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Abstract. In this article, we study proximinality of some subspaces of operator
spaces. Namely, the bounded linear operators and Nuclear operators.

1 Introduction Let X be a normed space, and E be a subspace of X. For x ∈ X, define

d(x,E) = inf{‖x − e‖ : e ∈ E}.

If this distance is attained for every x ∈ X, we say that E is proximinal. The study of
proximinal subspaces is well developed, and many results are available in this direction. We
refer the reader to [4] for a comprehensive study of proximinal sets.
For two normed spaces X and Y , we denote by L(X,Y ) the space of all bounded linear
operators from X into Y .

The study of proximinal subspaces in operator spaces is not as rich as that of normed
spaces. However, many results are available in operator spaces like Lp(I, x) and L(`1, X).
We refer the reader to [1] for some results on this topic.

Tensor product spaces have played a nice role in the study of proximinal subspaces. For
this topic, we refer the reader to [1] and [2].
In this article, we shall study proximinal subspaces in the operator spaces L(X,Y ), N1(X, `1)
and Np(X, `p), where X and Y are any normed spaces.

Among other results, we shall prove that L(X,G) is proximinal in L(X,Y ) for any
tensorial subspace G of X, N1(G, `1) is proximinal in N1(X.`1) and Np(G, `p) is proximinal
in Np(X, `p) for any closed complemented subspace G of X.

Although our main purpose of this article is to obtain new results on proximinality,
many other important results are obtained.

In the sequel, I denotes the unit interval [0, 1], X∗ the dual space of the normed spaceX
and < x∗, x > will denote x∗(x), where x ∈ X and x∗ ∈ X∗.

2 Main Results Our study may be divided into two parts; the first part treats the
problem of L(X,Y ) and the second treats the Nuclear spaces N1(X, `1) and Np(X, `p).

2.1 The operator space L(X,Y ) For the first part, we study an analogue of the results
in [1], where the relation between proximinality of a subspace G in a normed space Y , and
that of Lp(I,G) in Lp(I, Y ) was discussed. In fact, it is proved, in [1], that G is proximinal
in Y if and only if Lp(I,G) is proximinal in Lp(I, Y ), provided that G is a tensorial subspace
of Y , see definition 1. Then, in [1], it was proved that G is proximinal in Y if and only if
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L(`1, G) is proximinal in L(`1, Y ). In fact, some results in [1] were obtained in an attempt to
solve the more challenging problem: Given two normed spaces X and Y , is the proximinality
of a subspace G of Y equivalent to the proximinality of L(X,G) in L(X,Y )?

In the following theorem, we shall use the expression x∗⊗y as being an operator x∗⊗y :
X → Y such that (x∗ ⊗ y)(x) = x∗(x) y. Here, x∗ ∈ X∗ and y ∈ Y . We refer the reader to
[2] for more on tensor product spaces.

Theorem 1 Let X and Y be two normed spaces, and let G be a subspace of Y . If L(X,G)
is proximinal in L(X,Y ), then G is proximinal in Y .

Proof. Let y ∈ Y be arbitrary. We need to find an element g0 ∈ G such that

‖y − g0‖ ≤ ‖y − g‖; ∀g ∈ G.

For this, let x0 ∈ X be such that ‖x0‖ = 1. By the Hahn-Banach theorem, let x∗ ∈ X∗ be
such that

‖x∗‖ = x∗(x0) = ‖x0‖ = 1.

Define the bounded linear operator x∗ ⊗ y : X → Y by

(x∗ ⊗ y)(x) = x∗(x) y, x ∈ X.

Since L(X,G) is proximinal in L(X,Y ), there is a bounded linear operator T ∈ L(X,G)
such that

‖x∗ ⊗ y − T‖ ≤ ‖x∗ ⊗ y − S‖; ∀S ∈ L(X,G).

In particular, if g ∈ G, then

‖x∗ ⊗ y − T‖ ≤ ‖x∗ ⊗ y − x∗ ⊗ g‖.

But then,

‖(x∗ ⊗ y − T )(x0)‖ ≤ ‖x∗ ⊗ y − T‖ ‖x0‖
= ‖x∗ ⊗ y − T‖
≤ ‖x∗ ⊗ y − x∗ ⊗ g‖
≤ ‖x∗‖ ‖y − g‖
= ‖y − g‖.

Thus, we have shown that ‖x∗(x0)y−T (x0)‖ ≤ ‖y−g‖, for all g ∈ G. But since x∗(x0) = 1
and T (x0) ∈ G, we infer that ‖y − g0‖ ≤ ‖y − g‖ for all g ∈ G, where g0 = T (x0). This
completes the proof.

