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NAZAROV TYPE UNCERTAINTY INEQUALITY
FOR FOURIER SERIES
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Abstract. We shall obtain an analogue of Nazarov’s uncertainty inequality for n-
dimensional Fourier series from the one for n-dimensional Fourier transform. Some
inequalities are new and better than ones deduced from a classical local uncertainty
inequality.

1 Introduction The uncertainty principle generally asserts that a non-zero function and
its Fourier transform cannot be too small simultaneously. Although interpretations of the
smallness are very broad, various versions of the uncertainty principle exist and also, anal-
ogous versions for Fourier series exist. However, as for the Nazarov uncertainty principle, it
is known only for Fourier transform. In this paper we shall obtain an analogous uncertainty
inequality for n-dimensional Fourier series. Nazarov’s uncertainty inequality is originally
appeared in [2] and P. Jaming [1] extends it to a higher dimensional Fourier transform:
There exists a constant C such that, if S, Σ are subset of Rn of finite measure, then for
every f ∈ L2(Rn),∫

Rn

|f(x)|2dx ≤ γ(S, Σ)
( ∫

Rn\S

|f(x)|2dx +
∫

Rn\Σ
|Ff(x)|2dx

)
,(1)

where

γ(S, Σ) = CeC min{|S||Σ|,|S|
1
n w(Σ),|Σ|

1
n w(S)},

Ff is the Fourier transform of f , | · | is the measure and w(·) is the mean width. We shall
rewrite this inequality for a Fourier series version. For f ∈ l1(Zn)∩ l2(Zn), we denote by f̌
the trigonometric series

f̌(λ) =
∑

m∈Zn

f(m)e2πiλm, λ ∈ Rn,

and for any function g ∈ Lp(Rn), 1 ≤ p ≤ ∞, we denote by f £ g a convolution

f £ g(x) =
∑

m∈Zn

f(m)g(x − m), x ∈ Rn.

Applying the above inequality (1) to the function f £ g on Rn, we can deduce a Nazarov
type uncertainty inequality for f on Tn. Let I be a closed measurable subset in [− 1

2 , 1
2 ]n,

S a finite subset in Zn and Σ a measurable subset in I. Then for all functions gI ∈ L2(Rn)
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supported on I and vanishing on the boundary of I, the following inequality follows (see
Theorem 3.4 and let J = {0}):∑

m∈Zn

|f(m)|2

≤γ(S + I, Σ)
( ∑

m∈Zn\S

|f(m)|2 +
∫

Tn\Σ
|f̌(x)|2dx +

∫
Σ

|f̌(x)|2
(
1 − |F(gI)(x)|2

‖gI‖2
L2(Rn)

)
dx

)
.

Especially, letting I = [−1
2 , 1

2 ]n and taking the characteristic function χ of [− 1
2 , 1

2 ]n as gI ,
we see that

1 − |F(χ)(x)|2

‖χ‖2
L2(Rn)

= 1 −
n∏

i=1

∣∣∣ sinπxi

πxi

∣∣∣2 = O(|x|2), x = (x1, x2, · · · , xn),

and therefore, we can deduce that∑
m∈Zn

|f(m)|2 ≤ γ(S + I, Σ)
( ∑

m∈Zn\S

|f(m)|2 +
∫

Tn\Σ
|f̌(x)|2dx + C

∫
Σ

|f̌(x)|2|x|2dx
)

(2)

(see §4, (I)). Clearly, if we can find a function gI satisfying

|F(gI)(x)|2

‖gI‖2
L2(Rn)

= 1 + O(xγ),

then we can replace |x|2 in the last integral of (2) by |x|γ . However, we see that γ = 2
associated to χ is maximal when I is a subset in [−1

2 , 1
2 ]n (see Remark 4.1). Therefore, in

§3 we shall consider a general subset I ⊂ Rn and obtain a modified inequality of (2). In
§4, we find an example of the modified inequality where |x|2 in (2) is replaced by |x|10 (see
Corollary 4.2).

