AN ESTIMATE OF QUASI-ARITHMETIC MEAN FOR CONVEX FUNCTIONS

Jadranka Mićić Hot*, Josip Pečarić** and Yuki Seo***

Received March 25, 2011

ABSTRACT. For a selfadjoint operator A on a Hilbert space H and a normalized positive linear map Φ , a quasi-arithmetic mean is defined by $\varphi^{-1}\left(\Phi(\varphi(A))\right)$ for a strictly monotone function φ . In this paper, we shall show an order relation among quasi-arithmetic means for convex functions through positive linear maps and its complementary problems, in which we use the Mond-Pečarić method for convex functions.

1 Introduction. Let Φ be a normalized positive linear map from B(H) to B(K), where B(H) is a C*-algebra of all bounded linear operators on a Hilbert space H and the symbol I stands for the identity operator. A real valued function φ is said to be operator convex on an interval J if

$$\varphi((1-\lambda)A + \lambda B) \le (1-\lambda)\varphi(A) + \lambda\varphi(B)$$

holds for each $\lambda \in [0,1]$ and every pair of selfadjoint operators A, B in B(H) with spectra in J. φ is operator concave if $-\varphi$ is operator convex. Davis-Choi-Jensen inequality [3, 1] asserts that if a real valued continuous function f is operator convex on an interval J, then

$$(1.1) f(\Phi(A)) \le \Phi(f(A))$$

for every selfadjoint operator A with the spectrum $\sigma(A) \subset J$. A real valued function φ is said to be operator monotone on an interval J if it is monotone with respect to the operator order, i.e.,

$$A \leq B$$
 with $\sigma(A), \sigma(B) \subset J$ implies $f(A) \leq f(B)$.

To relate them, Mond-Pečarić [8] showed the following order among power means, also see [9, 10, 11]:

Theorem A. Let A be a positive operator on a Hilbert space H. Then

(1.2)
$$\Phi(A^r)^{1/r} \le \Phi(A^s)^{1/s}$$

holds for either $r \le s$, $r \notin (-1,1)$, $s \notin (-1,1)$ or $1/2 \le r \le 1 \le s$ or $r \le -1 \le s \le -1/2$.

For positive invertible operators A and B, the chaotic order $A \gg B$ is defined by $\log A \ge \log B$. In [4], Fujii, Nakamura and Takahasi introduced a chaotically quasi-arithmetic mean of positive operators A and B: For each $t \in [0,1]$

$$\varphi^{-1}((1-t)\varphi(A) + t\varphi(B))$$

for a non-constant operator monotone function φ on $(0, \infty)$ such that φ^{-1} is chaotically monotone, that is, $0 \le A \le B$ implies $\varphi^{-1}(A) \ll \varphi^{-1}(B)$. They discussed an order among this class like Cooper's classical results [2]:

²⁰⁰⁰ Mathematics Subject Classification. 47A63, 47A64.

Key words and phrases. Quasi-Arithmetic mean, positive linear map, positive operator, Jensen inequality, Mond-Pečarić method.

Theorem B. If ψ is operator monotone and $\psi \circ \varphi^{-1}$ is operator convex, then

(1.3)
$$\varphi^{-1}((1-t)\varphi(A) + t\varphi(B)) \ll \psi^{-1}((1-t)\psi(A) + t\psi(B))$$

for all $t \in [0, 1]$.

We want to consider orders of (1.2) and (1.3) under a more general situation. We recall that a quasi-arithmetic mean of a selfadjoint operator A is defined by

$$\varphi^{-1}(\Phi(\varphi(A)))$$

for a strictly monotone continuous function φ . Matsumoto and Tominaga [6] investigated the relation between the quasi-arithmetic mean $\varphi^{-1}(\Phi(\varphi(A)))$ and $\Phi(A)$ for a convex function φ .

In this paper, we shall show an order relation among quasi-arithmetic means for convex functions through positive linear maps and its complementary problems, in which we use the Mond-Pečarić method for convex functions in [5, 7].

