CHARACTERIZATION OF DIAGONALITY FOR OPERATORS

Takashi Itoh and Masaru Nagisa

Received May 11, 2012; revised June 5, 2012

Abstract

Let A be an invertible $n \times n$ matrix over \mathbb{C}. If the k-th power A^{k} of A and the k-th power $A^{\circ k}$ of Schur product of A equals ($k=1,2, \ldots, n+1$), then A becomes diagonal. In the case that A is an invertible bounded linear operator on an infinite dimensional Hilbert space H, we can also define Schur product of operators, and we can show that A is diagonal, if it satisfies $A^{k}=A^{\circ k}$ for any $k=1,2, \ldots$.

1 Introduction We denote by $\mathbb{M}_{n}(\mathbb{C})$ the set of all $n \times n$ matrices over \mathbb{C}. For $A, B \in$ $\mathbb{M}_{n}(\mathbb{C})$, we define their Schur product (or Hadamard product) $A \circ B$ as follows:

$$
A \circ B=\left(a_{i j} b_{i j}\right)_{i, j=1}^{n}
$$

where $A=\left(a_{i j}\right)_{i, j=1}^{n}$ and $B=\left(b_{i j}\right)_{i, j=1}^{n}$. We denote the k-th power of Schur product of A by

$$
A^{\circ k}=\overbrace{A \circ A \circ \cdots \circ A}^{k} .
$$

By definition, for any diagonal matrix A, we have

$$
A^{k}=A^{\circ k}
$$

for all $k=1,2,3, \ldots$.
In the field of operator inequality, many results are known related to Schur product ([1],[2]). In other words, Schur product is useful for topics related to self-adjoint or positive operators. For example, if A is self-adjoint, i.e., $A=A^{*}$, then we can easily check that the property $A^{2}=A^{\circ 2}$ implies the diagonality of A. But, without the assumption of selfadjointness of operators, we remark that the property $A^{k}=A^{\circ k}$ for any k does not imply the diagonality of A. The following matrix A is not diagonal, but A satisfies this property:

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) \in \mathbb{M}_{2}(\mathbb{C}), \quad A^{k}=A=A^{\circ k} \quad \text { for any } k=1,2,3, \ldots
$$

In this paper, first we show the following fact:
Theorem 1.1. Let A be an $n \times n$ matrix over \mathbb{C} satisfying

$$
A^{k}=A^{\circ k}, \quad k=1,2, \ldots, n+1
$$

Then we have the followings:
(1) $A^{k}=A^{\circ k}$ for any positive integer k.
(2) If A is invertible, then A is diagonal.

[^0]As the infinite dimensional case, we consider a bounded linear operator on a (infinite dimensional) Hilbert space. Let \mathcal{H} be a Hilbert space. We fix the completely orthonormal system $\left\{\xi_{i}\right\}_{i \in I}$ of \mathcal{H}. Let A be a bounded linear operator on \mathcal{H} with

$$
A \xi_{j}=\sum_{i \in I} a_{i j} \xi_{i}, \quad\left(a_{i j} \in \mathbb{C}, j \in I\right)
$$

Then we denote $A \in B(\mathcal{H})$ by $\left(a_{i j}\right)_{i, j \in I}$. For two operators $A=\left(a_{i j}\right)_{i, j \in I}, B=\left(b_{i j}\right)_{i . j \in I} \in$ $B(\mathcal{H})$, we can define $A \circ B \in B(\mathcal{H})$ as follows $([4])$:

$$
A \circ B=\left(a_{i j} b_{i j}\right)_{i, j \in I}
$$

Since A is bounded, we have

$$
\sum_{j \in I}\left|a_{i j}\right|^{2}<\infty, \quad \sum_{i \in I}\left|a_{i j}\right|^{2}<\infty
$$

We remark that

$$
\sum_{k \in I}\left|a_{i k} a_{k j}\right|<\infty
$$

and the set $\left\{k \in I \mid a_{i k} a_{k j} \neq 0\right\}$ is at most countable for any $i, j \in I$. Then we can show the following theorem as infinite dimensional version of Theorem 1.1.

Theorem 1.2. Let A be a bounded invertible linear operator on \mathcal{H} with

$$
A^{n}=A^{\circ n} \quad \text { for any } n=1,2,3, \ldots
$$

Then A is diagonal, i.e., $a_{i j}=0$ when $i \neq j$.

