

and $\left\{f_{\lambda} \mid f_{\lambda}\right.$ is a mapping from D into $\left.Y, \lambda \in \Lambda\right\}$ a net of mappings and f a mapping from D into Y.

The net $\left\{f_{\lambda}\right\}$ is said to be pointwise convergent to f if for any $x \in D$ there exists $\left\{v_{x, \lambda}\right\} \in \mathcal{U}_{Y}(\Lambda)$ such that $\left|f_{\lambda}(x)-f(x)\right| \leq v_{x, \lambda}$ for any $\lambda \in \Lambda$. The net $\left\{f_{\lambda}\right\}$ is said to be almost pointwise convergent to f if for almost every $x \in D$ there exists $\left\{v_{x, \lambda}\right\} \in \mathcal{U}_{Y}(\Lambda)$ such that $\left|f_{\lambda}(x)-f(x)\right| \leq v_{x, \lambda}$ for any $\lambda \in \Lambda$. The net $\left\{f_{\lambda}\right\}$ is said to be uniformly pointwise convergent on $A \subset D$ if there exists $\left\{v_{\lambda}\right\} \in \mathcal{U}_{Y}(\Lambda)$ such that for any $x \in A$ there exists $\left\{v_{x, \lambda}\right\} \in \mathcal{U}_{Y}(\Lambda)$ such that for any $\lambda \in \Lambda$ there exists $\rho(x, \lambda) \in \Lambda$ such that $\left|f_{\rho(x, \lambda)}(x)-f(x)\right| \leq v_{x, \rho(x, \lambda)} \leq v_{\lambda}$. The net $\left\{f_{\lambda}\right\}$ is said to be uniformly almost pointwise convergent on $A \subset D$ if there exists $\left\{v_{\lambda}\right\} \in \mathcal{U}_{Y}(\Lambda)$ such that for almost every $x \in A$ there exists $\left\{v_{x, \lambda}\right\} \in \mathcal{U}_{Y}(\Lambda)$ such that for any $\lambda \in \Lambda$ there exists $\rho(x, \lambda) \in \Lambda$ such that $\left|f_{\rho(x, \lambda)}(x)-f(x)\right| \leq v_{x, \rho(x, \lambda)} \leq v_{\lambda}$.

For $\mathcal{U}_{Y}^{s}\left(\mathcal{K}_{X}, \geq\right)$ we consider the following conditions:
(U4) for any $\left\{v_{n, e}\right\} \in \mathcal{U}_{Y}^{s}\left(\mathcal{K}_{X}, \geq\right)$ with $n \in \mathbf{N}$ there exists $\left\{\eta_{n}\right\} \subset \mathcal{K}_{\mathbf{R}}$ such that $\sum_{n=1}^{\infty} \eta_{n} v_{n, e} \in \mathcal{U}_{Y}^{s}\left(\mathcal{K}_{X}, \geq\right) ;$
(U5) for any $\left\{v_{\lambda}\right\} \in \mathcal{U}_{Y}(\Lambda)$ there exists $\left\{v_{e}\right\} \in \mathcal{U}_{Y}^{s}\left(\mathcal{K}_{X}, \geq\right)$ such that for any $e \in \mathcal{K}_{X}$ there exists $\lambda(e) \in \Lambda$ such that $v_{\lambda(e)} \leq v_{e}$.
Theorem 3.1. Let X be a vector lattice with unit satisfying the principal projection property, Y a complete vector lattice and $a, b \in D \in \mathcal{C} \mathcal{O}_{X}$ with $a<b$. Suppose that $\mathcal{U}_{Y}^{s}\left(\mathcal{K}_{X}, \geq\right)$ satisfies (U4) and (U5) and $\mathcal{U}_{\mathcal{L}(X, Y)}^{s}\left(\mathcal{K}_{X}, \geq\right)$ satisfies (U5).