On the other hand, J. F. Price and P. C. Racki [3] obtain the so-called local uncertainty
inequalities for Fourier series. As a special case, for β < 1

2 , α ≥ 0 and α ≥ β, there exists a
constant K such that for all f̌ ∈ L1(Tn) and all finite S of Zn,∑

m∈S

|f(m)|2 ≤ K2|S|2α

∫
Tn

|f̌(x)|2|x|2nβdx.

Hence, it easily follows that

∑
m∈Zn

|f(m)|2 ≤
∑

m∈Zn\S

|f(m)|2 + K2|S|2α

∫
Tn\Σ

|f̌(x)|2dx + K2|S|2α

∫
Σ

|f̌(x)|2|x|2nβdx.

(3)

Here the weight function |x|2nβ , which reflects the localization of f̌ around zero, is better
than |x|2 in (2) when n ≥ 3. In our modified inequalities (see Theorem 3.4 and Remark
3.5), there is some possibility of replacing |x|2nβ by |x|γ . At this stage, γ = 10 is our best
result (see §4, (IV)).

2 Notations. We identify [−1
2 , 1

2 ]n with Tn. We denote by Lp(Tn) the space of all
measurable functions f(t) on Tn such that ‖f‖p

Lp(Tn) =
∫

Tn |f(t)|pdt < ∞ for 1 ≤ p < ∞
and ‖f‖L∞(Tn) = ess.supt∈Tn |f(t)| < ∞ for p = ∞. Similarly, we denote by lp(Zn) the space
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of all functions F (m) on Zn such that ‖F‖p
lp(Zn) =

∑
m∈Zn |F (m)|p < ∞ for 1 ≤ p < ∞ and

‖F‖L∞(Zn) = supm∈Zn |F (m)| < ∞ for p = ∞. For f ∈ L1(Tn), the Fourier coefficients of
f are defined by

f̂(m) =
∫

Tn

f(t)e−2πitmdt, m ∈ Zn.

and ‖f̂‖L∞(Zn) ≤ ‖f‖L1(Tn). For F ∈ l1(Zn), we denote by F̌ the trigonometric series

F̌ (λ) =
∑

m∈Zn

F (m)e2πiλm, λ ∈ Rn.

F̌ is a 1-periodic function on Rn that can be regarded as a function on Tn and ‖F̌‖L∞(Tn) ≤
‖F‖L1(Zn). If f and f̂ belong to L1(Tn) and l1(Zn) respectively, then f = ˇ̂

f . Moreover, if
f ∈ L2(Tn), then f̂ ∈ l2(Zn) and ‖f‖L2(Tn) = ‖f̂‖L2(Zn). We define a convolution ⊗ on Zn

as follows: For F,G ∈ l1(Zn),

F ⊗ G(n) =
∑

m∈Zn

F (m)G(n − m).

Then F ⊗ G ∈ l1(Zn) and (F ⊗ G)ˇ= F̌ Ǧ.
We denote by Lp(Rn) the space of all measurable functions f(x) on Rn such that

‖f‖p
Lp(Rn) =

∫
Rn |f(x)|pdx < ∞ for 1 ≤ p < ∞ and ‖f‖L∞(Rn) = ess.supx∈Rn |f(x)| < ∞ for

p = ∞. For f ∈ L1(Rn), we denote the Fourier transform of f as

F(f)(λ) =
∫

Rn

f(x)e−2πiλxdx, λ ∈ Rn.

Clearly ‖F(f)‖L∞(Rn) ≤ ‖f‖L1(Rn). For F ∈ L1(R), the inverse Fourier transform F−1 is
given by

F−1(F )(x) =
1

(2π)n

∫
Rn

F (λ)e2πiλxdλ, x ∈ Rn.

If f and F(f) ∈ L1(Rn), then f = F−1(F(f)). Moreover, if f ∈ L2(Rn), then F(f) ∈ l2(Rn)
and (2π)

n
2 ‖f‖L2(Rn) = ‖F(f)‖L2(Rn). We define a convolution ∗ on Rn as follows: For

f, g ∈ L1(Rn),

f ∗ g(x) =
∫

Rn

f(y)g(x − y)dy.