Let $A \in \mathbb{M}_{3}(\mathbb{C})$ be as follows:

$$
A=\left(\begin{array}{lll}
1 & 2 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Then A is invertible, is not diagonal and satisfies

$$
A^{2}=A^{\circ 2} \text { and } A^{3} \neq A^{\circ 3}
$$

In the last section, we determine the smallest integer m satisfying that, for any invertible $A \in \mathbb{M}_{n}(\mathbb{C})$,

$$
A^{k}=A^{\circ k} \quad(k=1,2, \ldots, m)
$$

implies the diagonality of A.
2 Proof of Theorem 1.1 In this section, we give a proof of Theorem 1.1.
Proof. (1) Let $p(t)=\operatorname{det}\left(t I_{n}-A\right)$ be a characteristic polynomial of A. Then we have, by Cayley-Hamilton theorem,

$$
p(A)=0
$$

We define

$$
q_{1}(t)=t^{n+1}-t p(t)=\sum_{k=1}^{n} b_{k} t^{k}
$$

then we have $q_{1}(A)=A^{n+1}$.
We assume that $N \geq n+1$ and it holds

$$
A^{l}=A^{\circ l} \quad l=1,2, \ldots, N
$$

If we can show that $A^{N+1}=A^{\circ(N+1)}$, then (1) holds by induction. It follows from

$$
\begin{aligned}
A^{\circ(N+1)} & =A^{\circ(N-n)} \circ\left(A^{\circ(n+1)}\right)=A^{\circ(N-n)} \circ\left(A^{n+1}\right)=A^{\circ(N-n)} \circ q_{1}(A) \\
& =A^{\circ(N-n)} \circ\left(\sum_{k=1}^{n} b_{k} A^{k}\right)=A^{\circ(N-n)} \circ\left(\sum_{k=1}^{n} b_{k} A^{\circ k}\right) \\
& =\sum_{k=1}^{n} b_{k} A^{\circ(N-n+k)}=\sum_{k=1}^{n} b_{k} A^{N-n+k} \quad(\text { since } 0<N-n+k \leq N) \\
& =A^{N-n}\left(\sum_{k=1}^{n} b_{k} A^{k}\right)=A^{N-n} q_{1}(A)=A^{N+1} .
\end{aligned}
$$

(2) Since A is invertible, if we define

$$
q_{2}(t)=\frac{p(t)-(-1)^{n} \operatorname{det}(A)}{(-1)^{n+1} \operatorname{det}(A)}=\sum_{k=1}^{n} a_{k} t^{k}
$$

we can get $q_{2}(A)=I_{n}$.
Then we have

$$
\begin{aligned}
A \circ I_{n} & =A \circ q_{2}(A)=A \circ\left(\sum_{k=1}^{n} a_{k} A^{k}\right)=A \circ\left(\sum_{k=1}^{n} a_{k} A^{\circ k}\right) \\
& =\sum_{k=1}^{n} a_{k} A^{\circ k+1}=\sum_{k=1}^{n} a_{k} A^{k+1} \\
& =A\left(\sum_{k=1}^{n} a_{k} A^{k}\right)=A q_{2}(A)=A I_{n}=A
\end{aligned}
$$

Since $A \circ I_{n}$ is diagonal, so is A.

3 Proof of Theorem 1.2

Lemma 3.1. Let $\left(x_{i}\right)_{i=1}^{\infty}$ be a 1-summable sequence of complex numbers, i.e., $\sum_{i=1}^{\infty}\left|x_{i}\right|<$ ∞. If it holds that

$$
\sum_{i=1}^{\infty} x_{i}^{j}=0, \quad \text { for all } j=1,2,3, \ldots
$$

then $x_{i}=0$ for all $i=1,2,3, \ldots$.
Proof. We set $x_{n}=r_{n} e^{2 \pi \theta_{n} \sqrt{-1}}\left(r_{n}=\left|x_{n}\right| \geq 0\right)$. We assume that some of x_{i} 's is not equal to 0 . Arranging the sequence, we may assume that

$$
1=r_{1} \geq r_{2} \geq \cdots \text { and } \sum_{n=k+1}^{\infty} r_{n}<\frac{1}{2}
$$

for some k. Since $\mathbb{T}=\{z \in \mathbb{C}| | z \mid=1\}$ is compact, we can choose an infinite subset N_{1} of \mathbb{N} such that

$$
s, t \in N_{1} \Rightarrow\left|e^{2 \pi s \theta_{1} \sqrt{-1}}-e^{2 \pi t \theta_{1} \sqrt{-1}}\right|<\frac{1}{3}
$$