If $f_{n} \in \mathbf{(H K)}(\langle a \mid b\rangle, Y),\left\{f_{n}\right\}$ is monotone increasing and uniformly pointwise convergent to f on $\langle a \mid b\rangle$ and there exists $I \in Y$ such that

$$
o-(H K) \int_{a}^{b} f_{n}(x) d x \uparrow I,
$$

then $f \in \mathbf{(H K)}(\langle a \mid b\rangle, Y)$ and

$$
o-(H K) \int_{a}^{b} f(x) d x=I
$$

Proof. Let F_{n} be the primitive of f_{n}. Since $\mathcal{U}_{Y}^{s}\left(\mathcal{K}_{X}, \geq\right)$ satisfies (U5), there exists $\left\{v_{e}\right\} \in$ $\mathcal{U}_{Y}^{s}\left(\mathcal{K}_{X}, \geq\right)$ such that for any $e \in \mathcal{K}_{X}$ there exists a natural number $n_{1}(e)$ such that

$$
0 \leq I-\left(F_{n_{1}(e)}(b)-F_{n_{1}(e)}(a)\right) \leq v_{e}
$$

Since $\left\{f_{n}\right\}$ is uniformly convergent to f on $\langle a \mid b\rangle$ and $\mathcal{U}_{\mathcal{L}(X, Y)}^{s}\left(\mathcal{K}_{X}, \geq\right)$ satisfies (U5), there exists $\left\{w_{e}\right\} \in \mathcal{U}_{\mathcal{L}(X, Y)}^{s}\left(\mathcal{K}_{X}, \geq\right)$ such that for any $e \in \mathcal{K}_{X}$ there exists a natural number $n_{2}(e)$ such that for any $\xi \in\langle a \mid b\rangle$ there exists a natural number $\rho\left(\xi, n_{2}(e)\right)$ such that

$$
0 \leq f(\xi)-f_{\rho\left(\xi, n_{2}(e)\right)}(\xi) \leq w_{e}
$$

Without loss of generality it may be assumed that $n_{1}(e) \leq \rho\left(\xi, n_{2}(e)\right)$ for any $e \in \mathcal{K}_{X}$ and for any $\xi \in\langle a \mid b\rangle$. By [15, Theorem 3.1] for any natural number n there exists $\left\{v_{n, e}\right\} \in$ $\mathcal{U}_{Y}^{s}\left(\mathcal{K}_{X}, \geq\right)$ such that for any $e \in \mathcal{K}_{X}$ there exists a gauge δ_{n} such that for any δ_{n}-fine division $\left\{\left(\left\langle x_{k-1} \mid x_{k}\right\rangle, \xi_{k}\right) \mid k=1, \ldots, K\right\}$

$$
\sum_{k=1}^{K}\left|f_{n}\left(\xi_{k}\right)\left(x_{k}-x_{k-1}\right)-\left(F_{n}\left(x_{k}\right)-F_{n}\left(x_{k-1}\right)\right)\right| \leq 4 v_{n, e}
$$

Since $\mathcal{U}_{Y}^{s}\left(\mathcal{K}_{X}, \geq\right)$ satisfies (U4), there exists $\left\{\eta_{n}\right\} \subset \mathcal{K}_{\mathbf{R}}$ such that $\sum_{n=1}^{\infty} \eta_{n} v_{n, e} \in \mathcal{U}_{Y}^{s}\left(\mathcal{K}_{X}, \geq\right)$. Let $p(n)$ be a natural number with $2^{-p(n)} \leq \eta_{n}$. Denote δ_{n} corresponding $\theta(e, p(n)) e$ instead of e by the same symbol again, where $\theta(e, n)=\underbrace{\theta(\theta(\cdots \theta(\theta)}_{n}(e) e) \cdots e) e)$. Then

$$
\begin{aligned}
\sum_{k=1}^{K}\left|f_{n}\left(\xi_{k}\right)\left(x_{k}-x_{k-1}\right)-\left(F_{n}\left(x_{k}\right)-F_{n}\left(x_{k-1}\right)\right)\right| & \leq 4 v_{n, \theta(e, p(n)) e} \\
& \leq 4 \cdot 2^{-p(n)} v_{n, e} \leq 4 \eta_{n} v_{n, e}
\end{aligned}
$$