2 Order among quasi-arithmetic mean First of all, we shall show an order relation among quasi-arithmetic means of selfadjoint operators for convex functions. Let C[m, M] be a set of all real valued continuous functions on a closed interval [m, M]

Theorem 1. Let Φ be a normalized positive linear map, A a selfadjoint operator with the spectrum $\sigma(A) \subset [m, M]$ and $\varphi, \psi \in C[m, M]$ strictly monotone functions. If one of the following conditions is satisfied:

- (i) $\psi \circ \varphi^{-1}$ is operator convex and ψ^{-1} is operator monotone,
- (i), $\psi \circ \varphi^{-1}$ is operator concave and $-\psi^{-1}$ is operator monotone.
- (ii) φ^{-1} is operator convex and ψ^{-1} is operator concave,

then

(2.1)
$$\varphi^{-1}(\Phi(\varphi(A))) < \psi^{-1}(\Phi(\psi(A))).$$

Proof. (i): Since $\psi \circ \varphi^{-1}$ is operator convex, it follows from Davis-Choi-Jensen inequality (1.1) that

$$\psi \circ \varphi^{-1}(\Phi(\varphi(A))) < \Phi(\psi \circ \varphi^{-1} \circ \varphi(A)) = \Phi(\psi(A)).$$

Since ψ^{-1} is operator monotone, it follows that

$$\varphi^{-1}(\Phi(\varphi(A))) = \psi^{-1} \circ \psi \circ \varphi^{-1}(\Phi(\varphi(A))) \leq \psi^{-1}(\Phi(\psi(A))),$$

which is the desired inequality (2.1).

- (i): We have (2.1) under the assumption (i) by a similar method as in (i).
- (ii): Since φ^{-1} is operator convex, it follows that

$$\varphi^{-1}(\Phi(\varphi(A))) \le \Phi(\varphi^{-1} \circ \varphi(A)) = \Phi(A).$$

Similarly, since ψ^{-1} is operator concave, we have

$$\Phi(A) < \psi^{-1}(\Phi(\psi(A))).$$

П

Using two inequalities above, we have (2.1).

Remark 2. Notice that the condition (i) is equivalent to (i)' in Theorem 1: In fact, it follows that $\psi \circ \varphi^{-1}$ is operator concave if and only if $-\psi \circ \varphi^{-1}$ is operator convex, and $-\psi^{-1}$ is operator monotone if and only if $(-\psi)^{-1}$ is operator monotone.

The following corollary is a complementary result to Theorem 1.

Corollary 3. Let Φ be a normalized positive linear map, A a selfadjoint operator with the spectrum $\sigma(A) \subset [m,M]$ and $\varphi, \psi \in C[m,M]$ strictly monotone functions. If one of the following conditions is satisfied:

- (i) $\psi \circ \varphi^{-1}$ is operator concave and ψ^{-1} is operator monotone,
- (i) $\psi \circ \varphi^{-1}$ is operator convex and $-\psi^{-1}$ is operator monotone,
- (ii) φ^{-1} is operator concave and ψ^{-1} is operator convex,

then

$$\psi^{-1}(\Phi(\psi(A))) \le \varphi^{-1}(\Phi(\varphi(A))).$$

Remark 4. Theorem 1 and Corollary 3 are a generalization of (1.2) in Theorem A: In fact, if we put $\varphi(t) = t^r$ and $\psi(t) = t^s$ in Theorem 1 and $\varphi(t) = t^s$ and $\psi(t) = t^r$ in Corollary 3, then we have (1.2) in Theorem A.

3 Ratio type complementary order among quasi-arithmetic means Let A be a positive operator on a Hilbert space H such that $mI \le A \le MI$ for some scalars 0 < m < M, let $\varphi \in C[m, M]$ be convex and $\varphi > 0$ on [m, M]. By using the Mond-Pečarić method for convex functions, Mond-Pečarić [7] showed that

(3.1)
$$\varphi((Ax,x)) < (\varphi(A)x,x) < \lambda(m,M,\varphi) \ \varphi((Ax,x))$$

holds for every unit vector $x \in H$, where

$$(3.2) \qquad \lambda(m,M,\varphi) = \max\left\{\frac{1}{\varphi(t)}\left(\frac{\varphi(M)-\varphi(m)}{M-m}(t-m)+\varphi(m)\right): t\in [m,M]\right\}>0.$$