By the same method, we can choose an infinite subset N_{2} of N_{1} such that

$$
s, t \in N_{2} \Rightarrow\left|e^{2 \pi s \theta_{2} \sqrt{-1}}-e^{2 \pi t \theta_{2} \sqrt{-1}}\right|<\frac{1}{3}
$$

Continuing this argument, we can choose numbers $s, t \in \mathbb{N}$ such that

$$
\left|e^{2 \pi s \theta_{j} \sqrt{-1}}-e^{2 \pi t \theta_{j} \sqrt{-1}}\right|<\frac{1}{3} \quad \text { for all } j=1,2, \ldots, k
$$

We set $K=|s-t|$. Then we have

$$
\left|1-e^{2 \pi K \theta_{j} \sqrt{-1}}\right|<\frac{1}{3} \quad \text { for all } j=1,2, \ldots, k
$$

This means that

$$
\operatorname{Re}\left(e^{2 \pi K \theta_{j} \sqrt{-1}}\right)>\frac{2}{3} \quad \text { for all } j=1,2, \ldots, k
$$

By the assumption, we have

$$
\left|\sum_{n=k+1}^{\infty} x_{n}^{K}\right| \leq \sum_{n=k+1}^{\infty} r_{n}^{K} \leq \sum_{n=k+1}^{\infty} r_{n}<\frac{1}{2}
$$

We also have

$$
\begin{aligned}
\left|\sum_{n=1}^{k} x_{n}^{K}\right| & \geq \operatorname{Re}\left(\sum_{n=1}^{k} x_{n}^{K}\right)=\sum_{n=1}^{k} r_{n}^{K} \operatorname{Re}\left(e^{2 \pi K \theta_{n} \sqrt{-1}}\right) \\
& >\frac{2}{3}\left(1+r_{2}^{K}+\cdots+r_{k}^{K}\right)>\frac{1}{2}
\end{aligned}
$$

This contradicts to

$$
\sum_{n=1}^{\infty} x_{n}^{K}=0
$$

Proposition 3.2. Let $\left(x_{i}\right)_{i=1}^{\infty}$ be a 1-summable sequence of complex numbers. For some $\alpha \in \mathbb{C}$, it holds that

$$
\sum_{i=1}^{\infty} x_{i}^{j}=\alpha^{j}, \quad \text { for all } j=1,2,3, \ldots
$$

Then there is a number i_{0} such that

$$
x_{i}= \begin{cases}\alpha, & i=i_{0} \\ 0, & \text { otherwise }\end{cases}
$$

Proof. Put $r_{n}=\left|x_{n}\right|$. In the case $\alpha=0$, it follows from the preceding lemma. So we may assume that

$$
\alpha=1, \quad r_{1} \geq r_{2} \geq \cdots \quad \text { and } \quad \sum_{n=k+1}^{\infty} r_{n}<\frac{1}{2}
$$

for some k. Then we show that $r_{1} \geq 1$. Assume that $r_{1}<1$. We can choose a number N_{0} satisfying

$$
r_{1}^{N_{0}}<\frac{1}{2 k}
$$

So we have

$$
\left|\sum_{n=1}^{\infty} x_{n}^{N_{0}}\right| \leq \sum_{n=1}^{k} r_{n}^{N_{0}}+\sum_{n=k+1}^{\infty} r_{n}^{N_{0}} \leq k \cdot \frac{1}{2 k}+\sum_{n=k+1}^{\infty} r_{n}<1=\alpha
$$

This is a contradiction.
We set

$$
r_{1} \geq r_{2} \geq \cdots \geq r_{l} \geq 1>r_{l+1} \geq r_{l+2} \geq \cdots \geq r_{k}
$$

Using the same argument in the proof of Lemma 3.1, for any positive integer N, we can choose a positive integer $K(N)$ satisfying that

$$
\operatorname{Re}\left(e^{2 \pi K(N) N \theta_{j} \sqrt{-1}}\right)>\frac{2}{3} \quad \text { for all } j=1,2, \ldots, k
$$

Then we have

$$
\begin{aligned}
\operatorname{Re}\left(\sum_{n=1}^{k} x_{n}^{K(N) N}\right) & =\sum_{n=1}^{k} r_{n}^{K(N) N} \operatorname{Re}\left(e^{2 \pi K(N) N \theta_{n} \sqrt{-1}}\right) \\
& >\frac{2}{3}\left(\sum_{n=1}^{l} r_{n}^{K(N) N}+\sum_{n=l+1}^{k} r_{n}^{K(N) N}\right)>\frac{2 l}{3}
\end{aligned}
$$

and

$$
\left|\sum_{n=k+1}^{\infty} x_{n}^{K(N) N}\right| \leq \sum_{n=k+1}^{\infty} r_{n}^{K(N) N} \leq \sum_{n=k+1}^{\infty} r_{n} r_{k+1}^{K(N) N-1}<\frac{1}{2} r_{k+1}^{K(N) N-1}
$$

