UPPER ESTIMATIONS ON INTEGRAL OPERATOR MEANS

Jun Ichi Fujii and Masatoshi Fujii*

Received July 13, 2012; revised August 30, 2012

Abstract

For an interpolational path of symmetric operator means, one of the author introduced the integral mean and showed that it is not less than the original mean, which is a generalization of the fact that the logarithmic operator mean is not less than the geometric operator mean. In this paper, we show estimations for the integral mean from the above.

1 Introduction. Recently in [5], we discussed again interpolational paths for KuboAndo operator means and introduced the integral means for the interpolational paths: For a Kubo-Ando symmetric operator mean m (cf. [11]) and positive operators A, B on a Hilbert space, the path m_{t} can be defined by inductive relation

$$
\begin{equation*}
A \mathrm{~m}_{(2 k+1) / 2^{n+1}} B=\left(A \mathrm{~m}_{k / 2^{n}} B\right) \mathrm{m}\left(A \mathrm{~m}_{(k+1) / 2^{n}} B\right)=\left(A \mathrm{~m}_{(k+1) / 2^{n}} B\right) \mathrm{m}\left(A \mathrm{~m}_{k / 2^{n}} B\right) \tag{1}
\end{equation*}
$$

with the initial conditions

$$
A \mathrm{~m}_{0} B=A, \quad A \mathrm{~m}_{1 / 2} B=A \mathrm{~m} B, \quad A \mathrm{~m}_{1} B=B
$$

so that the map $t \mapsto A \mathrm{~m}_{t} B$ should be continuous. If m_{t} satisfies

$$
\left(A \mathrm{~m}_{r} B\right) \mathrm{m}_{t}\left(A \mathrm{~m}_{s} B\right)=A \mathrm{~m}_{(1-t) r+t s} B
$$

for all weights $r, s, t \in[0,1]$, then we call it an interporational path and also call the original mean an interpolational one as in $[6,7,9]$. The interpolational paths are closely related to the geodesics of geometry or to the relative entropies, see $[1,2,3,4,6,9,12,13]$. Then we defined the integral mean $\widetilde{\mathrm{m}}$ for m (or m_{t}) by

$$
A \widetilde{\mathrm{~m}} B=\int_{0}^{1} A \mathrm{~m}_{t} B d t
$$

For example, let $A \#_{t}^{(r)} B$ be the quasi-arithmetic mean $A^{1 / 2} f_{t}^{(r)}\left(A^{-1 / 2} B A^{-1 / 2}\right) B$ with the representing function

$$
f_{t}^{(r)}(x)=\left(1-t+t x^{r}\right)^{\frac{1}{r}}
$$

for $-1 \leqq r \leqq 1$. Then, the representing function $\widetilde{f^{(r)}}$ of the integral mean $\widetilde{\#^{(r)}}$ is obtained by

$$
\widetilde{f^{(r)}}(x)=\int_{0}^{1}\left(1-t+t x^{r}\right)^{\frac{1}{r}} d t=\left[\frac{\left(1-t+t x^{r}\right)^{\frac{1+r}{r}}}{\left(x^{r}-1\right) \frac{1+r}{r}}\right]_{0}^{1}=\frac{r}{1+r} \frac{x^{r+1}-1}{x^{r}-1} .
$$

Key words and phrases. Operator mean, logarithmic mean, operator inequality, interpolation.

Typical operator means we obtain here are:

$$
\begin{gathered}
(r=1) \quad \text { arithmetic mean: } \widetilde{f^{(1)}}(x)=\frac{1+x}{2}, \\
(r=0) \quad \text { logarithmic mean: } \widetilde{f^{(0)}}(x) \equiv \lim _{\varepsilon \downarrow 0} \widetilde{f^{(\varepsilon)}}(x)=\frac{x-1}{\log x}, \\
(r=-1 / 2) \quad \text { geometric mean: } \widetilde{f^{(-1 / 2)}}(x)=\sqrt{x} \\
(r=-1) \quad \text { adjoint logarithmic mean: } \widetilde{f^{(-1)}}(x) \equiv \lim _{\varepsilon \downarrow 0} \widetilde{f^{(\varepsilon-1)}}(x)=\frac{x \log x}{x-1} .
\end{gathered}
$$

Then we showed in [5] that it is a symmetric operator mean and dominates the original one; $A \widetilde{\mathrm{~m}} B \geq A \mathrm{~m} B$. In this paper, we show its upper bound inspired by Kittaneh's method [10] for integral inequalities.