So, the converse problem is still open. But, we still can prove that L(X,G) is proximinal
in L(X,Y ) under certain restrictions. First, a definition.

Definition 1 Let G be a subspace of the normed space X. Define

Ĝ = {x ∈ X : d(x,G) = ‖x‖}.

We say that G is a tensorial subspace of X if Ĝ is a subspace of X and if X = G ⊕ Ĝ, in
the sense that every x ∈ X can be written as x = g + ĝ, g ∈ G, ĝ ∈ Ĝ.
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For example, any closed subspace of an inner product space is tensorial. In fact, if G is
a subspace of X, an inner product space, then Ĝ = G⊥.

On the other hand, one can see that if X = R2, with the max norm, and G = R ⊂ X,
then Ĝ is not a subspace of X, hence G is not tensorial.

Observe that, in any normed space X and for every subspace G of X, G ∩ Ĝ = {0}.
Consequently, if x = g + ĝ for some g ∈ G and ĝ ∈ Ĝ, then this representation is unique.

Theorem 2 If G is a tensorial subspace of X, then G is proximinal in X.

Proof. Let x ∈ X, and let gx ∈ G and ĝx ∈ Ĝ be such that x = gx + ĝx. Then,

‖x − gx‖ = ‖ĝx‖
= d(ĝx, G)
≤ ‖ĝx − (g − gx)‖, ∀g ∈ G

= ‖x − g‖, ∀g ∈ G.

But then d(x, G) is attained at gx. Since this is valid for arbitrary x ∈ X, the result follows.

Proposition 1 If G is a tensorial subspace of G, then G is complemented. That is, the
projection of X onto G is a continuous mapping.

Proof. Let x ∈ X and let gx ∈ G, ĝx ∈ Ĝ be such that x = gx + ĝx. Then,

d(ĝx, G) = ‖ĝx‖ ≤ ‖ĝx + gx‖ = ‖x‖.

Consequently, the projection P : X → Ĝ is contractive, and hence I − P : X → G is
continuous. This completes the proof.

Theorem 3 Let X and Y be two normed spaces, and let G be a tensorial subspace of Y .
Then, L(X,G) is proximinal in L(X,Y ).

Proof. Let T ∈ L(X,Y ) and A = (I − P )T ∈ L(X,G), then for every F ∈ L(X,G), we
have

‖T − A‖ = ‖T − (I − P )T‖
= ‖PT‖
= ‖(P (T − F )‖
≤ ‖T − F‖.

Since F was arbitrary in L(X,G), the result follows.

Now as a matter of notation, let

L̂(X,G) = {T ∈ L(X,Y ) : ‖T‖ = d(T,L(X,G))} .

Proposition 2 Let X and Y be normed spaces, and let G be a tensorial subspace of Y .
Then,

L(X, Ĝ) = L̂(X,G).
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Proof. Let T ∈ L(X, Ĝ). Then Tx ∈ Ĝ, and hence ‖Tx‖ = d(Tx,G). Then, for every
T ′ ∈ L(X,G), we have

‖Tx‖ ≤ ‖Tx − T ′x‖
≤ ‖T − T ′‖ ‖x‖.

Consequently, ‖T‖ ≤ ‖T−T ′‖. Since T ′ ∈ L(X,G) was arbitrary, we infer that T ∈ L̂(X,G).
This shows that L(X, Ĝ) ⊆ L̂(X,G).

For the reverse inclusion, let T ∈ L̂(X,G). We have seen in Theorem 3 that T = A + B
where A ∈ L(X,G) and B ∈ L(X, Ĝ). Also, we have just proved that L(X, Ĝ) ⊆ L̂(X,G),
hence B ∈ L̂(X,G). We assert that A = 0, and hence T ∈ L(X, Ĝ). Since G is tensorial,
L(X,G) is proximinal in L(X,Y ), and hence

L(X,Y ) = L(X,G) ⊕ L̂(X,G),

see [1]. Observe that T = T + 0 is the unique representation of T in this direct sum. But
also, T = A + B where A ∈ L(X,G) and B ∈ L(X, Ĝ) ⊆ L̂(X,G). Since the decomposition
is unique, we infer that A = 0. This completes the proof.

2.2 The Nuclear Spaces Now we study proximinality in Nuclear spaces. First, let us
recall the definition of these spaces.

Definition 2 Let X and Y be two normed spaces. We define the Nuclear space N1(X,Y )
as follows:

N1(X,Y ) =

{
T : X → Y : T =

∞∑
n=1

x∗
n ⊗ yn, x∗

n ∈ X∗, yn ∈ Y,

∞∑
n=1

‖x∗
n‖ ‖yn‖ < ∞

}
.

