CHARACTERIZATION OF DIAGONALITY FOR OPERATORS

Takashi Itoh and Masaru Nagisa

Received May 11, 2012; revised June 5, 2012

ABSTRACT. Let A be an invertible $n \times n$ matrix over \mathbb{C} . If the k-th power A^k of A and the k-th power $A^{\circ k}$ of Schur product of A equals (k = 1, 2, ..., n+1), then A becomes diagonal. In the case that A is an invertible bounded linear operator on an infinite dimensional Hilbert space H, we can also define Schur product of operators, and we can show that A is diagonal, if it satisfies $A^k = A^{\circ k}$ for any k = 1, 2, ...

1 Introduction We denote by $\mathbb{M}_n(\mathbb{C})$ the set of all $n \times n$ matrices over \mathbb{C} . For $A, B \in \mathbb{M}_n(\mathbb{C})$, we define their Schur product (or Hadamard product) $A \circ B$ as follows:

$$A \circ B = (a_{ij}b_{ij})_{i,j=1}^n$$

where $A = (a_{ij})_{i,j=1}^n$ and $B = (b_{ij})_{i,j=1}^n$. We denote the k-th power of Schur product of A by

$$A^{\circ k} = \overbrace{A \circ A \circ \cdots \circ A}^{k}$$

By definition, for any diagonal matrix A, we have

 $A^k = A^{\circ k}$

for all $k = 1, 2, 3, \ldots$

In the field of operator inequality, many results are known related to Schur product ([1],[2]). In other words, Schur product is useful for topics related to self-adjoint or positive operators. For example, if A is self-adjoint, i.e., $A = A^*$, then we can easily check that the property $A^2 = A^{\circ 2}$ implies the diagonality of A. But, without the assumption of self-adjointness of operators, we remark that the property $A^k = A^{\circ k}$ for any k does not imply the diagonality of A. The following matrix A is not diagonal, but A satisfies this property:

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \in \mathbb{M}_2(\mathbb{C}), \quad A^k = A = A^{\circ k} \quad \text{for any } k = 1, 2, 3, \dots$$

In this paper, first we show the following fact:

Theorem 1.1. Let A be an $n \times n$ matrix over \mathbb{C} satisfying

$$A^k = A^{\circ k}, \qquad k = 1, 2, \dots, n+1.$$

Then we have the followings:

- (1) $A^k = A^{\circ k}$ for any positive integer k.
- (2) If A is invertible, then A is diagonal.

²⁰¹⁰ Mathematics Subject Classification. 47A05, 47A06, 15A15.

Key words and phrases. diagonality, invertible matrix, bounded linenar operator, Schur product .

As the infinite dimensional case, we consider a bounded linear operator on a (infinite dimensional) Hilbert space. Let \mathcal{H} be a Hilbert space. We fix the completely orthonormal system $\{\xi_i\}_{i\in I}$ of \mathcal{H} . Let A be a bounded linear operator on \mathcal{H} with

$$A\xi_j = \sum_{i \in I} a_{ij}\xi_i, \quad (a_{ij} \in \mathbb{C}, \ j \in I).$$

Then we denote $A \in B(\mathcal{H})$ by $(a_{ij})_{i,j \in I}$. For two operators $A = (a_{ij})_{i,j \in I}, B = (b_{ij})_{i,j \in I} \in B(\mathcal{H})$, we can define $A \circ B \in B(\mathcal{H})$ as follows([4]):

$$A \circ B = (a_{ij}b_{ij})_{i,j \in I}.$$

Since A is bounded, we have

$$\sum_{j\in I} |a_{ij}|^2 < \infty, \quad \sum_{i\in I} |a_{ij}|^2 < \infty.$$

We remark that

$$\sum_{k \in I} |a_{ik}a_{kj}| < \infty$$

and the set $\{k \in I \mid a_{ik}a_{kj} \neq 0\}$ is at most countable for any $i, j \in I$. Then we can show the following theorem as infinite dimensional version of Theorem 1.1.