Since $\left\{F_{n}\left(x_{k}\right)-F_{n}\left(x_{k-1}\right) \mid n=1,2, \ldots\right\}$ is monotone increasing for any k, it holds that

$$
\begin{aligned}
0 & \leq I-\sum_{k=1}^{K}\left(F_{\rho\left(\xi_{k}, n_{2}(e)\right)}\left(x_{k}\right)-F_{\rho\left(\xi_{k}, n_{2}(e)\right)}\left(x_{k-1}\right)\right) \\
& \leq I-\sum_{k=1}^{K}\left(F_{n_{1}(e)}\left(x_{k}\right)-F_{n_{1}(e)}\left(x_{k-1}\right)\right) \\
& =I-\left(F_{n_{1}(e)}(b)-F_{n_{1}(e)}(a)\right) \leq v_{e}
\end{aligned}
$$

Let $\delta(\xi, e)=\delta_{\rho\left(\xi, n_{2}(e)\right)}(\xi, e)$. Then for any δ-fine division $\left\{\left(\left\langle x_{k-1} \mid x_{k}\right\rangle, \xi_{k}\right) \mid k=1, \ldots, K\right\}$ since without loss of generality it may be assumed that there exists a natural number n such that the δ-fine division is also δ_{n}-fine, it holds that

$$
\begin{aligned}
& \left|\sum_{k=1}^{K} f\left(\xi_{k}\right)\left(x_{k}-x_{k-1}\right)-I\right| \\
& \leq \sum_{k=1}^{K}\left|f\left(\xi_{k}\right)\left(x_{k}-x_{k-1}\right)-f_{\rho\left(\xi_{k}, n_{2}(e)\right)}\left(\xi_{k}\right)\left(x_{k}-x_{k-1}\right)\right| \\
& \quad+\sum_{k=1}^{K} \mid f_{\rho\left(\xi_{k}, n_{2}(e)\right)}\left(\xi_{k}\right)\left(x_{k}-x_{k-1}\right) \\
& \quad-\left(F_{\rho\left(\xi_{k}, n_{2}(e)\right)}\left(x_{k}\right)-F_{\rho\left(\xi_{k}, n_{2}(e)\right)}\left(x_{k-1}\right)\right) \mid \\
& \quad+\left|\sum_{k=1}^{K}\left(F_{\rho\left(\xi_{k}, n_{2}(e)\right)}\left(x_{k}\right)-F_{\rho\left(\xi_{k}, n_{2}(e)\right)}\left(x_{k-1}\right)\right)-I\right| \\
& \leq \sum_{k=1}^{K}\left|f\left(\xi_{k}\right)-f_{\rho\left(\xi_{k}, n_{2}(e)\right)}\left(\xi_{k}\right)\right|\left(x_{k}-x_{k-1}\right) \\
& \quad+\sum_{n=1}^{\infty} 4 \eta_{n} v_{n, e}+\left|F_{n_{1}(e)}(b)-F_{n_{1}(e)}(a)-I\right|
\end{aligned}
$$

$$
\leq w_{e}(b-a)+4 \sum_{n=1}^{\infty} \eta_{n} v_{n, e}+v_{e}
$$

By [14, Remark 2.1] $f \in(\mathbf{H K})(\langle a \mid b\rangle, Y)$ and

$$
o-(H K) \int_{a}^{b} f(x) d x=I
$$

Theorem 3.2. Let $X=\mathbf{R}, Y$ a complete vector lattice and $a, b \in D \in \mathcal{C} \mathcal{O}_{X}$ with $a<b$. Suppose that $\mathcal{L}(X, Y)$ satisfies (CB) and $\mathcal{U}_{\mathcal{L}(X, Y)}^{s}\left(\mathcal{K}_{X}, \geq\right) \cong \mathcal{U}_{Y}^{s}\left(\mathcal{K}_{X}, \geq\right)$ satisfies (U4) and (U5).