For a sufficiently large N, we may assume that

$$
\frac{1}{2} r_{k+1}^{K(N) N-1}<\frac{1}{3}
$$

Since

$$
\left|1-\operatorname{Re}\left(\sum_{n=1}^{k} x_{n}^{K(N) N}\right)\right|=\left|\operatorname{Re}\left(\sum_{n=k+1}^{\infty} x_{n}^{K(N) N}\right)\right| \leq\left|\sum_{n=k+1}^{\infty} x_{n}^{K(N) N}\right|<\frac{1}{3},
$$

we have $l=1$ and get the relation $r_{1} \geq 1>r_{2} \geq \cdots \geq r_{k}$.
If $r_{1}>1$, then we may also assume that $r_{1}^{K(N) N}>2$, i.e., $\operatorname{Re}\left(\sum_{n=1}^{k} x_{n}^{K(N) N}\right)>\frac{4}{3}$. This contradicts to $\sum_{n=1}^{\infty} x_{n}^{K(N) N}=1$. So we have $r_{1}=1$.

If $x_{1} \neq 1$, we can choose a sequence of integers

$$
0<m(1)<m(2)<\cdots<m(k)<\cdots
$$

such that

$$
\lim _{k \rightarrow \infty} x_{1}^{m(k)}=e^{\theta \sqrt{-1}} \neq 1
$$

for some real θ. For a sufficiently large k, we may assume

$$
\begin{gathered}
\left|1-x_{1}^{m(k)}\right|>\frac{1}{2}\left|1-e^{\theta \sqrt{-1}}\right| \text { and } \\
\left|\sum_{n=2}^{\infty} x_{n}^{m(k)}\right| \leq\left|x_{2}\right|^{m(k)-1}\left(\sum_{n=2}^{\infty}\left|x_{n}\right|\right)<\frac{1}{2}\left|1-e^{\theta \sqrt{-1}}\right| .
\end{gathered}
$$

This contradicts to $\sum_{n=1}^{\infty} x_{n}^{m(k)}=1$. So we have $x_{1}=1$.
Therefore we have the following relation:

$$
\sum_{i=2}^{\infty} x_{i}^{j}=0, \quad \text { for all } j=1,2,3, \ldots
$$

By Lemma 3.1, we can get $x_{2}=x_{3}=\cdots=0$.

Now we can give the proof for Theorem 1.2 as follows:
Proof. By the assumption, we have

$$
A^{\circ n} A^{\circ n}=A^{n} A^{n}=A^{2 n}=A^{\circ(2 n)}
$$

that is,

$$
\sum_{s \in I} a_{i s}^{n} a_{s j}^{n}=\sum_{s \in I}\left(a_{i s} a_{s j}\right)^{n}=a_{i j}^{2 n}
$$

for all $n=1,2,3, \ldots$ and $i, j \in I$. We fix i. When $i=j$, we can get the relation:

$$
\sum_{s \in I \backslash\{i\}}\left(a_{i s} a_{s i}\right)^{n}=0 .
$$

By Lemma 3.1, we have $a_{i j} a_{j i}=0(j \neq i)$.
We set

$$
K=\left\{s \in I \mid a_{i s}=0\right\} \backslash\{i\}, \quad J=I \backslash K
$$

For $j \in J \backslash\{i\}, a_{i j} \neq 0$ implies $a_{j i}=0$. When $j \in K$, it holds

$$
\sum_{s \in I}\left(a_{i s} a_{s j}\right)^{n}=a_{i j}^{2 n}=0
$$

By Lemma 3.1 we have $a_{i s} a_{s j}=0$ for all s. For $s \in J \backslash\{i\}, a_{i s} \neq 0$ implies $a_{s j}=0$. Therefore we have

$$
\begin{array}{ll}
a_{s j}=0 & (s \in J, j \in K), \\
a_{s i}=0 & (s \in J \backslash\{i\}) .
\end{array}
$$