2 Estimation by operator convexity. An hermitian operator-valued function $\phi(t)$ is operator-valued convex on $\mathcal{I} \subset \mathbb{R}$ if

$$
\phi((1-t) s+t r) \leq(1-t) \phi(s)+t \phi(r)
$$

holds for all $s, r \in \mathcal{I}$ and $t \in[0,1]$ for the usual order of operators. Though Kittaneh's method in [10] is based on the existance of the minimum for a convex function, it is not suitable for operator functions. So we dare to set an arbitrary dividing point s :

Lemma 1. If a parametrized operator $\phi(t)$ is operator-valued convex on $[0,1]$, then for each $s \in[0,1], \phi(t)$ is dominated by

$$
\begin{cases}\frac{t}{s}(\phi(s)-\phi(0))+\phi(0) & \text { if } 0 \leqq t \leqq s, \text { and } \\ \frac{t-s}{1-s}(\phi(1)-\phi(s))+\phi(s) & \text { if } s \leqq t \leqq 1\end{cases}
$$

Proof. Since $t=(1-p) \cdot 0+p s$ for $p=t / s \in[0,1]$ for the former case, we have

$$
\phi(t)=\phi((1-p) \cdot 0+p s) \leq(1-p) \phi(0)+p \phi(s)=\frac{t}{s}(\phi(s)-\phi(0))+\phi(0)
$$

For the latter case, putting $t=(1-q) s+q \cdot 1$ for $q=(t-s) /(1-s) \in[0,1]$, we have

$$
\phi(t)=\phi((1-q) s+q \cdot 1) \leq(1-q) \phi(s)+q \phi(1)=\frac{t-s}{1-s}(\phi(1)-\phi(s))+\phi(s) .
$$

Since the arithmetic mean $A \nabla B=(A+B) / 2$ is the maximum in symmetric operator means, we also have the weighted inequalities:

Lemma 2. $A \nabla_{t} B \equiv(1-t) A+t B \geq A \mathrm{~m}_{t} B$ for an interpolational path m_{t}.
Proof. It holds for initial points $t=0,1 / 2,1$. Then it also holds for binary points $k / 2^{n}$ inductively by (1), so that it holds for all $t \in[0,1]$.

Though the following property is known, we give a proof for completeness:
Lemma 3. Each interporational path m_{t} is operator-valued convex for $t \in[0,1]$.

Proof. By interpolationality and Lemma 2, we have
$A \mathrm{~m}_{(1-t) r+t s} B=\left(A \mathrm{~m}_{r} B\right) \mathrm{m}_{t}\left(A \mathrm{~m}_{s} B\right) \leq\left(A \mathrm{~m}_{r} B\right) \nabla_{t}\left(A \mathrm{~m}_{s} B\right)=(1-t)\left(A \mathrm{~m}_{r} B\right)+t\left(A \mathrm{~m}_{s} B\right)$, which shows the operator-valued convexity.

So we have the following upper estimation of integral operator means:
Theorem 4. For the integral mean $\widetilde{\mathrm{m}}$ for an interpolational path m_{t},

$$
A \widetilde{\mathrm{~m}} B \leq \frac{s A+(1-s) B+A \mathrm{~m}_{s} B}{2}
$$

for all $s \in[0,1]$. In particular, $A \widetilde{\mathrm{~m}} B \leq \frac{A \nabla B+A \mathrm{~m} B}{2}$.
Proof. By the above lemma, we have