If $f_{n} \in \mathbf{(H K)}(\langle a \mid b\rangle, Y),\left\{f_{n}\right\}$ is monotone increasing for almost every $x \in\langle a \mid b\rangle$ and uniformly almost pointwise convergent to f on $\langle a \mid b\rangle$ and there exists $I \in Y$ such that

$$
o-(H K) \int_{a}^{b} f_{n}(x) d x \uparrow I
$$

then $f \in \mathbf{(H K})(\langle a \mid b\rangle, Y)$ and

$$
o-(H K) \int_{a}^{b} f(x) d x=I
$$

Proof. Since by [15, Lemma 4.1] without loss of generality it may be assumed $f_{n}(x) \uparrow f(x)$ for every $x \in\langle a \mid b\rangle$, it is clear by Theorem 3.1.

Lemma 3.3. Let $X=\mathbf{R}, Y$ a complete vector lattice and $a, b \in D \in \mathcal{C} \mathcal{O}_{X}$. Suppose that $\mathcal{U}_{Y}^{s}\left(\mathcal{K}_{X}, \geq\right)$ satisfies (U5).

If $f_{1}, f_{2}, g, h \in(\mathbf{H K})(\langle a \mid b\rangle, Y)$ satisfy that $g(x) \leq f_{1}(x) \leq h(x)$ and $g(x) \leq f_{2}(x) \leq h(x)$ for any $x \in\langle a \mid b\rangle$, then $f_{1} \vee f_{2}, f_{1} \wedge f_{2} \in(\mathbf{H K})(\langle a \mid b\rangle, Y)$.
Proof. Since $f_{1} \wedge f_{2}=-\left(\left(-f_{1}\right) \vee\left(-f_{2}\right)\right)$, we show only $\left.f_{1} \vee f_{2} \in(\mathbf{H K})\langle a \mid b\rangle, Y\right)$. Since X satisfies the principal projection property, we consider in the case of $a<b$.

Let F_{1} and F_{2} be primitives of f_{1} and f_{2} on $\langle a \mid b\rangle$, respectively. For $u, v \in\langle a \mid b\rangle$ let $F^{*}(u, v)=\left(F_{1}(v)-F_{1}(u)\right) \vee\left(F_{2}(v)-F_{2}(u)\right)$. Note that $(a+b) \vee(c+d) \leq a \vee c+b \vee d$ for any a, b, c, d in a vector lattice. Then $F^{*}(u, w) \leq F^{*}(u, v)+F^{*}(v, w)$ for any $u, v, w \in\langle a \mid b\rangle$. Let $\Delta: a=x_{0}<\cdots<x_{K}=b, x_{k} \in\langle a \mid b\rangle$. Since by Lemma 3.1 and [15, Theorem 2.3]

$$
\begin{aligned}
\sum_{k=1}^{K} F^{*}\left(x_{k-1}, x_{k}\right) & \leq \sum_{k=1}^{K} o-(H K) \int_{x_{k-1}}^{x_{k}} h(x) d x \\
& =o-(H K) \int_{a}^{b} h(x) d x
\end{aligned}
$$

and Y is complete, there exists

$$
I=\bigvee_{\Delta} \sum_{k=1}^{K} F^{*}\left(x_{k-1}, x_{k}\right)
$$

Let Λ be the class of divisions of $\langle a \mid b\rangle$. It is an upward directed set with respect to inclusive relation of division points. Then there exists $\left\{v_{\Delta}\right\} \in \mathcal{U}_{Y}(\Lambda)$ such that for any $\Delta \in \Lambda$

$$
0 \leq I-\sum_{k=1}^{K} F^{*}\left(x_{k-1}, x_{k}\right) \leq v_{\Delta}
$$

Since $\mathcal{U}_{Y}^{s}\left(\mathcal{K}_{X}, \geq\right)$ satisfies (U5), there exists $\left\{v_{0, e}\right\} \in \mathcal{U}_{Y}^{s}\left(\mathcal{K}_{X}, \geq\right)$ such that for any $e \in \mathcal{K}_{X}$ there exists a gauge δ_{1} such that $v_{\Delta} \leq v_{0, e}$ for any δ_{0}-fine division $\left\{\left(\left\langle x_{k-1} \mid x_{k}\right\rangle, \xi_{k}\right) \mid k=\right.$ $1, \ldots, K\}$ and for $\Delta: a=x_{0}<\cdots<x_{K}=b$. Moreover by [15, Theorem 3.1] there exists $\left\{v_{1, e}\right\} \in \mathcal{U}_{Y}^{s}\left(\mathcal{K}_{X}, \geq\right)$ such that for any $e \in \mathcal{K}_{X}$ there exists a gauge δ_{1} such that for any δ_{1}-fine division $\left\{\left(\left\langle x_{k-1} \mid x_{k}\right\rangle, \xi_{k}\right) \mid k=1, \ldots, K\right\}$