To prove the diagonality of A, it suffices to show the following statement:
(1) $a_{i i} \neq 0$ implies $a_{i j}=a_{j i}=0(j \neq i)$.
(2) $a_{i i} \neq 0$.
(1) Let $a_{i i} \neq 0$. For any $j \in J$, we have

$$
\sum_{s \in I}\left(a_{i s} a_{s j}\right)^{n}=a_{i j}^{2 n} \neq 0
$$

By Proposition 3.2 it holds that there exists $s_{0} \in I$ with

$$
a_{i s_{0}} a_{s_{0} j}=a_{i j}^{2}, \quad a_{i s} a_{s j}=0\left(s \neq s_{0}\right) .
$$

The fact $a_{i j} \neq 0(j \in J)$ implies $s_{0}=i$. So we have

$$
a_{j k}=0 \quad(j \in J \backslash\{i\}, k \in I)
$$

This means

$$
A \xi \perp \xi_{j} \quad(\forall \xi \in \mathcal{H}, j \in J \backslash\{i\})
$$

Since A is invertible, we can get $J=\{i\}$, that is,

$$
a_{i j}=0 \quad(j \neq i)
$$

We remark that A^{*} is also invertible and satisfies the condition $\left(A^{*}\right)^{n}=\left(A^{*}\right)^{\circ n}$ for all $n=1,2,3, \ldots$. So we have

$$
a_{i j}=a_{j i}=0 \quad(j \neq i)
$$

(2) Assume that $a_{i i}=0$. For $i(1) \in J \backslash\{i\}$, we have

$$
\sum_{s \in I}\left(a_{i s} a_{s, i(1)}\right)^{n}=a_{i, i(1)}^{2 n} \neq 0
$$

By Proposition 3.2, there exists an $i(2) \in J \backslash\{i\}$ satisfying

$$
a_{i(2), i(1)} \neq 0 \quad \text { and } a_{s, i(1)}=0(s \in J \backslash\{i, i(2)\})
$$

If $i(1)=i(2)$, then $a_{i(1), i(1)} \neq 0$ implies $a_{i, i(1)}=0$ by (1). This contradicts to $i(1) \in J \backslash\{i\}$. So we have $i(1) \neq i(2)$. Since $a_{i(2), i}=0$, we have

$$
\begin{aligned}
0 & \neq a_{i(2), i(1)}^{2 n}=\sum_{s \in I}\left(a_{i(2), s} a_{s, i(1)}\right)^{n} \\
& =\sum_{s \in J}\left(a_{i(2), s} a_{s, i(1)}\right)^{n} \\
& =\left(a_{i(2), i(2)} a_{i(2), i(1)}\right)^{n}
\end{aligned}
$$

By the fact $a_{i(2), i(2)} \neq 0$ and (1), it contradicts to $a_{i(2), i(1)} \neq 0$.
4 Conclusions For any positive integer n, we define $d(n)$ the smallest integer m satisfying that, for any invertible $A \in \mathbb{M}_{n}(\mathbb{C})$,

$$
A^{k}=A^{\circ k} \quad(k=1,2, \ldots, m)
$$

implies the diagonality of A.
Let σ be a permutation on $\{1,2,3, \ldots, n\}$. For $A=\left(a_{i j}\right)_{i, j=1}^{n} \in \mathbb{M}_{n}(\mathbb{C})$, we define $A_{\sigma} \in \mathbb{M}_{n}(\mathbb{C})$ as follows:

$$
A_{\sigma}=\left(a_{\sigma(i), \sigma(j)}\right)_{i, j=1}^{n}
$$

Then we can easily check the following remarks:
(1) A is invertible $\Leftrightarrow A_{\sigma}$ is invertible.
(2) A is diagonal $\Leftrightarrow A_{\sigma}$ is diagonal.
(3) For $A, B \in \mathbb{M}_{n}(\mathbb{C})$, we have

$$
A_{\sigma} B_{\sigma}=(A B)_{\sigma}, \quad A_{\sigma} \circ B_{\sigma}=(A \circ B)_{\sigma}
$$

Proposition 4.1. (1) $d(n) \leq n+1$.
(2) $d(2)=3$.
(3) $d(3)=3$.