If φ is concave and $\varphi > 0$ on [m, M], then

(3.3)
$$\mu(m, M, \varphi) \varphi((Ax, x)) \le (\varphi(A)x, x) \le \varphi((Ax, x))$$

holds for every unit vector $x \in H$, where

$$(3.4) \qquad \mu(m,M,\varphi) = \min\left\{\frac{1}{\varphi(t)} \left(\frac{\varphi(M) - \varphi(m)}{M - m}(t - m) + \varphi(m)\right) : t \in [m,M]\right\} > 0.$$

In particular, if $\varphi(t) = t^p$, then the constant $\lambda(m, M, t^p)$ (resp. $\mu(m, M, t^p)$) concides with a generalized Kantorovich constant K(m, M, p) for $p \notin [0, 1]$ (resp. $p \in [0, 1]$) defined by

$$K(m,M,p) = \frac{mM^p - Mm^p}{(p-1)(M-m)} \left(\frac{p-1}{p} \frac{M^p - m^p}{mM^p - Mm^p}\right)^p \quad \text{for any } p \in \mathbb{R},$$

also see [5, Chapter 2]. We remark that $K(m, M, 1) = \lim_{p \to 1} K(m, M, p) = 1$ and $K(m, M, 0) = \lim_{p \to 0} K(m, M, p) = 1$. We use the following notations:

(3.5)
$$\varphi_m = \min\{\varphi(m), \varphi(M)\} \quad \text{and} \quad \varphi_M = \max\{\varphi(m), \varphi(M)\}$$

for a strictly monotone function $\varphi \in C[m, M]$.

In (i) of Theorem 1, suppose that $\psi \circ \varphi^{-1}$ is operator convex. What happened if ψ^{-1} is not operator monotone? An order among quasi-arithmetic mean (2.1) doe not always holds. By using the Mond-Pečarić method, we show a complementary order to (2.1).

Theorem 5. Let Φ be a normalized positive linear map, A a positive operator such that $mI \leq A \leq MI$ for some scalars 0 < m < M and $\varphi, \psi \in C[m, M]$ strictly monotone functions such as $\psi > 0$ on [m, M]. Suppose that $\psi \circ \varphi^{-1}$ is operator convex.

(i) If ψ^{-1} is increasing convex (resp. decreasing convex), then

(3.6)
$$\varphi^{-1}(\Phi(\varphi(A))) \leq \lambda(\psi(m), \psi(M), \psi^{-1}) \ \psi^{-1}(\Phi(\psi(A))).$$

$$(resp. \frac{1}{\lambda(\psi(M), \psi(m), \psi^{-1})} \psi^{-1}(\Phi(\psi(A))) \leq \varphi^{-1}(\Phi(\varphi(A))).$$

(ii) If ψ^{-1} is increasing concave (resp. decreasing concave), then

(3.7)
$$\varphi^{-1}(\Phi(\varphi(A))) \leq \frac{1}{\mu(\psi(m), \psi(M), \psi^{-1})} \psi^{-1}(\Phi(\psi(A))),$$

$$(resp. \qquad \mu(\psi(M), \psi(m), \psi^{-1}) \psi^{-1}(\Phi(\psi(A))) \leq \varphi^{-1}(\Phi(\varphi(A))),$$

where the constants $\lambda(m, M, \varphi)$ and $\mu(m, M, \varphi)$ are defined as (3.2) and (3.4) respectively. Proof. Since $\psi \circ \varphi^{-1}$ is operator convex, we have

(3.8)
$$\psi \circ \varphi^{-1}(\Phi(\varphi(A))) < \Phi(\psi \circ \varphi^{-1} \circ \varphi(A)) = \Phi(\psi(A)).$$

(i): Suppose that ψ^{-1} is increasing convex. Since φ is strictly monotone, we have $mI \leq \varphi^{-1}(\Phi(\varphi(A))) \leq MI$ and hence

$$0 < \psi(m)I \le \psi \circ \varphi^{-1}(\Phi(\varphi(A))) \le \psi(M)I$$

by the increase of ψ and $\psi > 0$. Since $\psi^{-1} > 0$, it follows that for each unit vector $x \in H$