For T =
∑∞

n=1 x∗
n ⊗ yn ∈ N1(X,Y ), we define the nuclear norm of T to be

‖T‖1 = inf
∞∑

n=1

‖x∗
n‖ ‖yn‖,

where the infimum is taken over all possible representations of T .

We refer the reader to [3] for more on nuclear operators in Banach spaces.

Proposition 3 If T ∈ N1(X, `1), then T can be written as

T =
∞∑

n=1

x∗
n ⊗ δn, x∗

n ∈ X∗,

and ‖T‖1 is attained. In fact,

‖T‖1 =
∞∑

n=1

‖x∗
n‖.

Proof. Let T =
∑∞

n=1 z∗n ⊗ yn be an arbitrary representation of T ∈ N1(X, `1). Since
yn ∈ `1, we may write

yn =
∞∑

k=1

ynkδk, where ‖yn‖ =
∞∑

k=1

|ynk|.
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By the definition of N1(X, `1), we have

∞∑
n=1

‖z∗n‖ ‖yn‖ < ∞.

But then,

∞∑
n=1

‖z∗n‖
∞∑

k=1

|ynk| < ∞

⇒
∞∑

n=1

∞∑
k=1

‖z∗n‖ |ynk| < ∞

⇒
∞∑

k=1

∞∑
n=1

‖z∗n‖ |ynk| < ∞.

But this last inequality implies that for each k ≥ 1, we have
∑∞

n=1 ‖ynk z∗n‖ < ∞, and
hence

∞∑
n=1

ynk z∗n ∈ X∗, ∀k ≥ 1,

because X∗ is a complete normed space. Consequently, if x∗
k =

∑∞
n=1 ynk z∗n, then

T =
∞∑

k=1

x∗
k ⊗ δk.

Moreover,

∞∑
n=1

‖z∗n‖ ‖yn‖ =
∞∑

k=1

∞∑
n=1

‖z∗n‖ |ynk|

=
∞∑

k=1

( ∞∑
n=1

‖ynk z∗n‖

)

≥
∞∑

k=1

∥∥∥∥∥
∞∑

n=1

ynk z∗n

∥∥∥∥∥ .

=
∞∑

k=1

‖x∗
k‖

This completes the proof of the proposition.

Before proceeding, we emphasize on the use of the notation G∗ in the rest of this paper:
We know that if G is a subspace of X, then any element f ∈ G∗ maybe extended to
an F ∈ X∗. Unfortunately, this extension is not unique in general. However, if G is a
complemented closed subspace of X, then any element g∗ ∈ G∗ may be extended to X as
follows:

g∗(x) = g∗(Px), P is the projection on G.

In the rest of this paper, G∗ will refer to the set of these particular extensions, so that G∗

becomes a subspace of X∗. In fact, with this convention, G∗ is clearly a w∗−closed subspace
of X∗.
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Theorem 4 If G is a closed complemented subspace of the normed space X, then N1(G, `1)
is proximinal in N1(X, `1).

Proof. Let T ∈ N1(X, `1), then

T =
∞∑

n=1

x∗
n ⊗ δn, x∗

n ∈ X∗, and ‖T‖1 =
∞∑

n=1

‖x∗
n‖.

Since G∗ is w∗− closed in X∗, G∗ is proximinal in X∗. For each n ∈ N , let g∗n ∈ G∗ be a
best approximant of x∗

n in G∗, and let

T̂ =
∞∑

n=1

g∗n ⊗ δn.

Then, clearly T̂ ∈ N1(G, `1), and, by virtue of proposition 3,

‖T − T̂‖ =
∞∑

n=1

‖x∗
n − g∗n‖

≤
∞∑

n=1

‖x∗
n − w∗

n‖, ∀w∗
n ∈ G∗

= ‖T − S‖,

where S =
∑∞

n=1 w∗
n ⊗ δn. But since any operator S ∈ N1(G, `1) has the form S =∑∞

n=1 w∗
n ⊗ δn, for a certain choice of the w∗

n, the result follows.

Now, we move to the study of Np(X, `p). First, we recall the definition of these spaces.

Definition 3 Let X be a normed space, and let `p be the standard sequence spaces, with
p > 1. We define Np(X, `p) to be the space of operators T : X → `p defined by

T =
∞∑

n=1

x∗
n ⊗ yn, x∗

n ∈ X∗, yn ∈ `p,

such that

‖(x∗
n)‖π(p) :=

( ∞∑
n=1

‖x∗
n‖p

)1/p

< ∞ and ‖(yn)‖ε(p∗) := sup
y∗∈`p∗

( ∞∑
n=1

|y∗(yn)|p
∗

)1/p∗

< ∞.