Then f ∗ g ∈ L1(R1) and F(f ∗ g) = F(f)F(g).
For f ∈ l1(Zn) and g ∈ Lp(Rn), we define a convolution £ as

f £ g(x) =
∑

m∈Zn

f(m)g(x − m), x ∈ Rn.

We can easily see that for 1 ≤ p ≤ ∞,

‖f £ g‖Lp(Rn) ≤ ‖f‖l1(Zn)‖g‖Lp(Rn)

and, if p = 1, then

F(f £ g)(λ) = f̌(λ)F(g)(λ).(4)
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3 Nazarov’s inequality on Zn. Let I be a connected subset of Rn of finite measure
and containing 0 and put

2I◦ ∩ Zn = J,

where I◦ = I − ∂I. Let J] denote the cardinal of J . For a finite subset S of Zn, let S̃ be a
subset of Rn defined by

S̃ = S + I.

Then (S +2I◦)∩Zn = S +J . In what follows gI is a function in L2(Rn) which is supported
on I and vanishes on ∂I. We define

‖gI‖2
2,j =

∫
Rn

gI(x)gI(x − j)dx

for j ∈ J .

Lemma 3.1 For f ∈ l1(Zn) ∩ l2(Zn), it follows that

‖f £ gI‖L2(Rn) =
∑
j∈J

‖gI‖2
2,j

∑
m∈Zn

f(m)f(m + j)

=
∑
j∈J

‖gI‖2
2,j

∫
Tn

|f̌(λ)|2e2πijλdλ ≤ J]‖gI‖2
L2(Rn)‖f‖

2
l2(Zn).(5)

Proof. Since gI(x) = 0 if x /∈ I◦ and 2I◦ ∩ Zn = J , it follows that

‖f £ gI‖2
L2(Rn) =

∑
m∈Zn

∑
m′∈Zn

f(m)f(m′)
∫

Rn

gI(x − m)gI(x − m′)dx

=
∑

m∈Zn

∑
m′∈Zn

f(m)f(m′)
∫

Rn

gI(x)gI(x − (m′ − m))dx

=
∑
j∈J

∑
m∈Zn

f(m)f(m + j)
∫

Rn

gI(x)gI(x − j)dx.

The equality (5) follows from the Parseval equality for Fourier series. The inequality is
obvious from the Schwartz inequality. ¤

Lemma 3.2 Let f ∈ l1(Zn) and gI , S, S̃ be as above. Then for all x ∈ Rn,

(6) |f | £ |gI |(x)χS̃(x) ≤ |fχS+J | £ |gI |(x) ≤ |f | £ |gI |(x)|χS̃+J(x),

where χS+J and χS̃ , χS̃+J are the characteristic functions of the sets S + J ⊂ Zn and
S̃, S̃ + J ⊂ Rn respectively. Especially, when J = {0}, it follows that

(7) f £ gI(x)χS̃(x) = (fχS) £ gI(x).

Proof. We recall that |f | £ |gI |(x) is given by∑
m∈Zn

|f(m)||gI(x − m)|.
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We suppose that χS̃(x) = 1 and g(x − m) 6= 0. Then m ∈ x − I◦ ⊂ S̃ + I◦ = S + 2I◦.
Since (S + 2I◦)∩Zn = S + J , it follows m ∈ S + J and χS+J(m) = 1. If χS+J(m) = 1 and
gI(x − m) 6= 0, then x ∈ m + I ⊂ S + J + I = S̃ + J and χS̃+J(x) = 1. Hence the desired
inequalities (6) follow. Let J = {0} and suppose that g(x − m) 6= 0. Then it follows that
χS̃(x) = 1 if and only if χS+J(m) = 1. Hence we can deduce the equality (7). ¤

Corollary 3.3 Let I, J, gI , S, S̃ be as above and Σ a measurable subset in Rn such that
Σ ⊂ Tn. Then for f ∈ l1(Zn),

(i)
∫

Rn\(S̃+J)

|f £ gI(x)|2dx ≤ J]‖gI‖2
L2(Rn)

∑
m∈Zn\(S+J)

|f(m)|2

and the equality holds when J = {0}.