$$
\begin{aligned}
\int_{0}^{s} A \mathrm{~m}_{t} B d t & \leq \int_{0}^{s}\left(\frac{t}{s}\left(A \mathrm{~m}_{s} B-A\right)+A\right) d t=\left[\frac{t^{2}}{2 s}\left(A \mathrm{~m}_{s} B-A\right)+t A\right]_{0}^{s} \\
& =\frac{s^{2}}{2 s}\left(A \mathrm{~m}_{s} B-A\right)+s A=\frac{s}{2}\left(A \mathrm{~m}_{s} B+A\right) \quad \text { and } \\
\int_{s}^{1} A \mathrm{~m}_{t} B d t & \leq \int_{s}^{1}\left(\frac{t-s}{1-s}\left(B-A \mathrm{~m}_{s} B\right)+A \mathrm{~m}_{s} B\right) d t \\
& =\left[\frac{t^{2} / 2-t s}{1-s}\left(B-A \mathrm{~m}_{s} B\right)+t A \mathrm{~m}_{s} B\right]_{s}^{1} \\
& =\frac{1 / 2-s-s^{2} / 2+s^{2}}{1-s}\left(B-A \mathrm{~m}_{s} B\right)+(1-s) A \mathrm{~m}_{s} B=\frac{1-s}{2}\left(B+A \mathrm{~m}_{s} B\right)
\end{aligned}
$$

Therefore, $A \widetilde{\mathrm{~m}} B=\int_{0}^{1} A \mathrm{~m}_{t} B d t \leq \frac{s A+(1-s) B+A \mathrm{~m}_{s} B}{2}$.
3 Estimation for many dividing points. Here we generalize Lemma 1 similarly:
Lemma 5. If a parametrized operator $\phi(t)$ is operator-valued convex on $[0,1]$, then for each $0 \leqq s \leqq t \leqq r \leqq 1$, the operator $\phi(t)$ is dominated by

$$
\frac{t-s}{r-s}(\phi(r)-\phi(s))+\phi(s)
$$

Proof. The operator-valued convexity shows

$$
\phi(t) \leq \frac{t-s}{r-s} \phi(r)+\frac{r-t}{r-s} \phi(s)=\frac{t-s}{r-s}(\phi(r)-\phi(s))+\phi(s) .
$$

Then we have a better estimation for integral means:
Theorem 6. For the integral mean $\widetilde{\mathrm{m}}$ for an interpolational path m_{t} and $0 \equiv t_{0}<t_{1}<$ $\cdots<t_{n}<t_{n+1} \equiv 1$,

$$
A \widetilde{\mathrm{~m}} B \leq \frac{1}{2}\left(t_{1} A+\left(1-t_{n}\right) B+\sum_{k=1}^{n}\left(t_{k+1}-t_{k-1}\right) A \mathrm{~m}_{t_{k}} B\right) .
$$

In particular, $A \widetilde{\mathrm{~m}} B \leq \frac{1}{n+1}\left(A \nabla B+\sum_{k=1}^{n} A \mathrm{~m}_{k /(n+1)} B\right)$.

Proof. It is shown that

$$
\int_{0}^{t_{1}} A \mathrm{~m}_{t} B d t \leq \frac{t_{1}}{2}\left(A \mathrm{~m}_{t_{1}} B+A\right) \quad \text { and } \quad \int_{t_{n}}^{1} A \mathrm{~m}_{t} B d t \leq \frac{1-t_{n}}{2}\left(B+A \mathrm{~m}_{t_{n}} B\right)
$$

Since

$$
\begin{aligned}
\int_{t_{k}}^{t_{k+1}} A \mathrm{~m}_{t} B d t & \leq \int_{t_{k}}^{t_{k+1}}\left(\frac{t-t_{k}}{t_{k+1}-t_{k}}\left(A \mathrm{~m}_{t_{k+1}} B-A \mathrm{~m}_{t_{k}} B\right)+A \mathrm{~m}_{t_{k}} B\right) d t \\
& =\left[\frac{t^{2} / 2-t t_{k}}{t_{k+1}-t_{k}}\left(A \mathrm{~m}_{t_{k+1}} B-A \mathrm{~m}_{t_{k}} B\right)+t A \mathrm{~m}_{t_{k}} B\right]_{t_{k}}^{t_{k+1}} \\
& =\frac{t_{k+1}-t_{k}}{2}\left(A \mathrm{~m}_{t_{k+1}} B-A \mathrm{~m}_{t_{k}} B\right)+\left(t_{k+1}-t_{k}\right) A \mathrm{~m}_{t_{k}} B \\
& =\frac{t_{k+1}-t_{k}}{2}\left(A \mathrm{~m}_{t_{k+1}} B+A \mathrm{~m}_{t_{k}} B\right)
\end{aligned}
$$