Theorem 1.2. Let A be a bounded invertible linear operator on \mathcal{H} with

$$A^n = A^{\circ n}$$
 for any $n = 1, 2, 3, ...$

Then A is diagonal, i.e., $a_{ij} = 0$ when $i \neq j$.

Let $A \in \mathbb{M}_3(\mathbb{C})$ be as follows:

$$A = \begin{pmatrix} 1 & 2 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Then A is invertible, is not diagonal and satisfies

$$A^2 = A^{\circ 2}$$
 and $A^3 \neq A^{\circ 3}$.

In the last section, we determine the smallest integer m satisfying that, for any invertible $A \in \mathbb{M}_n(\mathbb{C})$,

$$A^{k} = A^{\circ k}$$
 $(k = 1, 2, \dots, m)$

implies the diagonality of A.

2 Proof of Theorem 1.1 In this section, we give a proof of Theorem 1.1.

Proof. (1) Let $p(t) = \det(tI_n - A)$ be a characteristic polynomial of A. Then we have, by Cayley-Hamilton theorem,

$$p(A) = 0.$$

We define

$$q_1(t) = t^{n+1} - tp(t) = \sum_{k=1}^n b_k t^k,$$

then we have $q_1(A) = A^{n+1}$.

We assume that $N \ge n+1$ and it holds

$$A^l = A^{\circ l} \quad l = 1, 2, \dots, N.$$

If we can show that $A^{N+1} = A^{\circ(N+1)}$, then (1) holds by induction. It follows from

$$\begin{aligned} A^{\circ(N+1)} &= A^{\circ(N-n)} \circ (A^{\circ(n+1)}) = A^{\circ(N-n)} \circ (A^{n+1}) = A^{\circ(N-n)} \circ q_1(A) \\ &= A^{\circ(N-n)} \circ (\sum_{k=1}^n b_k A^k) = A^{\circ(N-n)} \circ (\sum_{k=1}^n b_k A^{\circ k}) \\ &= \sum_{k=1}^n b_k A^{\circ(N-n+k)} = \sum_{k=1}^n b_k A^{N-n+k} \quad \text{(since } 0 < N-n+k \le N) \\ &= A^{N-n} (\sum_{k=1}^n b_k A^k) = A^{N-n} q_1(A) = A^{N+1}. \end{aligned}$$

(2) Since A is invertible, if we define

$$q_2(t) = \frac{p(t) - (-1)^n \det(A)}{(-1)^{n+1} \det(A)} = \sum_{k=1}^n a_k t^k,$$

we can get $q_2(A) = I_n$.

Then we have

$$A \circ I_n = A \circ q_2(A) = A \circ (\sum_{k=1}^n a_k A^k) = A \circ (\sum_{k=1}^n a_k A^{\circ k})$$
$$= \sum_{k=1}^n a_k A^{\circ k+1} = \sum_{k=1}^n a_k A^{k+1}$$
$$= A(\sum_{k=1}^n a_k A^k) = Aq_2(A) = AI_n = A.$$

Since $A \circ I_n$ is diagonal, so is A.

3 Proof of Theorem 1.2

Lemma 3.1. Let $(x_i)_{i=1}^{\infty}$ be a 1-summable sequence of complex numbers, i.e., $\sum_{i=1}^{\infty} |x_i| < \infty$ ∞ . If it holds that

$$\sum_{i=1}^{\infty} x_i^j = 0, \quad \text{for all } j = 1, 2, 3, \dots,$$

then $x_i = 0$ for all $i = 1, 2, 3, \ldots$

Proof. We set $x_n = r_n e^{2\pi\theta_n \sqrt{-1}}$ $(r_n = |x_n| \ge 0)$. We assume that some of x_i 's is not equal to 0. Arranging the sequence, we may assume that

$$1 = r_1 \ge r_2 \ge \cdots$$
 and $\sum_{n=k+1}^{\infty} r_n < \frac{1}{2}$

for some k. Since $\mathbb{T} = \{z \in \mathbb{C} \mid |z| = 1\}$ is compact, we can choose an infinite subset N_1 of \mathbb{N} such that

$$s, t \in N_1 \Rightarrow |e^{2\pi s\theta_1 \sqrt{-1}} - e^{2\pi t\theta_1 \sqrt{-1}}| < \frac{1}{3}$$

