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Abstract. Let A be an invertible n×n matrix over C. If the k-th power Ak of A and
the k-th power A◦k of Schur product of A equals (k = 1, 2, . . . , n+1), then A becomes
diagonal. In the case that A is an invertible bounded linear operator on an infinite
dimensional Hilbert space H, we can also define Schur product of operators, and we
can show that A is diagonal, if it satisfies Ak = A◦k for any k = 1, 2, . . . .

1 Introduction We denote by Mn(C) the set of all n × n matrices over C. For A,B ∈
Mn(C), we define their Schur product (or Hadamard product) A ◦ B as follows:

A ◦ B = (aijbij)n
i,j=1,

where A = (aij)n
i,j=1 and B = (bij)n

i,j=1. We denote the k-th power of Schur product of A
by

A◦k =

k︷ ︸︸ ︷
A ◦ A ◦ · · · ◦ A .

By definition, for any diagonal matrix A, we have

Ak = A◦k

for all k = 1, 2, 3, . . ..
In the field of operator inequality, many results are known related to Schur product

([1],[2]). In other words, Schur product is useful for topics related to self-adjoint or positive
operators. For example, if A is self-adjoint, i.e., A = A∗, then we can easily check that
the property A2 = A◦2 implies the diagonality of A. But, without the assumption of self-
adjointness of operators, we remark that the property Ak = A◦k for any k does not imply
the diagonality of A. The following matrix A is not diagonal, but A satisfies this property:

A =
(

1 1
0 0

)
∈ M2(C), Ak = A = A◦k for any k = 1, 2, 3, . . . .

In this paper, first we show the following fact:

Theorem 1.1. Let A be an n × n matrix over C satisfying

Ak = A◦k, k = 1, 2, . . . , n + 1.

Then we have the followings:

(1) Ak = A◦k for any positive integer k.

(2) If A is invertible, then A is diagonal.
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As the infinite dimensional case, we consider a bounded linear operator on a (infinite
dimensional) Hilbert space. Let H be a Hilbert space. We fix the completely orthonormal
system {ξi}i∈I of H. Let A be a bounded linear operator on H with

Aξj =
∑
i∈I

aijξi, (aij ∈ C, j ∈ I).

Then we denote A ∈ B(H) by (aij)i,j∈I . For two operators A = (aij)i,j∈I , B = (bij)i.j∈I ∈
B(H), we can define A ◦ B ∈ B(H) as follows([4]):

A ◦ B = (aijbij)i,j∈I .

Since A is bounded, we have ∑
j∈I

|aij |2 < ∞,
∑
i∈I

|aij |2 < ∞.

We remark that ∑
k∈I

|aikakj | < ∞

and the set {k ∈ I | aikakj 6= 0} is at most countable for any i, j ∈ I. Then we can show
the following theorem as infinite dimensional version of Theorem 1.1.

Theorem 1.2. Let A be a bounded invertible linear operator on H with

An = A◦n for any n = 1, 2, 3, . . . .

Then A is diagonal, i.e., aij = 0 when i 6= j.

Let A ∈ M3(C) be as follows:

A =

1 2 2
0 1 0
0 0 1

 .

Then A is invertible, is not diagonal and satisfies

A2 = A◦2 and A3 6= A◦3.

In the last section, we determine the smallest integer m satisfying that, for any invertible
A ∈ Mn(C),

Ak = A◦k (k = 1, 2, . . . ,m)

implies the diagonality of A.

2 Proof of Theorem 1.1 In this section, we give a proof of Theorem 1.1.

Proof. (1) Let p(t) = det(tIn −A) be a characteristic polynomial of A. Then we have, by
Cayley-Hamilton theorem,

p(A) = 0.
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We define

q1(t) = tn+1 − tp(t) =
n∑

k=1

bktk,

then we have q1(A) = An+1.
We assume that N ≥ n + 1 and it holds

Al = A◦l l = 1, 2, . . . , N.

If we can show that AN+1 = A◦(N+1), then (1) holds by induction. It follows from

A◦(N+1) = A◦(N−n) ◦ (A◦(n+1)) = A◦(N−n) ◦ (An+1) = A◦(N−n) ◦ q1(A)

= A◦(N−n) ◦ (
n∑

k=1

bkAk) = A◦(N−n) ◦ (
n∑

k=1

bkA◦k)

=
n∑

k=1

bkA◦(N−n+k) =
n∑

k=1

bkAN−n+k (since 0 < N − n + k ≤ N)

= AN−n(
n∑

k=1

bkAk) = AN−nq1(A) = AN+1.