$$\begin{split} &(\varphi^{-1}(\Phi(\varphi(A)))x,x) = (\psi^{-1} \circ \psi \circ \varphi^{-1}(\Phi(\varphi(A)))x,x) \\ &\leq \lambda(\psi(m),\psi(M),\psi^{-1}) \ \psi^{-1}(\psi \circ \varphi^{-1}(\Phi(\varphi(A)))x,x) \qquad \text{by convexity of } \psi^{-1} \text{ and } (3.1) \\ &\leq \lambda(\psi(m),\psi(M),\psi^{-1}) \ \psi^{-1}(\Phi(\psi(A))x,x) \qquad \text{by increase of } \psi^{-1} \text{ and } (3.8) \\ &\leq \lambda(\psi(m),\psi(M),\psi^{-1}) \ (\psi^{-1}(\Phi(\psi(A)))x,x) \qquad \text{by convexity of } \psi^{-1} \text{ and } (3.1) \end{split}$$

and hence we have the desired inequality (3.6).

Suppose that ψ^{-1} is decreasing convex. Then it follows that ψ is decreasing and $0 < \psi(M)I \le \psi(A) \le \psi(m)I$ by $\psi > 0$. Therefore, it follows that for each unit vector $x \in H$

$$\begin{split} &(\varphi^{-1}(\Phi(\varphi(A)))x,x) = (\psi^{-1} \circ \psi \circ \varphi^{-1}(\Phi(\varphi(A)))x,x) \\ & \geq \psi^{-1}(\psi \circ \varphi^{-1}(\Phi(\varphi(A)))x,x) \qquad \text{by convexity of } \psi^{-1} \text{ and } (3.1) \\ & \geq \psi^{-1}(\Phi(\psi(A))x,x) \qquad \text{by decrease of } \psi^{-1} \text{ and } (3.8) \\ & \geq \frac{1}{\lambda(\psi(M),\psi(m),\psi^{-1})} \; (\psi^{-1}(\Phi(\psi(A)))x,x) \qquad \text{by convexity of } \psi^{-1} \text{ and } (3.1) \end{split}$$

and hence

$$\varphi^{-1}(\Phi(\varphi(A))) \ge \frac{1}{\lambda(\psi(M), \psi(m), \psi^{-1})} \ \psi^{-1}(\Phi(\psi(A))).$$

(ii): Suppose that ψ^{-1} is increasing concave. Then it follows that ψ is increasing and $0 < \psi(m)I \le \Phi(\psi(A)) \le \psi(M)I$. Hence for each unit vector $x \in H$

$$\begin{split} &(\varphi^{-1}(\Phi(\varphi(A)))x,x) = (\psi^{-1} \circ \psi \circ \varphi^{-1}(\Phi(\varphi(A)))x,x) \\ &\leq \psi^{-1}(\psi \circ \varphi^{-1}(\Phi(\varphi(A)))x,x) \quad \text{by concavity of } \psi^{-1} \text{ and } (3.3) \\ &\leq \psi^{-1}(\Phi(\psi(A))x,x) \quad \text{by increase of } \psi^{-1} \text{ and } (3.8) \\ &\leq \frac{1}{\mu(\psi(m),\psi(M),\psi^{-1})} \; (\psi^{-1}(\Phi(\psi(A)))x,x) \quad \text{by concavity of } \psi^{-1} \text{ and } (3.3) \end{split}$$

and hence we have the desired inequality (3.7). In the case of decreasing concavity, we have our result by a similar method as in (i).

Remark 6. The upper bound $\lambda(\psi(m), \psi(M), \psi^{-1})$ in (3.6) of Theorem 5 is sharp in the following sense: Define a normalized positive linear map $\Phi: M_2(\mathbb{C}) \to \mathbb{C}$ by

$$\Phi(X) = \theta x_{11} + (1 - \theta) x_{22}$$
 for $X = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix}$ with $0 < \theta < 1$

and put $A = \begin{pmatrix} m & 0 \\ 0 & M \end{pmatrix}$ with M > m > 0. Obviously $0 < mI \le A \le MI$. By definition, there exists $t^* \in [\psi(m), \psi(M)]$ such that

$$\lambda(\psi(m), \psi(M), \psi^{-1}) = \frac{1}{\psi^{-1}(t^*)} \left(\frac{M - m}{\psi(M) - \psi(m)} (t^* - \psi(m)) + m \right).$$

Put

$$\theta = \frac{\psi(M) - t^*}{\psi(M) - \psi(m)}$$

and we have $0 < \theta < 1$.