we have

$$
A \widetilde{\mathrm{~m}} B=\int_{0}^{1} A \mathrm{~m}_{t} B d t \leq \frac{1}{2}\left(t_{1} A+\left(1-t_{n}\right) B+\sum_{k=1}^{n}\left(t_{k+1}-t_{k-1}\right) A \mathrm{~m}_{t_{k}} B\right)
$$

The last inequality follows from $t_{k}=k /(n+1)$.
Finally we compare two estimations of Theorems 4 and 6. Put the (2-times) difference

$$
\begin{aligned}
D_{s} & =s A+(1-s) B+A \mathrm{~m}_{s} B-t_{1} A-\left(1-t_{n}\right) B-\sum_{k=1}^{n}\left(t_{k+1}-t_{k-1}\right) A \mathrm{~m}_{t_{k}} B \\
& =\left(s-t_{1}\right) A+\left(t_{n}-s\right) B+A \mathrm{~m}_{s} B-\sum_{k=1}^{n}\left(t_{k+1}-t_{k-1}\right) A \mathrm{~m}_{t_{k}} B
\end{aligned}
$$

Then the difference D_{s} is positive for $s=t_{k}$ for each $k=0, \cdots, n+1$:
Theorem 7. If $s=t_{k}$ for some $k=0, \cdots, n+1$ in Theorem 6 ,

$$
\begin{aligned}
A \widetilde{\mathrm{~m}} B & \leq \frac{1}{2}\left(t_{1} A+\left(1-t_{n}\right) B+\sum_{k=1}^{n}\left(t_{k+1}-t_{k-1}\right) A \mathrm{~m}_{t_{k}} B\right) \\
& \leq s A+(1-s) B+A \mathrm{~m}_{s} B
\end{aligned}
$$

Proof. For convenience' sake, we use $\sum_{k=a}^{b} \cdot=0$ if $b<a$. Let $1 \leqq K \leqq n$. Then Lemma 1 or 5 shows

$$
A \mathrm{~m}_{t_{k}} B \leq \frac{t_{k}}{t_{k+1}}\left(A \mathrm{~m}_{t_{k+1}} B-A\right)+A=\frac{t_{k}}{t_{k+1}} A \mathrm{~m}_{t_{k+1}} B+\frac{t_{k+1}-t_{k}}{t_{k+1}} A
$$

that is,

$$
t_{k+1} A \mathrm{~m}_{t_{k}} B \leq t_{k} A \mathrm{~m}_{t_{k+1}} B+\left(t_{k+1}-t_{k}\right) A
$$

Then, summing up from $k=1$ to $k=K-1$, we have

$$
\begin{equation*}
\sum_{k=1}^{K-1}\left(t_{k+1}-t_{k-1}\right) A \mathrm{~m}_{t_{k}} B \leq t_{K-1} A \mathrm{~m}_{t_{K}} B+\left(t_{K}-t_{1}\right) A \tag{a}
\end{equation*}
$$

On the other hand, summing up from $k=K+1$ to $k=n$ for other type of inequalities

$$
\left(1-t_{k-1}\right) A \mathrm{~m}_{t_{k}} B \leq\left(t_{k}-t_{k-1}\right) B+\left(1-t_{k}\right) A \mathrm{~m}_{t_{k-1}} B,
$$

we have

$$
\begin{equation*}
\sum_{k=K+1}^{n}\left(t_{k+1}-t_{k-1}\right) A \mathrm{~m}_{t_{k}} B \leq\left(t_{n}-t_{K}\right) B+\left(1-t_{K+1}\right) A \mathrm{~m}_{t_{K}} B \tag{b}
\end{equation*}
$$