(2) Since A is invertible, if we define

q2(t) =
p(t) − (−1)n det(A)

(−1)n+1 det(A)
=

n∑
k=1

aktk,

we can get q2(A) = In.
Then we have

A ◦ In = A ◦ q2(A) = A ◦ (
n∑

k=1

akAk) = A ◦ (
n∑

k=1

akA◦k)

=
n∑

k=1

akA◦k+1 =
n∑

k=1

akAk+1

= A(
n∑

k=1

akAk) = Aq2(A) = AIn = A.

Since A ◦ In is diagonal, so is A.

3 Proof of Theorem 1.2

Lemma 3.1. Let (xi)∞i=1 be a 1-summable sequence of complex numbers, i.e.,
∑∞

i=1 |xi| <
∞. If it holds that

∞∑
i=1

xj
i = 0, for all j = 1, 2, 3, . . . ,

then xi = 0 for all i = 1, 2, 3, . . ..

Proof. We set xn = rne2πθn

√
−1 (rn = |xn| ≥ 0). We assume that some of xi’s is not equal

to 0. Arranging the sequence, we may assume that

1 = r1 ≥ r2 ≥ · · · and
∞∑

n=k+1

rn <
1
2
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for some k. Since T = {z ∈ C | |z| = 1} is compact, we can choose an infinite subset N1 of
N such that

s, t ∈ N1 ⇒ |e2πsθ1
√
−1 − e2πtθ1

√
−1| <

1
3
.

By the same method, we can choose an infinite subset N2 of N1 such that

s, t ∈ N2 ⇒ |e2πsθ2
√
−1 − e2πtθ2

√
−1| <

1
3
.

Continuing this argument, we can choose numbers s, t ∈ N such that

|e2πsθj

√
−1 − e2πtθj

√
−1| <

1
3

for all j = 1, 2, . . . , k.

We set K = |s − t|. Then we have

|1 − e2πKθj

√
−1| <

1
3

for all j = 1, 2, . . . , k.

This means that

Re(e2πKθj

√
−1) >

2
3

for all j = 1, 2, . . . , k.

By the assumption, we have

|
∞∑

n=k+1

xK
n | ≤

∞∑
n=k+1

rK
n ≤

∞∑
n=k+1

rn <
1
2
.

We also have

|
k∑

n=1

xK
n | ≥ Re(

k∑
n=1

xK
n ) =

k∑
n=1

rK
n Re(e2πKθn

√
−1)

>
2
3
(1 + rK

2 + · · · + rK
k ) >

1
2
.

This contradicts to
∞∑

n=1

xK
n = 0.

Proposition 3.2. Let (xi)∞i=1 be a 1-summable sequence of complex numbers. For some
α ∈ C, it holds that

∞∑
i=1

xj
i = αj , for all j = 1, 2, 3, . . . .

Then there is a number i0 such that

xi =

{
α, i = i0

0, otherwise.
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Proof. Put rn = |xn|. In the case α = 0, it follows from the preceding lemma. So we may
assume that

α = 1, r1 ≥ r2 ≥ · · · and
∞∑

n=k+1

rn <
1
2

for some k. Then we show that r1 ≥ 1. Assume that r1 < 1. We can choose a number N0

satisfying

rN0
1 <

1
2k

.

So we have

|
∞∑

n=1

xN0
n | ≤

k∑
n=1

rN0
n +

∞∑
n=k+1

rN0
n ≤ k · 1

2k
+

∞∑
n=k+1

rn < 1 = α.

This is a contradiction.
We set

r1 ≥ r2 ≥ · · · ≥ rl ≥ 1 > rl+1 ≥ rl+2 ≥ · · · ≥ rk.

Using the same argument in the proof of Lemma 3.1, for any positive integer N , we can
choose a positive integer K(N) satisfying that

Re(e2πK(N)Nθj

√
−1) >

2
3

for all j = 1, 2, . . . , k.