$$
\sum_{k=1}^{K}\left|f_{1}\left(\xi_{k}\right)\left(x_{k}-x_{k-1}\right)-\left(F_{1}\left(x_{k}\right)-F_{1}\left(x_{k-1}\right)\right)\right| \leq 4 v_{1, e}
$$

and there exists $\left\{v_{2, e}\right\} \in \mathcal{U}_{Y}^{s}\left(\mathcal{K}_{X}, \geq\right)$ such that for any $e \in \mathcal{K}_{X}$ there exists a gauge δ_{2} such that for any δ_{2}-fine division $\left\{\left(\left\langle x_{k-1} \mid x_{k}\right\rangle, \xi_{k}\right) \mid k=1, \ldots, K\right\}$

$$
\sum_{k=1}^{K}\left|f_{2}\left(\xi_{k}\right)\left(x_{k}-x_{k-1}\right)-\left(F_{2}\left(x_{k}\right)-F_{2}\left(x_{k-1}\right)\right)\right| \leq 4 v_{2, e}
$$

Let $\delta(\cdot, \cdot)=\delta_{0}(\cdot, \cdot) \wedge \delta_{1}(\cdot, \cdot) \wedge \delta_{2}(\cdot, \cdot)$. Then the above three inequalities are satisfied for any δ-fine division. Since $X=\mathbf{R}$, it holds that $\left(l_{1} \vee l_{2}\right)(x)=l_{1}(x) \vee l_{2}(x)$ for any $l_{1}, l_{2} \in \mathcal{L}(X, Y)$ and for any $x \in X$ with $x>0$. Note that $|a \vee b-c \vee d| \leq|a-c|+|b-d|$ for any a, b, c, d in a vector lattice. Then

$$
\begin{aligned}
& \left|\sum_{k=1}^{K}\left(\left(f_{1} \vee f_{2}\right)\left(\xi_{k}\right)\left(x_{k}-x_{k-1}\right)-F^{*}\left(x_{k-1}, x_{k}\right)\right)\right| \\
& \quad \leq \sum_{k=1}^{K}\left|f_{1}\left(\xi_{k}\right)\left(x_{k}-x_{k-1}\right) \vee f_{2}\left(\xi_{k}\right)\left(x_{k}-x_{k-1}\right)-F^{*}\left(x_{k-1}, x_{k}\right)\right| \\
& \quad \leq \sum_{k=1}^{K}\left(\left|f_{1}\left(\xi_{k}\right)\left(x_{k}-x_{k-1}\right)-\left(F_{1}\left(x_{k}\right)-F_{1}\left(x_{k-1}\right)\right)\right|\right. \\
& \left.\quad+\left|f_{2}\left(\xi_{k}\right)\left(x_{k}-x_{k-1}\right)-\left(F_{2}\left(x_{k}\right)-F_{2}\left(x_{k-1}\right)\right)\right|\right) \\
& \quad \leq 4 v_{1, e}+4 v_{2, e} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \left|\sum_{k=1}^{K}\left(f_{1} \vee f_{2}\right)\left(\xi_{k}\right)\left(x_{k}-x_{k-1}\right)-I\right| \\
& \quad \leq\left|\sum_{k=1}^{K}\left(\left(f_{1} \vee f_{2}\right)\left(\xi_{k}\right)\left(x_{k}-x_{k-1}\right)-F^{*}\left(x_{k-1}, x_{k}\right)\right)\right| \\
& \quad+\left|\sum_{k=1}^{K} F^{*}\left(x_{k-1}, x_{k}\right)-I\right| \\
& \quad \leq 4 v_{1, e}+4 v_{2, e}+v_{0, e}
\end{aligned}
$$