It follows that

$$
\begin{aligned}
& D_{t_{K}}=\left(t_{K}-t_{1}\right) A+\left(t_{n}-t_{K}\right) B+A \mathrm{~m}_{t_{K}} B-\sum_{k=1}^{n}\left(t_{k+1}-t_{k-1}\right) A \mathrm{~m}_{t_{k}} B \\
&=\left(t_{K}-t_{1}\right) A+\left(t_{n}-t_{K}\right) B+\left(1-t_{K+1}+t_{K-1}\right) A \mathrm{~m}_{t_{K}} B-\sum_{k \neq K}\left(t_{k+1}-t_{k-1}\right) A \mathrm{~m}_{t_{k}} B \\
& \geq\left(t_{K}-t_{1}\right) A+\left(t_{n}-t_{K}\right) B+\left(1-t_{K+1}+t_{K-1}\right) A \mathrm{~m}_{t_{K}} B \\
& \quad-t_{K-1} A \mathrm{~m}_{t_{K}} B-\left(t_{K}-t_{1}\right) A-\left(t_{n}-t_{K}\right) B-\left(1-t_{K+1}\right) A \mathrm{~m}_{t_{K}} B=0
\end{aligned}
$$

Note that

$$
D_{t_{0}}=D_{0}=D_{t_{n+1}}=D_{1}=t_{n} B+\left(1-t_{1}\right) A-\sum_{k=1}^{n}\left(t_{k+1}-t_{k-1}\right) A \mathrm{~m}_{t_{k}} B
$$

Similarly to (a) or (b), we have

$$
\sum_{k=1}^{n}\left(t_{k+1}-t_{k-1}\right) A \mathrm{~m}_{t_{k}} B \leq t_{n} B+\left(1-t_{1}\right) A
$$

which implies $D_{t_{0}}=D_{t_{n+1}} \geq 0$.

Acknowledgement. The first author is partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research (C), 23540200, 2011.

References

[1] G.Corach, H.Porta and L.Recht, Geodesics and operator means in the space of positive operators, Internat. J. Math., 4 (1993), 193-202.
[2] G.Corach and A.L.Maestripieri, Differential and metrical structure of positive operators, Positivity, 3 (1999), 297-315.
[3] J.I.Fujii: Path of quasi-means as a geodesic, Linear Alg. Appl., 434(2011), 542-558.
[4] J.I.Fujii: Structure of Hiai-Petz parametrized geometry for positive definite matrices, Linear Alg. Appl., 432(2010), 318-326.
[5] J.I.Fujii: Interpolationality for symmetric operator means, to appear in Sci. Math. Japon..
[6] J.I.Fujii and E.Kamei: Uhlmann's interpolational method for operator means, Math. Japon., 34 (1989), 541-547.
[7] J.I.Fujii and E.Kamei: Interpolational paths and their derivatives, Math. Japon., 39 (1994), 557-560.
[8] J.I.Fujii and Y.Seo: On parametrized operator means dominated by power ones, Sci. Math., 1 (1998), 301-306.
[9] E.Kamei: Paths of operators parametrized by operator means, Math. Japon., 39(1994), 395400.
[10] F.Kittaneh: On the convexity of the Heinz Means, Integr. Equ. Oper. Theory, 68(2010), 519527.
[11] F.Kubo and T.Ando: Means of positive linear operators, Math. Ann., 248 (1980) 205-224.
[12] A.Uhlmann: Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory, Commun. Math. Phys., 54(1977), 22-32.
[13] K.Yanagi, K.Kuriyama and S.Furuichi: Generalized Shannon inequalities based on Tsallis relative operator entropy, Linear Alg. Appl., 394(2005), 109-118.

Communicated by Masatoshi Fujii

Department of Art and Sciences (Information Science), Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka 582-8582, Japan.

E-mail address: fujii@cc.osaka-kyoiku.ac.jp

* Department of Mathematics, Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka 582-8582, Japan.

E-mail address: mfujii@cc.osaka-kyoiku.ac.jp