Suppose that

$$\varphi((1-\theta)M + \theta m) = (1-\theta)\varphi(M) + \theta\varphi(m).$$

Then we can show that

$$\varphi^{-1}(\Phi(\varphi(A))) = \lambda(\psi(m), \psi(M), \psi^{-1}) \psi^{-1}(\Phi(\psi(A))).$$

Indeed, it follows that

$$\psi^{-1}(\Phi(\psi(A))) = \psi^{-1}(\Phi(\begin{pmatrix} \psi(m) & 0 \\ 0 & \psi(M) \end{pmatrix}))$$
$$= \psi^{-1}(\theta\psi(m) + (1 - \theta)\psi(M))$$
$$= \psi^{-1}(t^*)$$

and hence

$$\varphi^{-1}(\Phi(\varphi(A))) = \varphi^{-1}(\theta\varphi(m) + (1-\theta)\varphi(M))$$

$$= (1-\theta)M + \theta m$$

$$= \frac{(M-m)t^* + m\psi(M) - M\psi(m)}{\psi(M) - \psi(m)}$$

$$= \lambda(\psi(m), \psi(M), \psi^{-1})\psi^{-1}(t^*)$$

$$= \lambda(\psi(m), \psi(M), \psi^{-1}) \psi^{-1}(\Phi(\psi(A))).$$

The following theorem is a complementary result to (i)' of Theorem 1 under the assumption that $\psi \circ \varphi^{-1}$ is operator concave.

Theorem 7. Let Φ be a normalized positive linear map, A a positive operator such that $mI \leq A \leq MI$ for some scalars 0 < m < M and $\varphi, \psi \in C[m, M]$ strictly monotone functions such as $\psi > 0$ on [m, M]. Suppose that $\psi \circ \varphi^{-1}$ is operator concave.

(i) If ψ^{-1} is decreasing concave (resp. increasing concave), then

$$\varphi^{-1}(\Phi(\varphi(A))) \le \frac{1}{\mu(\psi(M), \psi(m), \psi^{-1})} \psi^{-1}(\Phi(\psi(A))).$$
(resp. $\mu(\psi(m), \psi(M), \psi^{-1}) \psi^{-1}(\Phi(\psi(A))) \le \varphi^{-1}(\Phi(\varphi(A))).$

(ii) If ψ^{-1} is decreasing convex (resp. increasing convex), then

$$\varphi^{-1}(\Phi(\varphi(A))) \le \lambda(\psi(M), \psi(m), \psi^{-1}) \ \psi^{-1}(\Phi(\psi(A))),$$

$$(resp. \frac{1}{\lambda(\psi(m), \psi(M), \psi^{-1})} \psi^{-1}(\Phi(\psi(A))) \le \varphi^{-1}(\Phi(\varphi(A))),$$

where the constants $\lambda(m, M, \varphi)$ and $\mu(m, M, \varphi)$ are defined as (3.2) and (3.4) respectively.

The following theorem is a complementary result to (ii) of Theorem 1.

Theorem 8. Let Φ be a normalized positive linear map, A a positive operator such that $mI \leq A \leq MI$ for some scalars 0 < m < M and $\varphi, \psi \in C[m, M]$ strictly monotone functions.

(i) If φ^{-1} is operator convex and ψ^{-1} is concave and $\psi > 0$ on [m, M], then

(3.9)
$$\varphi^{-1}(\Phi(\varphi(A))) \le \frac{1}{\mu(\psi_m, \psi_M, \psi^{-1})} \psi^{-1}(\Phi(\psi(A))).$$

(ii) If φ^{-1} is convex and $\varphi > 0$ on [m, M], and ψ^{-1} is operator concave, then

(3.10)
$$\varphi^{-1}(\Phi(\varphi(A))) \le \lambda(\varphi_m, \varphi_M, \varphi^{-1}) \ \psi^{-1}(\Phi(\psi(A))).$$

(iii) If φ^{-1} is convex and $\varphi > 0$ on [m, M] and ψ^{-1} is concave and $\psi > 0$ on [m, M], then

(3.11)
$$\varphi^{-1}(\Phi(\varphi(A))) \leq \frac{\lambda(\varphi_m, \varphi_M, \varphi^{-1})}{\mu(\psi_m, \psi_M, \psi^{-1})} \psi^{-1}(\Phi(\psi(A))),$$

where the constants $\lambda(m, M, \varphi)$ and $\mu(m, M, \varphi)$ are defined as (3.2) and (3.4) respectively.