and hence $f_{1} \vee f_{2} \in(\mathbf{H K})(\langle a \mid b\rangle, Y)$ and its integral is equal to I.
Lemma 3.4. Let $X=\mathbf{R}, Y$ a complete vector lattice and $a, b \in D \in \mathcal{C} \mathcal{O}_{X}$. Suppose that $\mathcal{L}(X, Y)$ satisfies (CB) and $\mathcal{U}_{Y}^{s}\left(\mathcal{K}_{X}, \geq\right)$ satisfies (U5).

If $f_{1}, f_{2}, g, h \in(\mathbf{H K})(\langle a \mid b\rangle, Y)$ satisfy that $g(x) \leq f_{1}(x) \leq h(x)$ and $g(x) \leq f_{2}(x) \leq h(x)$ for almost every $x \in\langle a \mid b\rangle$, then $f_{1} \vee f_{2}, f_{1} \wedge f_{2} \in \mathbf{(H K)}(\langle a \mid b\rangle, Y)$.

Proof. Since by [15, Lemma 4.1] without loss of generality it may be assumed that $g(x) \leq$ $f_{1}(x) \leq h(x)$ and $g(x) \leq f_{2}(x) \leq h(x)$ for any x, it is clear by Lemma 3.3.

Definition 3.2. Let X be a vector lattice with unit, Y a complete vector lattice, $a, b \in$ $D \in \mathcal{C} \mathcal{O}_{X}$ with $a<b$ and F a mapping from D into Y.

The following value

$$
V(F ; a, b)=\bigvee_{\varepsilon \in \mathcal{K}_{\mathbf{R}}} \begin{gathered}
\substack{ \\
a=x_{0}<\cdots<x_{K}=b} \\
x_{k} \in\langle a \mid b\rangle \\
x_{k}-x_{k-1} \leq \varepsilon(b-a)
\end{gathered}
$$

is said to be the total variation of F on $\langle a \mid b\rangle . F$ is said to be of bounded variation if there exists the above value.

Remark 3.1. When $X=\mathbf{R}$ and F is absolutely continuous, then it is clear that F is of bounded variation.

Lemma 3.5. Let $X=\mathbf{R}, Y$ a complete vector lattice and $a, b \in D \in \mathcal{C} \mathcal{O}_{X}$. Suppose that $\mathcal{U}_{Y}^{s}\left(\mathcal{K}_{X}, \geq\right)$ satisfies (U5).

Let F_{1}, F_{2} be primitives of $f_{1}, f_{2} \in(\mathbf{H K})(\langle a \mid b\rangle, Y)$, respectively. If both F_{1} and F_{2} are of bounded variation, then $f_{1} \vee f_{2}, f_{1} \wedge f_{2} \in(\mathbf{H K})(\langle a \mid b\rangle, Y)$.
Proof. Let F^{*} be the same as in the proof of Lemma 3.3. Note that $|a \vee b| \leq|a|+|b|$ for any a, b in a vector lattice. Then

$$
\begin{aligned}
\sum_{k=1}^{K} F^{*}\left(x_{k-1}, x_{k}\right) & \leq \sum_{k=1}^{K}\left(\left|F_{1}\left(x_{k}\right)-F_{1}\left(x_{k-1}\right)\right|+\left|F_{2}\left(x_{k}\right)-F_{2}\left(x_{k-1}\right)\right|\right) \\
& \leq V\left(F_{1} ; a, b\right)+V\left(F_{2} ; a, b\right)
\end{aligned}
$$

Since Y is complete, there exists

$$
I=\bigvee_{a=x_{0}<\cdots<x_{K}=b} \sum_{k=1}^{K} F^{*}\left(x_{k-1}, x_{k}\right)
$$

The rest of the proof is same in Lemma 3.3.
Theorem 3.3. Let $X=\mathbf{R}, Y$ a complete vector lattice and $a, b \in D \in \mathcal{C} \mathcal{O}_{X}$. Suppose that $\mathcal{U}_{\mathcal{L}(X, Y)}^{s}\left(\mathcal{K}_{X}, \geq\right) \cong \mathcal{U}_{Y}^{s}\left(\mathcal{K}_{X}, \geq\right)$ satisfies (U4) and (U5).