Then we have

Re(
k∑

n=1

xK(N)N
n ) =

k∑
n=1

rK(N)N
n Re(e2πK(N)Nθn

√
−1)

>
2
3
(

l∑
n=1

rK(N)N
n +

k∑
n=l+1

rK(N)N
n ) >

2l

3

and

|
∞∑

n=k+1

xK(N)N
n | ≤

∞∑
n=k+1

rK(N)N
n ≤

∞∑
n=k+1

rnr
K(N)N−1
k+1 <

1
2
r

K(N)N−1
k+1 .

For a sufficiently large N , we may assume that

1
2
r

K(N)N−1
k+1 <

1
3
.

Since

|1 − Re(
k∑

n=1

xK(N)N
n )| = |Re(

∞∑
n=k+1

xK(N)N
n )| ≤ |

∞∑
n=k+1

xK(N)N
n | <

1
3
,

we have l = 1 and get the relation r1 ≥ 1 > r2 ≥ · · · ≥ rk.

If r1 > 1, then we may also assume that r
K(N)N
1 > 2, i.e., Re(

∑k
n=1 x

K(N)N
n ) >

4
3
. This

contradicts to
∑∞

n=1 x
K(N)N
n = 1. So we have r1 = 1.

If x1 6= 1, we can choose a sequence of integers

0 < m(1) < m(2) < · · · < m(k) < · · ·
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such that
lim

k→∞
x

m(k)
1 = eθ

√
−1 6= 1

for some real θ. For a sufficiently large k, we may assume

|1 − x
m(k)
1 | >

1
2
|1 − eθ

√
−1| and

|
∞∑

n=2

xm(k)
n | ≤ |x2|m(k)−1(

∞∑
n=2

|xn|) <
1
2
|1 − eθ

√
−1|.

This contradicts to
∑∞

n=1 x
m(k)
n = 1. So we have x1 = 1.

Therefore we have the following relation:

∞∑
i=2

xj
i = 0, for all j = 1, 2, 3, . . . .

By Lemma 3.1, we can get x2 = x3 = · · · = 0.

Now we can give the proof for Theorem 1.2 as follows:

Proof. By the assumption, we have

A◦nA◦n = AnAn = A2n = A◦(2n),

that is, ∑
s∈I

an
isa

n
sj =

∑
s∈I

(aisasj)n = a2n
ij

for all n = 1, 2, 3, . . . and i, j ∈ I. We fix i. When i = j, we can get the relation:∑
s∈I\{i}

(aisasi)n = 0.

By Lemma 3.1, we have aijaji = 0 (j 6= i).
We set

K = {s ∈ I | ais = 0} \ {i}, J = I \ K.

For j ∈ J \ {i}, aij 6= 0 implies aji = 0. When j ∈ K, it holds∑
s∈I

(aisasj)n = a2n
ij = 0.

By Lemma 3.1 we have aisasj = 0 for all s. For s ∈ J \ {i}, ais 6= 0 implies asj = 0.
Therefore we have

asj = 0 (s ∈ J, j ∈ K),
asi = 0 (s ∈ J \ {i}).

To prove the diagonality of A, it suffices to show the following statement:

(1) aii 6= 0 implies aij = aji = 0 (j 6= i).

(2) aii 6= 0.
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(1) Let aii 6= 0. For any j ∈ J , we have∑
s∈I

(aisasj)n = a2n
ij 6= 0.

By Proposition 3.2 it holds that there exists s0 ∈ I with

ais0as0j = a2
ij , aisasj = 0 (s 6= s0).

The fact aij 6= 0 (j ∈ J) implies s0 = i. So we have

ajk = 0 (j ∈ J \ {i}, k ∈ I).

This means
Aξ ⊥ ξj (∀ξ ∈ H, j ∈ J \ {i}).

Since A is invertible, we can get J = {i}, that is,

aij = 0 (j 6= i).

We remark that A∗ is also invertible and satisfies the condition (A∗)n = (A∗)◦n for all
n = 1, 2, 3, . . .. So we have

aij = aji = 0 (j 6= i).

(2) Assume that aii = 0. For i(1) ∈ J \ {i}, we have∑
s∈I

(aisas,i(1))n = a2n
i,i(1) 6= 0.