(ii)
∫

Rn\Σ
|F(f £ gI)(x)|2dx =

∑
j∈J

‖gI‖2
2,j

∫
Tn\Σ

|f̌(λ)|2e2πijλdλ

+
∫

Σ

|f̌(λ)|2(
∑
j∈J

‖gI‖2
2,je

2πijλ − |F(gI)(λ)|2)dx.

Proof. (i) : By using Lemma 3.1 and Lemma 3.2, we see that∫
Rn\(S̃+J)

|f £ gI(x)|2dx ≤ ‖|f | £ |gI |‖2
L2(Rn) − ‖|f | £ |gI · χS̃+J |‖

2
L2(Rn)

≤ ‖|f | £ |gI |‖2
L2(Rn) − ‖|fχS+J | £ |gI |‖2

L2(Rn)

= ‖|f(1 − χS+J)| £ |gI |‖2
L2(Rn)

≤ J]‖gI‖2
L2(Rn)

∑
m∈Zn\(S+J)

|f(m)|2.

When J = {0}, the equalities (5) and (7) yield the desired equality.
(ii) : It follows from (4) and Lemma 3.1 that∫

Rn\Σ
|F(f £ gI)(x)|2dx

=
∫

Rn

|F(f £ gI)(x)|2dx −
∫

Σ

|F(f £ gI)(x)|2dx

=
∫

Rn

|f £ gI(x)|2dx −
∑
j∈J

‖g‖2
2,j

∫
Σ

|f̌(λ)|2e2πijλdλ

+
∑
j∈J

‖g‖2
2,j

∫
Σ

|f̌(λ)|2e2πijλdλ −
∫

Σ

|f̌(λ)F(gI)(λ)|2dx

=
∑
j∈J

‖g‖2
2,j

∫
Tn\Σ

|f̌(λ)|2e2πijλdλ+
∫

Σ

|f̌(x)|2(
∑
j∈J

‖g‖2
2,je

2πijλ−|F(gI)(λ)|2)dλ.

¤

Now applying Nazarov’s inequality (1) to f£gI and combining Lemma 3.1 and Corollary
3.3, we can deduce the following.
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Theorem 3.4 Let I be a connected subset of Rn of finite measure and containing 0 and
put 2I◦ ∩Zn = J . Let S be a finite subset of Zn and Σ a measurable subset in Rn such that
Σ ⊂ Tn. Then for all f ∈ l1(Zn) ∩ l2(Zn),∑

j∈J

‖gI‖2,j

∑
m∈Zn

f(m)f(m + j)

≤ γ(S̃ + J,Σ)
(

J]‖gI‖2
L2(Rn)

( ∑
m∈Zn\(S+J)

|f(m)|2 +
∫

Tn\Σ
|f̌(λ)|2dλ

)
+

∫
Σ

|f̌(λ)|2
(∑

j∈J

‖gI‖2
2,je

2πijλ − |F(gI)(λ)|2
)
dλ

)
,

where γ(S̃ + J,Σ) is the Nazarov constant.

Remark 3.5 Let p ∈ Z and I = [−p − 1
2 , p + 1

2 ]n. Then Jn
p = 2I◦ ∩ Zn = {j =

(j1, j2, · · · , jn) | −2p ≤ ji ≤ 2p, 1 ≤ i ≤ n} is a representative set of Zn/(2p + 1)Zn.
For each j ∈ Jn

p we put

fj(m) =

{
f(m) if m ∈ j + (2p + 1)Zn

0 otherwise
.

We note that f =
∑

j∈Jn
p

fj and apply the above theorem to each fj . Then summing up
each inequality, we can deduce the following:∑

m∈Zn

|f(m)|2

≤γ(S̃ + Jn
p ,Σ)

(
(2p + 1)n‖gI‖2

L2(Rn)

( ∑
m∈Zn\(S+Jn

p )

|f(m)|2 +
∫

Tn\Σ

∑
j∈Jn

p

|f̌j(λ)|2dλ
)

+
∫

Σ

∑
j∈Jn

p

|f̌j(λ)|2
( ∑

j∈Jn
p

‖gI‖2
2,je

2πijλ − |F(gI)(λ)|2
)
dλ

)
.

4 Examples We here give some examples of gI and calculate explicitly the inequality in
Theorem 3.4. Especially, the order of the weight function in the second integral is important
for the localization of f̌ .

