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UPPER ESTIMATIONS ON INTEGRAL OPERATOR MEANS
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Abstract. For an interpolational path of symmetric operator means, one of the
author introduced the integral mean and showed that it is not less than the original
mean, which is a generalization of the fact that the logarithmic operator mean is not
less than the geometric operator mean. In this paper, we show estimations for the
integral mean from the above.

1 Introduction. Recently in [5], we discussed again interpolational paths for Kubo-
Ando operator means and introduced the integral means for the interpolational paths: For
a Kubo-Ando symmetric operator mean m (cf. [11]) and positive operators A, B on a
Hilbert space, the path mt can be defined by inductive relation

Am(2k+1)/2n+1B = (A mk/2nB)m (Am(k+1)/2nB) = (Am(k+1)/2nB)m (A mk/2nB) (1)

with the initial conditions

Am0B = A, A m1/2B = Am B, A m1B = B

so that the map t 7→ AmtB should be continuous. If mt satisfies

(AmrB) mt(A msB) = Am(1−t)r+tsB

for all weights r, s, t ∈ [0, 1], then we call it an interporational path and also call the original
mean an interpolational one as in [6, 7, 9]. The interpolational paths are closely related to
the geodesics of geometry or to the relative entropies, see [1, 2, 3, 4, 6, 9, 12, 13]. Then we
defined the integral mean m̃ for m (or mt) by

A m̃ B =
∫ 1

0

AmtB dt.

For example, let A#(r)
t B be the quasi-arithmetic mean A1/2f

(r)
t (A−1/2BA−1/2)B with the

representing function

f
(r)
t (x) = (1 − t + txr)

1
r

for −1 5 r 5 1. Then, the representing function f̃ (r) of the integral mean #̃(r) is obtained
by

f̃ (r)(x) =
∫ 1

0

(1 − t + txr)
1
r dt =

[
(1 − t + txr)

1+r
r

(xr − 1) 1+r
r

]1

0

=
r

1 + r

xr+1 − 1
xr − 1

.
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Typical operator means we obtain here are:

(r = 1) arithmetic mean: f̃ (1)(x) =
1 + x

2
,

(r = 0) logarithmic mean: f̃ (0)(x) ≡ lim
ε↓0

f̃ (ε)(x) =
x − 1
log x

,

(r = −1/2) geometric mean: f̃ (−1/2)(x) =
√

x,

(r = −1) adjoint logarithmic mean: f̃ (−1)(x) ≡ lim
ε↓0

f̃ (ε−1)(x) =
x log x

x − 1
.

Then we showed in [5] that it is a symmetric operator mean and dominates the original one;
A m̃ B ≥ Am B. In this paper, we show its upper bound inspired by Kittaneh’s method
[10] for integral inequalities.

2 Estimation by operator convexity. An hermitian operator-valued function φ(t) is
operator-valued convex on I ⊂ R if

φ((1 − t)s + tr) ≤ (1 − t)φ(s) + tφ(r)

holds for all s, r ∈ I and t ∈ [0, 1] for the usual order of operators. Though Kittaneh’s
method in [10] is based on the existance of the minimum for a convex function, it is not
suitable for operator functions. So we dare to set an arbitrary dividing point s:

Lemma 1. If a parametrized operator φ(t) is operator-valued convex on [0, 1], then for each
s ∈ [0, 1], φ(t) is dominated by{

t
s (φ(s) − φ(0)) + φ(0) if 0 5 t 5 s, and
t−s
1−s (φ(1) − φ(s)) + φ(s) if s 5 t 5 1.

Proof. Since t = (1 − p) · 0 + ps for p = t/s ∈ [0, 1] for the former case, we have

φ(t) = φ((1 − p) · 0 + ps) ≤ (1 − p)φ(0) + pφ(s) =
t

s
(φ(s) − φ(0)) + φ(0).

For the latter case, putting t = (1 − q)s + q · 1 for q = (t − s)/(1 − s) ∈ [0, 1], we have

φ(t) = φ((1 − q)s + q · 1) ≤ (1 − q)φ(s) + qφ(1) =
t − s

1 − s
(φ(1) − φ(s)) + φ(s).

Since the arithmetic mean A∇B = (A + B)/2 is the maximum in symmetric operator
means, we also have the weighted inequalities:

Lemma 2. A∇tB ≡ (1 − t)A + tB ≥ AmtB for an interpolational path mt.

Proof. It holds for initial points t = 0, 1/2, 1. Then it also holds for binary points k/2n

inductively by (1), so that it holds for all t ∈ [0, 1].

Though the following property is known, we give a proof for completeness:

Lemma 3. Each interporational path mt is operator-valued convex for t ∈ [0, 1].
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Proof. By interpolationality and Lemma 2, we have

Am(1−t)r+tsB = (AmrB)mt(AmsB) ≤ (A mrB)∇t(AmsB) = (1−t)(AmrB)+t(AmsB),

which shows the operator-valued convexity.

So we have the following upper estimation of integral operator means:

Theorem 4. For the integral mean m̃ for an interpolational path mt,

A m̃B ≤ sA + (1 − s)B + AmsB

2

for all s ∈ [0, 1]. In particular, A m̃B ≤ A∇B + Am B

2
.