For T ∈ Np(X, `p), we define

‖T‖ = inf ‖(x∗
n)‖π(p)‖(yn)‖ε(p∗).

We refer the reader to [3] for more on these Nuclear spaces. We now prove an analogue of
Proposition 3.

Proposition 4 Let T ∈ Np(X, `p), then

T =
∞∑

n=1

z∗n ⊗ δn, for some z∗n ∈ X∗,

and ‖T‖ is attained. In fact,

‖T‖ =

( ∞∑
n=1

‖z∗n‖p

)1/p

.
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Proof. Let T ∈ Np(X, `p). We may assume, without loss of generality, that

T =
∞∑

n=1

λn x∗
n ⊗ yn, x∗

n ∈ X∗, yn =
∞∑

k=1

ynkδk ∈ `p,

where

‖x∗
n‖ = 1, ‖yn‖ ≤ 1, ‖(yn)‖ε(p∗) < 1 and

∞∑
n=1

|λn|p < ∞.

Now, let

z∗k =
∞∑

n=1

λn ynk x∗
n ∈ X∗.

We first show that z∗k ∈ X∗. Indeed,

∞∑
n=1

‖λnx∗
nynk‖ ≤

∞∑
n=1

|λn| |ynk|

≤

( ∞∑
n=1

|λn|p
)1/p ( ∞∑

n=1

|ynk|p
∗

)1/p∗

=

( ∞∑
n=1

|λn|p
)1/p ( ∞∑

n=1

| < δk, yn > |p
∗

)1/p∗

< ∞,

where the last inequality follows from the assumption that
∑∞

n=1 |λn|p < ∞ and that( ∞∑
n=1

| < δk, yn > |p
∗

)1/p∗

≤ sup
y∗∈`p∗

( ∞∑
n=1

| < y∗, yn > |p
∗

)1/p∗

≤ 1,

by the definition of Np(X, `p).
Consequently,

T =
∞∑

k=1

z∗k ⊗ δk.

Now, we assert that
‖(z∗k)‖π(p) < ∞ and ‖(δk)‖ε(p∗) < ∞.

It is clear that ‖(δk)‖ε(p∗) < ∞. For ‖(z∗k)‖π(p), observe that a sequence (ξk) ∈ `P∗
exists

such that ( ∞∑
k=1

|ξk|p
∗

)1/p∗

≤ 1,

and ( ∞∑
k=1

‖z∗k‖p

)1/p

=

∣∣∣∣∣
∞∑

k=1

ξk‖z∗k‖

∣∣∣∣∣
≤

∞∑
k=1

∞∑
n=1

|ξk| |λn| |ynk|
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≤

( ∞∑
n=1

|λn|p
)1/p

 ∞∑
n=1

( ∞∑
k=1

|ξk| |ynk|

)p∗1/p∗

=

( ∞∑
n=1

|λn|p
)1/p ∞∑

n=1

∞∑
k=1

αn|ξk| |ynk|

for some (αn) ∈ `p having the property ‖(αn)‖p ≤ 1. The last step in our proof is to show
that

∞∑
n=1

∞∑
k=1

αn|ξk| |ynk| ≤ 1.

For this purpose, observe that

∞∑
n=1

∞∑
k=1

αn|ξk| |ynk| ≤
∞∑

n=1

|αn|
∞∑

k=1

|ξk| | < δk, yn > |

≤
∞∑

n=1

|αn|

( ∞∑
k=1

| < ξkδk, yn > |

)

≤ ‖(αn)‖p sup
y∗∈`p∗

( ∞∑
n=1

| < y∗, yn > |p
∗

)1/p∗

≤ 1.

Thus, we have shown that
‖(z∗k)‖π(p) ≤ ‖(λn)‖p.

Since the representation T =
∑∞

k=1 z∗k⊗δk is unique, with the δk’s as the second coordinates,
for T ∈ Np(X, `p), we infer that

‖T‖ = ‖(z∗k)‖π(p) =

( ∞∑
k=1

‖z∗k‖p

)1/p

.

This completes the proof.

Now having proved this, we present the last main result in this paper, which is an
analogue of Theorem 4, and hence we leave the proof to the reader.

Theorem 5 If G is a closed complemented subspace of the normed space X, then Np(G, `p)
is proximinal in Np(X, `p).
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