By the same method, we can choose an infinite subset \mathcal{N}_2 of \mathcal{N}_1 such that

$$s, t \in N_2 \Rightarrow |e^{2\pi s\theta_2\sqrt{-1}} - e^{2\pi t\theta_2\sqrt{-1}}| < \frac{1}{3}.$$

Continuing this argument, we can choose numbers $s, t \in \mathbb{N}$ such that

$$|e^{2\pi s\theta_j\sqrt{-1}} - e^{2\pi t\theta_j\sqrt{-1}}| < \frac{1}{3}$$
 for all $j = 1, 2, \dots, k$.

We set K = |s - t|. Then we have

$$|1 - e^{2\pi K \theta_j \sqrt{-1}}| < \frac{1}{3}$$
 for all $j = 1, 2, \dots, k$.

This means that

$$\operatorname{Re}(e^{2\pi K\theta_j\sqrt{-1}}) > \frac{2}{3} \quad \text{for all } j = 1, 2, \dots, k.$$

By the assumption, we have

$$|\sum_{n=k+1}^{\infty} x_n^K| \le \sum_{n=k+1}^{\infty} r_n^K \le \sum_{n=k+1}^{\infty} r_n < \frac{1}{2}.$$

We also have

$$\begin{aligned} |\sum_{n=1}^{k} x_{n}^{K}| &\geq \operatorname{Re}(\sum_{n=1}^{k} x_{n}^{K}) = \sum_{n=1}^{k} r_{n}^{K} \operatorname{Re}(e^{2\pi K \theta_{n} \sqrt{-1}}) \\ &> \frac{2}{3} (1 + r_{2}^{K} + \dots + r_{k}^{K}) > \frac{1}{2}. \end{aligned}$$

This contradicts to

$$\sum_{n=1}^{\infty} x_n^K = 0.$$

Proposition 3.2. Let $(x_i)_{i=1}^{\infty}$ be a 1-summable sequence of complex numbers. For some $\alpha \in \mathbb{C}$, it holds that

$$\sum_{i=1}^{\infty} x_i^j = \alpha^j, \qquad for \ all \ j = 1, 2, 3, \dots$$

Then there is a number i_0 such that

$$x_i = \begin{cases} \alpha, & i = i_0 \\ 0, & otherwise. \end{cases}$$

Proof. Put $r_n = |x_n|$. In the case $\alpha = 0$, it follows from the preceding lemma. So we may assume that

$$\alpha = 1, \quad r_1 \ge r_2 \ge \cdots \quad \text{and} \quad \sum_{n=k+1}^{\infty} r_n < \frac{1}{2}$$

for some k. Then we show that $r_1 \ge 1$. Assume that $r_1 < 1$. We can choose a number N_0 satisfying

$$r_1^{N_0} < \frac{1}{2k}.$$

So we have

$$\left|\sum_{n=1}^{\infty} x_n^{N_0}\right| \le \sum_{n=1}^{k} r_n^{N_0} + \sum_{n=k+1}^{\infty} r_n^{N_0} \le k \cdot \frac{1}{2k} + \sum_{n=k+1}^{\infty} r_n < 1 = \alpha.$$

This is a contradiction.

We set

$$r_1 \ge r_2 \ge \cdots \ge r_l \ge 1 > r_{l+1} \ge r_{l+2} \ge \cdots \ge r_k$$

Using the same argument in the proof of Lemma 3.1, for any positive integer N, we can choose a positive integer K(N) satisfying that

$$\operatorname{Re}(e^{2\pi K(N)N\theta_j\sqrt{-1}}) > \frac{2}{3}$$
 for all $j = 1, 2, \dots, k$.