Proof. (1) It follows from Theorem 1.1 .
(2) By $(1), d(2) \leq 3$. Let $A=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right) \in \mathbb{M}_{2}(\mathbb{C})$. Then A is invertible, not diagonal and satisfying

$$
A^{k}=A^{\circ k} \quad(k=1,2)
$$

So we have $d(2) \geq 3$. Therefore $d(2)=3$.
(3) Let $A=\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right)$ be invertible and satisfy $A^{k}=A^{\circ k}(k=1,2,3)$. We compute

$$
A^{2}=A^{\circ 2}, \quad A \cdot A^{\circ 2}=A \cdot A^{2}=A^{3}=A^{\circ 3}
$$

From the (i, j)-th componet of above calculation, we have the following relation (i, j) :

$$
a_{i 1} a_{1 j}^{k}+a_{i 2} a_{2 j}^{k}+a_{i 3} a_{3 j}^{k}=a_{i j}^{k+1} \quad(k=1,2)
$$

We first show that A is diagonal in the case $a_{12}=a_{13}=0$. Since A is invertible, the matrix $B=\left(\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right)$ is also invertible, and satisfies $B^{k}=B^{\circ k}(k=1,2,3)$. Because $d(2)=3$, we have $a_{23}=a_{32}=0$. Applying the same argument for $\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$, we can get $a_{21}=0$. For $\sigma=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 2\end{array}\right)$, considering A_{σ} instead of A, we have $a_{31}=0$. So A is diagonal.

Next we show that A is diagonal in the case $a_{12}=0$. By the relation $(1,1)$, we have $a_{13}=0$ or $a_{31}=0$. In the case $a_{13}=0$ we heve already shown that A is diagonal. Assume $a_{31}=0$. By the relation $(1,2)$, we have $a_{13}=0$ or $a_{32}=0$. In the case $a_{32}=0$, for $\sigma=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right)$, considering A_{σ} instead of A, we can get the diagonality of A.

We consider the case $a_{i_{0}, j_{0}}=0$ for some $i_{0}, j_{0}\left(i_{0} \neq j_{0}\right)$. We set $k_{0} \in\{1,2,3\} \backslash\left\{i_{0}, j_{0}\right\}$ and

$$
\sigma=\left(\begin{array}{ccc}
i_{0} & j_{0} & k_{0} \\
1 & 2 & 3
\end{array}\right)=\left(\begin{array}{ccc}
1 & 2 & 3 \\
i_{0} & j_{0} & k_{0}
\end{array}\right)^{-1}
$$

Then the (1,2)-th component of A_{σ} is 0 . So A is diagonal.
From the relation $(1,1)$, we have

$$
a_{12} a_{21}+a_{13} a_{31}=0, \quad a_{12} a_{21}^{2}+a_{13} a_{31}^{2}=0
$$

Since $a_{12} a_{21} a_{31}=a_{12} a_{21}^{2}$, we have $a_{12}=0, a_{21}=0$ or $a_{21}=a_{31}$. We assume that A is not diagonal. Then $a_{i j} \neq 0$ if $i \neq j$. So we have

$$
a_{21}=a_{31} \neq 0 \text { and } a_{12}=-a_{13} .
$$

From the relation $(2,2)$ and $(3,3)$, we can get

$$
\left(a_{12}=a_{32} \neq 0 \text { and } a_{21}=-a_{23}\right) \text { and }\left(a_{13}=a_{23} \neq 0 \text { and } a_{31}=-a_{32}\right)
$$

This implies the contradiction

$$
a_{12}=-a_{13}=-a_{23}=a_{21}=a_{31}=-a_{32}=-a_{12} \neq 0
$$

Acknowledgements The works of M. N. was partially supported by Grant-in-Aid for Scientific Research (C)22540220.

References

[1] T. Ando, Concavity of certain maps on positive definite matrices and applications to Hadamard products, Linear Algebra Appl. 26(1979), 203-241.
[2] M. Fujii, R. Nakamoto and M. Nakamura, Conditional expectation and Hadamard product of operators, Math. Japon. 42(1995), 239-244.
[3] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge Univ. Press 1985.
[4] T. Itoh and M. Nagisa, Schur products and module maps on $B(\mathcal{H})$, Publ. RIMS, Kyoto Univ. 36(2000), 253-268.
[5] V. I. Paulsen, Completely bounded maps and dilations, Pitman Res. Notes in Math. Ser. 146, 1986.

Communicated by Moto O'uchi
Takashi Itoh
Department of Mathematics
Gunma University
4-2 Aramaki, Maebashi, Gunma 371-8510
Japan
e-mail: itoh@edu.gunma-u.ac.jp
Masaru Nagisa
Graduate School of Science
Chiba University
Inage-ku, Chiba 263-8522
Japan
e-mail: nagisa@math.s.chiba-u.ac.jp

[^0]: 2010 Mathematics Subject Classification. 47A05, 47A06,15A15.
 Key words and phrases. diagonality, invertible matrix, bounded linenar operator, Schur product .