By Proposition 3.2, there exists an i(2) ∈ J \ {i} satisfying

ai(2),i(1) 6= 0 and as,i(1) = 0 (s ∈ J \ {i, i(2)}).

If i(1) = i(2), then ai(1),i(1) 6= 0 implies ai,i(1) = 0 by (1). This contradicts to i(1) ∈ J \{i}.
So we have i(1) 6= i(2). Since ai(2),i = 0, we have

0 6= a2n
i(2),i(1) =

∑
s∈I

(ai(2),sas,i(1))n

=
∑
s∈J

(ai(2),sas,i(1))n

= (ai(2),i(2)ai(2),i(1))n.

By the fact ai(2),i(2) 6= 0 and (1), it contradicts to ai(2),i(1) 6= 0.

4 Conclusions For any positive integer n, we define d(n) the smallest integer m satisfying
that, for any invertible A ∈ Mn(C),

Ak = A◦k (k = 1, 2, . . . ,m)

implies the diagonality of A.
Let σ be a permutation on {1, 2, 3, . . . , n}. For A = (aij)n

i,j=1 ∈ Mn(C), we define
Aσ ∈ Mn(C) as follows:

Aσ = (aσ(i),σ(j))n
i,j=1.

Then we can easily check the following remarks:
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(1) A is invertible ⇔ Aσ is invertible.

(2) A is diagonal ⇔ Aσ is diagonal.

(3) For A,B ∈ Mn(C), we have

AσBσ = (AB)σ, Aσ ◦ Bσ = (A ◦ B)σ.

Proposition 4.1. (1) d(n) ≤ n + 1.

(2) d(2) = 3.

(3) d(3) = 3.

Proof. (1) It follows from Theorem 1.1 .

(2) By (1), d(2) ≤ 3. Let A =
(

1 2
0 1

)
∈ M2(C). Then A is invertible, not diagonal and

satisfying
Ak = A◦k (k = 1, 2).

So we have d(2) ≥ 3. Therefore d(2) = 3.

(3) Let A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 be invertible and satisfy Ak = A◦k (k = 1, 2, 3). We

compute
A2 = A◦2, A · A◦2 = A · A2 = A3 = A◦3.

From the (i, j)-th componet of above calculation, we have the following relation (i, j):

ai1a
k
1j + ai2a

k
2j + ai3a

k
3j = ak+1

ij (k = 1, 2).

We first show that A is diagonal in the case a12 = a13 = 0. Since A is invertible, the

matrix B =
(

a22 a23

a32 a33

)
is also invertible, and satisfies Bk = B◦k (k = 1, 2, 3). Because

d(2) = 3, we have a23 = a32 = 0. Applying the same argument for
(

a11 a12

a21 a22

)
, we can

get a21 = 0. For σ =
(

1 2 3
1 3 2

)
, considering Aσ instead of A, we have a31 = 0. So A is

diagonal.
Next we show that A is diagonal in the case a12 = 0. By the relation (1, 1), we have

a13 = 0 or a31=0. In the case a13 = 0 we heve already shown that A is diagonal. Assume
a31 = 0. By the relation (1, 2), we have a13 = 0 or a32 = 0. In the case a32 = 0, for

σ =
(

1 2 3
3 2 1

)
, considering Aσ instead of A, we can get the diagonality of A.

We consider the case ai0,j0 = 0 for some i0, j0(i0 6= j0). We set k0 ∈ {1, 2, 3} \ {i0, j0}
and

σ =
(

i0 j0 k0

1 2 3

)
=

(
1 2 3
i0 j0 k0

)−1

.

Then the (1, 2)-th component of Aσ is 0. So A is diagonal.
From the relation (1, 1), we have

a12a21 + a13a31 = 0, a12a
2
21 + a13a

2
31 = 0.
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Since a12a21a31 = a12a
2
21, we have a12 = 0, a21 = 0 or a21 = a31. We assume that A is not

diagonal. Then aij 6= 0 if i 6= j. So we have

a21 = a31 6= 0 and a12 = −a13.

From the relation (2, 2) and (3, 3), we can get

(a12 = a32 6= 0 and a21 = −a23) and (a13 = a23 6= 0 and a31 = −a32).

This implies the contradiction

a12 = −a13 = −a23 = a21 = a31 = −a32 = −a12 6= 0.
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