Then we have

$$\operatorname{Re}(\sum_{n=1}^{k} x_{n}^{K(N)N}) = \sum_{n=1}^{k} r_{n}^{K(N)N} \operatorname{Re}(e^{2\pi K(N)N\theta_{n}\sqrt{-1}})$$
$$> \frac{2}{3} (\sum_{n=1}^{l} r_{n}^{K(N)N} + \sum_{n=l+1}^{k} r_{n}^{K(N)N}) > \frac{2l}{3}$$

and

$$|\sum_{n=k+1}^{\infty} x_n^{K(N)N}| \le \sum_{n=k+1}^{\infty} r_n^{K(N)N} \le \sum_{n=k+1}^{\infty} r_n r_{k+1}^{K(N)N-1} < \frac{1}{2} r_{k+1}^{K(N)N-1}.$$

For a sufficiently large N, we may assume that

$$\frac{1}{2}r_{k+1}^{K(N)N-1} < \frac{1}{3}.$$

Since

$$|1 - \operatorname{Re}(\sum_{n=1}^{k} x_n^{K(N)N})| = |\operatorname{Re}(\sum_{n=k+1}^{\infty} x_n^{K(N)N})| \le |\sum_{n=k+1}^{\infty} x_n^{K(N)N}| < \frac{1}{3},$$

we have l = 1 and get the relation $r_1 \ge 1 > r_2 \ge \cdots \ge r_k$. If $r_1 > 1$, then we may also assume that $r_1^{K(N)N} > 2$, i.e., $\operatorname{Re}(\sum_{n=1}^k x_n^{K(N)N}) > \frac{4}{3}$. This contradicts to $\sum_{n=1}^{\infty} x_n^{K(N)N} = 1$. So we have $r_1 = 1$. If $x_1 \neq 1$, we can choose a sequence of integers

$$0 < m(1) < m(2) < \dots < m(k) < \dots$$

such that

$$\lim_{k\to\infty} x_1^{m(k)} = e^{\theta\sqrt{-1}} \neq 1$$

for some real θ . For a sufficiently large k, we may assume

$$|1 - x_1^{m(k)}| > \frac{1}{2}|1 - e^{\theta\sqrt{-1}}| \text{ and}$$
$$|\sum_{n=2}^{\infty} x_n^{m(k)}| \le |x_2|^{m(k)-1} (\sum_{n=2}^{\infty} |x_n|) < \frac{1}{2}|1 - e^{\theta\sqrt{-1}}|.$$

This contradicts to $\sum_{n=1}^{\infty} x_n^{m(k)} = 1$. So we have $x_1 = 1$. Therefore we have the following relation:

$$\sum_{i=2}^{\infty} x_i^j = 0, \quad \text{for all } j = 1, 2, 3, \dots$$

By Lemma 3.1, we can get $x_2 = x_3 = \cdots = 0$.

Now we can give the proof for Theorem 1.2 as follows:

Proof. By the assumption, we have

$$A^{\circ n}A^{\circ n} = A^n A^n = A^{2n} = A^{\circ(2n)},$$

that is,

$$\sum_{s \in I} a_{is}^n a_{sj}^n = \sum_{s \in I} (a_{is} a_{sj})^n = a_{ij}^{2n}$$

for all n = 1, 2, 3, ... and $i, j \in I$. We fix i. When i = j, we can get the relation:

$$\sum_{s \in I \setminus \{i\}} (a_{is}a_{si})^n = 0.$$

By Lemma 3.1, we have $a_{ij}a_{ji} = 0 \ (j \neq i)$. We set

$$K = \{s \in I \mid a_{is} = 0\} \setminus \{i\}, \quad J = I \setminus K.$$

For $j \in J \setminus \{i\}$, $a_{ij} \neq 0$ implies $a_{ji} = 0$. When $j \in K$, it holds

$$\sum_{s \in I} (a_{is} a_{sj})^n = a_{ij}^{2n} = 0.$$

By Lemma 3.1 we have $a_{is}a_{sj} = 0$ for all s. For $s \in J \setminus \{i\}$, $a_{is} \neq 0$ implies $a_{sj} = 0$. Therefore we have

$$a_{sj} = 0 \qquad (s \in J, \ j \in K),$$

$$a_{si} = 0 \qquad (s \in J \setminus \{i\}).$$

To prove the diagonality of A, it suffices to show the following statement:

- (1) $a_{ii} \neq 0$ implies $a_{ij} = a_{ji} = 0$ $(j \neq i)$.
- (2) $a_{ii} \neq 0.$