(I) First we shall consider the case of n = 1. Let I = [− 1
2 , 1

2 ] and gI be the characteristic
function of I:

gI(x) = χ(x) =

{
1 |x| < 1

2

0 |x| ≥ 1
2 .

Then J = {0} and ‖gI‖2,0 = ‖gI‖2
L2(R) = 1. Moreover, F(gI)(λ) = sin πλ

πλ = 1 − (πλ)2

6 +
O(|λ|4). Hence, it follows that

‖gI‖2
2,0 − |F(gI)(λ)|2 =

(πλ)2

3
+ O(|λ|4).

When n > 1, let I = [− 1
2 , 1

2 ]n and gI(x) = χ(x1)χ(x2) · · ·χ(xn). Then it is easy to see that

‖gI‖2
2,0 − |F(gI)(λ)|2 = 1 −

n∏
i=1

∣∣∣ sinπλi

πλi

∣∣∣2 =
(π|λ|)2

3
+ O(|λ|4).
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Remark 4.1 Let f be a function supported on I0 ⊂ I = [− 1
2 , 1

2 ]n and satisfy

‖f‖2
L2(Rn) − |F(f)(0)|2 = 0.(8)

Without loss of generality, we may suppose that ‖f‖∞ ≤ 1. Since

|F(f)(0)| =
∣∣∣ ∫

I0

f(x)dx
∣∣∣ ≤ ∫

I0

|f(x)|dx ≤ |I0|1/2‖f‖L2(Rn),

it follows that I = I0 and f(x) = 1 for all x ∈ I0. Therefore, functions f satisfying (8) are
constant multiples of the characteristic function χ of I.

In the following we shall give some examples of gI , whose support is larger than [− 1
2 , 1

2 ]n.
We shall consider the case of n = 1, because, similarly as in (I), we can obtain a general
case from their products.
(II) Let n = 1, I = [−1, 1] and

gI = χ ∗ χ.

Then J = {−1, 0, 1} and

‖gI‖2
2,0 =

2
3
, ‖gI‖2

2,±1 =
1
6
.

Hence, it follows that∑
j∈J

‖gI‖2
2,je

2πijλ =
2
3

+
1
3

cos 2πλ = 1 − 2
3
(πλ)2 +

2
9
(πλ)4 + O(|λ|6).

On the other hand,

F(gI)(λ)2 =
( sinπλ

πλ

)4

= 1 − 2
3
(πλ)2 +

1
5
(πλ)4 + O(|λ|6).

Hence, it follows that∑
j∈J

‖gI‖2
2,je

2πijλ − |F(gI)(λ)|2 =
(πλ)4

45
+ O(|λ|6).

(III) Let n = 1, Ip = [− 1
2 − p, 1

2 + p] and

gIp = χ(x − p) + χ(x + p) − 2χ(x)

for p = 1, 2, · · · . Then Jp = {−2p,−2p + 1, · · · , 2p − 1, 2p} and

‖gIp
‖2
2,0 = 6,

‖gIp‖2
2,±j =

{
−4 j = p

0 j 6= p
if j ≡ 1, 3 (mod 4),

‖gIp‖2
2,±j =


1 j = p

2

−4 j = p

0 j 6= p
2 , p

if j ≡ 0, 2 (mod 4).
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Hence, it follows that∑
j∈Jp

‖gIp‖2
2,je

2πijλ = 16(pπλ)4 +
32
3

(pπλ)6 + O(|λ|8).

On the other hand,

F(gIp)(λ)2 =
(2e−i2pπλ(−1 + ei2pπλ)2 sin πλ

2πλ

)2

= 16(pπλ)4 +
16
3

(p4 + 2p6)(πλ)6 + O(|λ|8).

Therefore, it follows that∑
j∈Jp

‖gIp‖2
2,je

2πijλ − |F(gIp)(λ)|2 =
16p4(πλ)6

3
+ O(|λ|8).