If $f_{n}, g, h \in(\mathbf{H K})(\langle a \mid b\rangle, Y), g(x) \leq f_{n}(x) \leq h(x)$ and $f_{n}(x) \rightarrow f(x)$ for any $x \in D$, then $f \in \mathbf{(H K)}(\langle a \mid b\rangle, Y)$ and

$$
o-(H K) \int_{a}^{b} f_{n}(x) d x \rightarrow o-(H K) \int_{a}^{b} f(x) d x .
$$

Proof. We show in the case of $a<b$. It can be proved similarly in the case of $a>b$. By Lemma 3.3 it holds that $\bigwedge_{n=i}^{j} f_{n} \in \mathbf{(H K)}(\langle a \mid b\rangle, Y)$ for any natural numbers i, j with $i \leq j$. The sequence

$$
\left\{-\bigwedge_{n=i}^{i} f_{n},-\bigwedge_{n=i}^{i+1} f_{n}, \ldots\right\}
$$

is monotone increasing and its upper bound is $-g$. By Theorem 3.1 it holds that $-\bigwedge_{n=i}^{\infty} f_{n} \in$ $\mathbf{(H K)}(\langle a \mid b\rangle, Y)$. Therefore $\bigwedge_{n=i}^{\infty} f_{n} \in \mathbf{(H K)}(\langle a \mid b\rangle, Y)$. In the same way $\bigvee_{n=i}^{\infty} f_{n} \in(\mathbf{H K})(\langle a \mid b\rangle, Y)$. Moreover the sequence

$$
\left\{\bigwedge_{n=1}^{\infty} f_{n}, \bigwedge_{n=2}^{\infty} f_{n}, \ldots\right\}
$$

is monotone increasing and its upper bound is h. By Theorem 3.1 it holds that $\bigvee_{i=1}^{\infty} \bigwedge_{n=i}^{\infty} f_{n}=$ $f \in(\mathbf{H K})(\langle a \mid b\rangle, Y)$. Therefore

$$
o-(H K) \int_{a}^{b}\left(\bigwedge_{n=i}^{\infty} f_{n}\right)(x) d x \uparrow o-(H K) \int_{a}^{b} f(x) d x
$$

In the same way

$$
o-(H K) \int_{a}^{b}\left(\bigvee_{n=i}^{\infty} f_{n}\right)(x) d x \downarrow o-(H K) \int_{a}^{b} f(x) d x
$$

Since by Lemma 3.1

$$
\begin{aligned}
& o-(H K) \int_{a}^{b}\left(\bigwedge_{n=i}^{\infty} f_{n}\right)(x) d x \leq \bigwedge_{n=i}^{\infty} o-(H K) \int_{a}^{b} f_{n}(x) d x \\
& \quad \leq \bigvee_{n=i}^{\infty} o-(H K) \int_{a}^{b} f_{n}(x) d x \leq o-(H K) \int_{a}^{b}\left(\bigvee_{n=i}^{\infty} f_{n}\right)(x) d x
\end{aligned}
$$

it holds that

$$
o-(H K) \int_{a}^{b} f_{n}(x) d x \rightarrow o-(H K) \int_{a}^{b} f(x) d x
$$

Theorem 3.4. Let $X=\mathbf{R}, Y$ a complete vector lattice and $a, b \in D \in \mathcal{C} \mathcal{O}_{X}$. Suppose that $\mathcal{L}(X, Y)$ satisfies (CB) and $\mathcal{U}_{\mathcal{L}(X, Y)}^{s}\left(\mathcal{K}_{X}, \geq\right) \cong \mathcal{U}_{Y}^{s}\left(\mathcal{K}_{X}, \geq\right)$ satisfies (U4) and (U5).