270

(1) Let $a_{ii} \neq 0$. For any $j \in J$, we have

$$\sum_{s \in I} (a_{is}a_{sj})^n = a_{ij}^{2n} \neq 0$$

By Proposition 3.2 it holds that there exists $s_0 \in I$ with

$$a_{is_0}a_{s_0j} = a_{ij}^2, \quad a_{is}a_{sj} = 0 \ (s \neq s_0).$$

The fact $a_{ij} \neq 0 \ (j \in J)$ implies $s_0 = i$. So we have

$$a_{jk} = 0 \qquad (j \in J \setminus \{i\}, \ k \in I).$$

This means

$$A\xi \perp \xi_j \qquad (\forall \xi \in \mathcal{H}, j \in J \setminus \{i\}).$$

Since A is invertible, we can get $J = \{i\}$, that is,

$$a_{ij} = 0 \qquad (j \neq i).$$

We remark that A^* is also invertible and satisfies the condition $(A^*)^n = (A^*)^{\circ n}$ for all $n = 1, 2, 3, \ldots$ So we have

$$a_{ij} = a_{ji} = 0 \qquad (j \neq i)$$

(2) Assume that $a_{ii} = 0$. For $i(1) \in J \setminus \{i\}$, we have

$$\sum_{s \in I} (a_{is} a_{s,i(1)})^n = a_{i,i(1)}^{2n} \neq 0.$$

By Proposition 3.2, there exists an $i(2) \in J \setminus \{i\}$ satisfying

$$a_{i(2),i(1)} \neq 0$$
 and $a_{s,i(1)} = 0$ $(s \in J \setminus \{i, i(2)\}).$

If i(1) = i(2), then $a_{i(1),i(1)} \neq 0$ implies $a_{i,i(1)} = 0$ by (1). This contradicts to $i(1) \in J \setminus \{i\}$. So we have $i(1) \neq i(2)$. Since $a_{i(2),i} = 0$, we have

$$0 \neq a_{i(2),i(1)}^{2n} = \sum_{s \in I} (a_{i(2),s} a_{s,i(1)})^n$$
$$= \sum_{s \in J} (a_{i(2),s} a_{s,i(1)})^n$$
$$= (a_{i(2),i(2)} a_{i(2),i(1)})^n.$$

By the fact $a_{i(2),i(2)} \neq 0$ and (1), it contradicts to $a_{i(2),i(1)} \neq 0$.

4 Conclusions For any positive integer n, we define d(n) the smallest integer m satisfying that, for any invertible $A \in \mathbb{M}_n(\mathbb{C})$,

$$A^k = A^{\circ k} \qquad (k = 1, 2, \dots, m)$$

implies the diagonality of A.

Let σ be a permutation on $\{1, 2, 3, ..., n\}$. For $A = (a_{ij})_{i,j=1}^n \in \mathbb{M}_n(\mathbb{C})$, we define $A_{\sigma} \in \mathbb{M}_n(\mathbb{C})$ as follows:

$$A_{\sigma} = (a_{\sigma(i),\sigma(j)})_{i,j=1}^{n}$$

Then we can easily check the following remarks:

- (1) A is invertible $\Leftrightarrow A_{\sigma}$ is invertible.
- (2) A is diagonal $\Leftrightarrow A_{\sigma}$ is diagonal.
- (3) For $A, B \in \mathbb{M}_n(\mathbb{C})$, we have

$$A_{\sigma}B_{\sigma} = (AB)_{\sigma}, \qquad A_{\sigma} \circ B_{\sigma} = (A \circ B)_{\sigma}.$$

Proposition 4.1. (1) d(n) < n + 1.

- (2) d(2) = 3.
- (3) d(3) = 3.

Proof. (1) It follows from Theorem 1.1 .

(2) By (1), $d(2) \leq 3$. Let $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \in \mathbb{M}_2(\mathbb{C})$. Then A is invertible, not diagonal and satisfying $A^k = A^{\circ k} \qquad (k = 1, 2).$

So we have $d(2) \ge 3$. Therefore d(2) = 3.