(IV) Let n = 1, Ip = [−p − 1
2 , p + 1

2 ] and

gIp,q = (χ(x − p) + χ(x + p) − 2χ(x)) − p2

q2
(χ(x − q) + χ(x + q) − 2χ(x)),

where p > 4q, p + q is even, q ≥ 2. Then Jp = {j | −2p ≤ j ≤ 2p} and

‖gIp,q‖2
2,0 = 2 + 2p4

q4 + 4
(

p2

q2 − 1
)2

, ‖gIp,q‖2
2,±q = −4p2

q2

(
p2

q2 − 1
)
,

‖gIp,q‖2
2,±2q = p4

q4 ,

‖gIp,q‖2
2,±(p−q) = −2p2

q2 , ‖gIp,q‖2
2,±p = 4

(
p2

q2 − 1
)
,

‖gIp,q‖2
2,±(p+q) = −2p2

q2 , ‖gIp,q‖2
2,±2p = 1

and ‖gIp,q‖2
2,±j = 0 otherwise. Hence, it follows that∑

j∈J

‖gIp,q‖2
2,je

2πijλ

=
16
9

p4(p2 − q2)2(πλ)8 − 64
135

p4(p2 − q2)2(p2 + q2)(πλ)10 + O(|λ|12).

On the other hand,

F(gIp,q )(λ)2 =
(
e−2π(p+q)iλ sinπλ

2πq2λ

)2

× (−q2e2πqiλ − q2e2π(2p+q)iλ + p2e2πpiλ + p2e2π(2q+p)iλ−2(p2 − q2)e2π(p+q)iλ)2

=
16
9

p4(p2 − q2)2(πλ)8 − 16
135

p4(p2 − q2)2(5 + 4p2 + 4q2)(πλ)10 + O(|λ|12).

Therefore, it follows that∑
j∈J

‖gIp,q‖2
2,je

2πijλ − |F(gIp,q )(λ)|2 =
16
27

p4(p2 − q2)(πλ)10 + O(|λ|12).
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At this stage, this |λ|10 is our best weight function. When n > 1, as said before, let
I = [−p − 1

2 , p + 1
2 ]n and gI(x) = gIp,q (x1)gIp,q (x2) · · · gIp,q (xn). Then J = Jn

p = {j =
(j1, j2, · · · , jn) ∈ Zn | −2p ≤ ji ≤ 2p, 1 ≤ i ≤ n} and it is easy to see that ‖gI‖2

2,j =∏n
i=1 ‖gIp,q‖2,ji and

∑
j∈Jn

p

‖gI‖2
2,je

2πijλ =
n∏

i=1

(
∑

ji∈Jp

‖gIp,q‖2,jie
2πijiλi).

Since F(gI)(λ) = F(gIp,q )(λ1)F(gIp,q )(λ2) · · · F(gIp,q )(λn) and ‖F(gIp,q )‖∞ ≤ ‖F(gIp,q )‖1

= 4p2

q2 , it follows that∣∣∣ ∑
j∈Jn

p

‖gI‖2
2,je

2πijλ − |F(gI)(λ)|2
∣∣∣

≤
(4p2

q2

)n−1 16
27

p4(p2 − q2)(|λ1|10 + · · · + |λn|10) + O(|λ|12).

Corollary 4.2 Let S be a finite subset in Zn and Σ a measurable subset in [−1
2 , 1

2 ]n. For
p > 4q, p+q even and q ≥ 2, let Jn

p = {j = (j1, j2, · · · , jn) ∈ Zn | −2p ≤ ji ≤ 2p, 1 ≤ i ≤ n}
and cp,q,i = ‖gIp,q‖2

2,i listed above. Then there exists a constant c, cp,q such that for all
f ∈ l1(Zn) ∩ l2(Zn),∑

j∈Jn
p

∑
m∈Zn

cp,q
j f(m)f(m + j)

≤cγ(S̃ + Jn
p , Σ)

( ∑
m∈Zn\(S+Jn

p )

|f(m)|2 +
∫

Tn\Σ
|f̌(λ)|2dλ + cp,q

∫
Σ

|f̌(λ)|2|λ|10dλ
)
,

where cp,q
j =

∏n
i=1 cp,q,ji and γ(S̃ + Jn

p , Σ) is the Nazarov constant.
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