If $f_{n}, g, h \in(\mathbf{H K})(\langle a \mid b\rangle, Y), g(x) \leq f_{n}(x) \leq h(x)$ and $f_{n}(x) \rightarrow f(x)$ for almost every $x \in D$, then $f \in \mathbf{(H K)}(\langle a \mid b\rangle, Y)$ and

$$
o-(H K) \int_{a}^{b} f_{n}(x) d x \rightarrow o-(H K) \int_{a}^{b} f(x) d x
$$

Proof. Since by [15, Lemma 4.1] without loss of generality it may be assumed that $g(x) \leq$ $f_{n}(x) \leq h(x)$ and $f_{n}(x) \rightarrow f(x)$ for any x, it is clear by Theorem 3.3.

References

[1] G. Birkhoff, Lattice Theory, Amer. Math. Soc., 1940.
[2] A. Boccuto, Differential and integral calculus in Riesz spaces, Tatra Mt. Math. Publ., 14 (1998), 293-323.
[3] A. Boccuto, B. Riečan, M. Vrábelová, Kurzweil-Henstock Integral in Riesz Spaces, Bentham Science Publishers, 2009, Sharjah.
[4] R. Cristescu, Ordered Vector Spaces and Linear Operators, Abacus Press, 1976.
[5] S. Izumi, An abstract integral (X), Proc. Imp. Acad. Japan, 18 (1942), 543-547.
[6] S. Izumi, G. Sunouchi, M. Orihara and M. Kasahara, Theory of Denjoy integral, I (in Japanese), Proc. Physico-Mathematical Soc. Japan, 17 (1943), 102-120.
[7] S. Izumi, G. Sunouchi, M. Orihara and M. Kasahara, Theory of Denjoy integral, II (in Japanese), Proc. Physico-Mathematical Soc. Japan, 17 (1943), 321-353.
[8] T. Kawasaki, Order derivative of operators in vector lattices, Math. Japonica, 46 (1997), 7984.
[9] T. Kawasaki, On Newton integration in vector spaces, Math. Japonica, 46 (1997), 85-90.
[10] T. Kawasaki, Order Lebesgue integration in vector lattices, Math. Japonica, 48 (1998), 13-17.
[11] T. Kawasaki, Approximately order derivatives in vector lattices, Math. Japonica, 49 (1999), 229-239.
[12] T. Kawasaki, Order derivative and order Newton integral of operators in vector lattices, Far East J. Math. Sci., 1 (1999), 903-926.
[13] T. Kawasaki, Uniquely determinedness of the approximately order derivative, Sci. Math. Japonicae Online, 7 (2002), 333-336; Sci. Math. Japonicae, 57 (2003), 365-371.
[14] T. Kawasaki, Denjoy integral and Henstock-Kurzweil integral in vector lattices, I, Czech. Math. J., 59 (2009), 381-399.
[15] T. Kawasaki, Denjoy integral and Henstock-Kurzweil integral in vector lattices, II, Czech. Math. J., 59 (2009), 401-417.
[16] Y. Kubota, Theory of the Integral (in Japanese), Maki, 1977.
[17] P. Y. Lee, Lanzhou Lectures on Henstock Integration, World Scientific, 1989.
[18] W. A. J. Luxemburg and A. C. Zaanen, Riesz Spaces, North-Holland, 1971.
[19] P. McGill, Integration in vector lattices, J. London Math. Soc.(2), 11 (1975), 347-360.
[20] B. Riečan and T. Neubrunn, Integral, Measure, and Ordering, Kluwer, 1997.
[21] P. Romanovski, Intégrale de Denjoy dans les espaces abstraits, Recueil Mathématique (Mat. Sbornik) N. S., 9 (1941), 67-120.
[22] H. H. Schaefer, Banach Lattices and Positive Operators, Springer-Verlag, 1974.
[23] B. Z. Vulikh, Introduction to the Theory of Partially Orderd Spaces, Wolters-Noordhoff, 1967.
Communicated by Jun Kawabe

T. Kawasaki

College of Engineering, Nihon University, Fukushima 963-8642, Japan
E-mail: toshiharu.kawasaki@nifty.ne.jp