(3) Let $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$ be invertible and satisfy $A^k = A^{\circ k}$ (k = 1, 2, 3). We

compute

$$A^2 = A^{\circ 2}, \quad A \cdot A^{\circ 2} = A \cdot A^2 = A^3 = A^{\circ 3}.$$

From the (i, j)-th componet of above calculation, we have the following relation (i, j):

$$a_{i1}a_{1j}^k + a_{i2}a_{2j}^k + a_{i3}a_{3j}^k = a_{ij}^{k+1} \quad (k = 1, 2)$$

We first show that A is diagonal in the case $a_{12} = a_{13} = 0$. Since A is invertible, the matrix $B = \begin{pmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{pmatrix}$ is also invertible, and satisfies $B^k = B^{\circ k}$ (k = 1, 2, 3). Because d(2) = 3, we have $a_{23} = a_{32} = 0$. Applying the same argument for $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$, we can get $a_{21} = 0$. For $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$, considering A_{σ} instead of A, we have $a_{31} = 0$. So A is diagonal.

Next we show that A is diagonal in the case $a_{12} = 0$. By the relation (1,1), we have $a_{13} = 0$ or $a_{31} = 0$. In the case $a_{13} = 0$ we have already shown that A is diagonal. Assume $a_{31} = 0$. By the relation (1,2), we have $a_{13} = 0$ or $a_{32} = 0$. In the case $a_{32} = 0$, for $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \text{ considering } A_{\sigma} \text{ instead of } A, \text{ we can get the diagonality of } A.$

We consider the case $a_{i_0,j_0} = 0$ for some $i_0, j_0 (i_0 \neq j_0)$. We set $k_0 \in \{1,2,3\} \setminus \{i_0, j_0\}$ and

$$\sigma = \begin{pmatrix} i_0 & j_0 & k_0 \\ 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ i_0 & j_0 & k_0 \end{pmatrix}^{-1}.$$

Then the (1, 2)-th component of A_{σ} is 0. So A is diagonal.

From the relation (1, 1), we have

$$a_{12}a_{21} + a_{13}a_{31} = 0, \quad a_{12}a_{21}^2 + a_{13}a_{31}^2 = 0.$$

Since $a_{12}a_{21}a_{31} = a_{12}a_{21}^2$, we have $a_{12} = 0$, $a_{21} = 0$ or $a_{21} = a_{31}$. We assume that A is not diagonal. Then $a_{ij} \neq 0$ if $i \neq j$. So we have

$$a_{21} = a_{31} \neq 0$$
 and $a_{12} = -a_{13}$.

From the relation (2, 2) and (3, 3), we can get

$$(a_{12} = a_{32} \neq 0 \text{ and } a_{21} = -a_{23}) \text{ and } (a_{13} = a_{23} \neq 0 \text{ and } a_{31} = -a_{32}).$$

This implies the contradiction

$$a_{12} = -a_{13} = -a_{23} = a_{21} = a_{31} = -a_{32} = -a_{12} \neq 0.$$

Acknowledgements The works of M. N. was partially supported by Grant-in-Aid for Scientific Research (C)22540220.

References

- T. Ando, Concavity of certain maps on positive definite matrices and applications to Hadamard products, Linear Algebra Appl. 26(1979), 203–241.
- [2] M. Fujii, R. Nakamoto and M. Nakamura, Conditional expectation and Hadamard product of operators, Math. Japon. 42(1995), 239–244.
- [3] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge Univ. Press 1985.
- [4] T. Itoh and M. Nagisa, Schur products and module maps on B(H), Publ. RIMS, Kyoto Univ. 36(2000), 253–268.
- [5] V. I. Paulsen, Completely bounded maps and dilations, Pitman Res. Notes in Math. Ser. 146, 1986.

Communicated by Moto O'uchi

Takashi Itoh Department of Mathematics Gunma University 4-2 Aramaki, Maebashi, Gunma 371-8510 Japan e-mail: itoh@edu.gunma-u.ac.jp

Masaru Nagisa Graduate School of Science Chiba University Inage-ku, Chiba 263-8522 Japan e-mail: nagisa@math.s.chiba-u.ac.jp