Proof. (i): Since a C*-algebra $C^*(A)$ generated by A and the identity operator I is abelian, it follows from Stinespring decomposition theorem [12] that Φ restricted to $C^*(A)$ admits a decomposition $\Phi(X) = V^*\pi(X)V$ for all $X \in C^*(A)$, where π is a representation of $C^*(A) \subset B(H)$, and V is an isometry from K into H. Since ψ^{-1} is monotone and $\psi > 0$, we have $0 < \psi_m I \le \Phi(\psi(A)) \le \psi_M I$. Since $\psi^{-1} > 0$, it follows that for each unit vector $x \in H$

$$\begin{aligned} &(\psi^{-1}(\Phi(\psi(A)))x,x) \\ & \geq \mu(\psi_m,\psi_M,\psi^{-1}) \ \psi^{-1}(\Phi(\psi(A))x,x) \qquad \text{by concavity of } \psi^{-1} \text{ and } (3.3) \\ & = \mu(\psi_m,\psi_M,\psi^{-1}) \ \psi^{-1}(\pi(\psi(A))Vx,Vx) \\ & \geq \mu(\psi_m,\psi_M,\psi^{-1}) \ (\psi^{-1}(\pi(\psi(A)))Vx,Vx) \quad \text{by } \| \ Vx \| = 1 \text{ and } (3.3) \\ & = \mu(\psi_m,\psi_M,\psi^{-1}) \ (\pi(A)Vx,Vx) \\ & = \mu(\psi_m,\psi_M,\psi^{-1}) \ (\Phi(A)x,x) \end{aligned}$$

and hence

(3.12)
$$\mu(\psi_m, \psi_M, \psi^{-1})\Phi(A) \le \psi^{-1}(\Phi(\psi(A))).$$

On the other hand, the operator convexity of φ^{-1} implies

(3.13)
$$\varphi^{-1}(\Phi(\varphi(A))) \le \Phi(A).$$

Combining two inequalities (3.12) and (3.13), we have the desired inequality (3.9).

- (ii): We have (3.10) by a similar method as in (i).
- (iii): We have (3.11) by combining (i) and (ii).

The following theorem is a complementary result to (i) or (i)' of Theorem 1 under the assumption that $\psi \circ \varphi^{-1}$ is only convex or concave, respectively.

Theorem 9. Let Φ be a normalized positive linear map, A a positive operator such that $mI \leq A \leq MI$ for some scalars 0 < m < M and $\varphi, \psi \in C[m, M]$ strictly monotone functions such that $\varphi > 0$ on [m, M]. If one of the following conditions is satisfied:

- (i) $\psi \circ \varphi^{-1}$ is convex (resp. concave) and ψ^{-1} is operator monotone,
- (i)' $\psi \circ \varphi^{-1}$ is concave (resp. convex) and $-\psi^{-1}$ is operator monotone, then

(3.14)
$$\psi^{-1}(\Phi(\psi(A))) \leq \tilde{\lambda}(\varphi_m, \varphi_M, \psi \circ \varphi^{-1}, \psi^{-1}) \varphi^{-1}(\Phi(\varphi(A))).$$

$$(resp. \qquad \psi^{-1}(\Phi(\psi(A))) \geq \tilde{\mu}(\varphi_m, \varphi_M, \psi \circ \varphi^{-1}, \psi^{-1}) \varphi^{-1}(\Phi(\varphi(A))).$$

where

$$\tilde{\lambda}(m, M, \varphi, \psi) = \max \left\{ \frac{1}{\psi \circ \varphi(t)} \cdot \psi \left(\frac{\varphi(M) - \varphi(m)}{M - m} (t - m) + \varphi(m) \right) : t \in [m, M] \right\},$$

$$\tilde{\mu}(m, M, \varphi, \psi) = \min \left\{ \frac{1}{\psi \circ \varphi(t)} \cdot \psi \left(\frac{\varphi(M) - \varphi(m)}{M - m} (t - m) + \varphi(m) \right) : t \in [m, M] \right\}.$$