Proof. By the above lemma, we have∫ s

0

AmtBdt ≤
∫ s

0

(
t

s
(A msB − A) + A

)
dt =

[
t2

2s
(AmsB − A) + tA

]s

0

=
s2

2s
(AmsB − A) + sA =

s

2
(AmsB + A) and∫ 1

s

AmtBdt ≤
∫ 1

s

(
t − s

1 − s
(B − AmsB) + AmsB

)
dt

=
[
t2/2 − ts

1 − s
(B − A msB) + tA msB

]1

s

=
1/2 − s − s2/2 + s2

1 − s
(B − AmsB) + (1 − s)A msB =

1 − s

2
(B + A msB) .

Therefore, Am̃B =
∫ 1

0

AmtBdt ≤ sA + (1 − s)B + AmsB

2
.

3 Estimation for many dividing points. Here we generalize Lemma 1 similarly:

Lemma 5. If a parametrized operator φ(t) is operator-valued convex on [0, 1], then for each
0 5 s 5 t 5 r 5 1, the operator φ(t) is dominated by

t − s

r − s
(φ(r) − φ(s)) + φ(s).

Proof. The operator-valued convexity shows

φ(t) ≤ t − s

r − s
φ(r) +

r − t

r − s
φ(s) =

t − s

r − s

(
φ(r) − φ(s)

)
+ φ(s).

Then we have a better estimation for integral means:

Theorem 6. For the integral mean m̃ for an interpolational path mt and 0 ≡ t0 < t1 <
· · · < tn < tn+1 ≡ 1,

A m̃B ≤ 1
2

(
t1A + (1 − tn)B +

n∑
k=1

(tk+1 − tk−1)Amtk
B

)
.

In particular, A m̃B ≤ 1
n + 1

(
A∇B +

n∑
k=1

A mk/(n+1)B

)
.
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Proof. It is shown that∫ t1

0

A mtBdt ≤ t1
2

(Amt1B + A) and
∫ 1

tn

AmtBdt ≤ 1 − tn
2

(B + A mtnB).

Since ∫ tk+1

tk

AmtBdt ≤
∫ tk+1

tk

(
t − tk

tk+1 − tk
(Amtk+1B − Amtk

B) + A mtk
B

)
dt

=
[
t2/2 − ttk
tk+1 − tk

(Amtk+1B − Amtk
B) + tA mtk

B

]tk+1

tk

=
tk+1 − tk

2
(Amtk+1B − Amtk

B) + (tk+1 − tk)Amtk
B

=
tk+1 − tk

2
(Amtk+1B + Amtk

B),

we have

A m̃ B =
∫ 1

0

AmtB dt ≤ 1
2

(
t1A + (1 − tn)B +

n∑
k=1

(tk+1 − tk−1)Amtk
B

)
.

The last inequality follows from tk = k/(n + 1).

Finally we compare two estimations of Theorems 4 and 6. Put the (2-times) difference

Ds = sA + (1 − s)B + AmsB − t1A − (1 − tn)B −
n∑

k=1

(tk+1 − tk−1)Amtk
B

= (s − t1)A + (tn − s)B + AmsB −
n∑

k=1

(tk+1 − tk−1)Amtk
B.

Then the difference Ds is positive for s = tk for each k = 0, · · · , n + 1:

Theorem 7. If s = tk for some k = 0, · · · , n + 1 in Theorem 6,

A m̃ B ≤ 1
2

(
t1A + (1 − tn)B +

n∑
k=1

(tk+1 − tk−1)Amtk
B

)
≤ sA + (1 − s)B + AmsB.

Proof. For convenience’ sake, we use
∑b

k=a · = 0 if b < a. Let 1 5 K 5 n. Then Lemma 1
or 5 shows

Amtk
B ≤ tk

tk+1
(Amtk+1B − A) + A =

tk
tk+1

A mtk+1B +
tk+1 − tk

tk+1
A,

that is,
tk+1Amtk

B ≤ tkA mtk+1B + (tk+1 − tk)A.

Then, summing up from k = 1 to k = K − 1, we have

K−1∑
k=1

(tk+1 − tk−1)Amtk
B ≤ tK−1AmtK

B + (tK − t1)A (a)
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On the other hand, summing up from k = K + 1 to k = n for other type of inequalities

(1 − tk−1)Amtk
B ≤ (tk − tk−1)B + (1 − tk)Amtk−1B,

we have
n∑

k=K+1

(tk+1 − tk−1)Amtk
B ≤ (tn − tK)B + (1 − tK+1)A mtK

B. (b)

It follows that

DtK
= (tK − t1)A + (tn − tK)B + A mtK

B −
n∑

k=1

(tk+1 − tk−1)Amtk
B

= (tK − t1)A + (tn − tK)B + (1 − tK+1 + tK−1)AmtK B −
∑
k 6=K

(tk+1 − tk−1)Amtk
B

≥ (tK − t1)A + (tn − tK)B + (1 − tK+1 + tK−1)AmtK B

−tK−1A mtK B − (tK − t1)A − (tn − tK)B − (1 − tK+1)AmtK B = 0.
Note that

Dt0 = D0 = Dtn+1 = D1 = tnB + (1 − t1)A −
n∑

k=1

(tk+1 − tk−1)Amtk
B.

Similarly to (a) or (b), we have

n∑
k=1

(tk+1 − tk−1)Amtk
B ≤ tnB + (1 − t1)A,

which implies Dt0 = Dtn+1 ≥ 0.
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