Proof. (i): We will prove only the convex case. Since the inequality

$$f(z) \le \frac{f(M) - f(m)}{M - m} (z - m) + f(m), \quad z \in [m, M]$$

holds for every convex function $f \in \mathcal{C}[m, M]$, then we have that inequality

$$f(\varphi(t)) \le \frac{f(\varphi_M) - f(\varphi_m)}{\varphi_M - \varphi_m} (\varphi(t) - \varphi_m) + f(\varphi_m), \quad t \in [m, M]$$

holds for every convex function $f \in \mathcal{C}[\varphi_m, \varphi_M]$. Then for a convex function $\psi \circ \varphi^{-1} \in \mathcal{C}[\varphi_m, \varphi_M]$, we obtain

$$\psi(t) \le \frac{\psi(\varphi^{-1}(\varphi_M)) - \psi(\varphi^{-1}(\varphi_m))}{\varphi_M - \varphi_m} (\varphi(t) - \varphi_m) + \psi(\varphi^{-1}(\varphi_m)), \quad t \in [m, M].$$

Using the functional calculus and applying a normalized positive linear map Φ , we obtain that

$$\Phi(\psi(A)) \le \frac{\psi(M) - \psi(m)}{\varphi(M) - \varphi(m)} \left(\Phi(\varphi(A)) - \varphi_m I\right) + \psi(\varphi^{-1}(\varphi_m))I$$

holds for every operator A such that $0 < mI \le A \le MI$. Applying an operator monotone function ψ^{-1} , it follows

$$\psi^{-1}(\Phi(\psi(A))) \le \psi^{-1}\left(\frac{\psi(M) - \psi(m)}{\varphi(M) - \varphi(m)} \left(\Phi(\varphi(A)) - \varphi_m I\right) + \psi(\varphi^{-1}(\varphi_m))I\right).$$

Using that $0 < \varphi_m I \le \Phi(\varphi(A)) \le \varphi_M I$, we obtain

$$\psi^{-1}(\Phi(\psi(A)))$$

$$\leq \max_{\varphi_m \leq t \leq \varphi_M} \left\{ \frac{1}{\varphi^{-1}(t)} \cdot \psi^{-1} \left(\frac{\psi(M) - \psi(m)}{\varphi(M) - \varphi(m)} (t - \varphi_m) + \psi(\varphi^{-1}(\varphi_m)) \right) \right\} \varphi^{-1}(\Phi(\varphi(A)))$$

$$= \tilde{\lambda}(\varphi_m, \varphi_M, \psi \circ \varphi^{-1}, \psi^{-1}) \varphi^{-1}(\Phi(\varphi(A)))$$

and hence we have the desired inequality (3.14).

In the case (i)', the proof is essentially same as in the previous case.

Remark 10. The upper bound $\tilde{\lambda}(\varphi_m, \varphi_M, \psi \circ \varphi^{-1}, \psi^{-1})$ in (3.14) of Theorem 9 is sharp in the sense that for any strictly monotone functions ψ and φ there exist a positive operator A and a positive linear map Φ such that the equality holds in (3.14).

It is obvious that

$$\begin{split} &\tilde{\lambda}(\varphi_m, \varphi_M, \psi \circ \varphi^{-1}, \psi^{-1}) \\ &= \max_{\varphi_m \le t \le \varphi_M} \left\{ \frac{1}{\varphi^{-1}(t)} \cdot \psi^{-1} \left(\frac{\psi(M) - \psi(m)}{\varphi(M) - \varphi(m)} \left(t - \varphi_m \right) + \psi(\varphi^{-1}(\varphi_m) \right) \right) \right\} \\ &= \max_{0 \le \theta \le 1} \left\{ \frac{\psi^{-1} \left(\theta \psi(M) + (1 - \theta) \psi(m) \right)}{\varphi^{-1} \left(\theta \varphi(M) + (1 - \theta) \varphi(m) \right)} \right\}. \end{split}$$

Since a function $f(\theta) = \frac{\psi^{-1}(\theta\psi(M) + (1-\theta)\psi(m))}{\varphi^{-1}(\theta\varphi_M + (1-\theta)\varphi_m)}$ is continuous on [0,1], there exists $\theta^* \in [0,1]$ such that

$$\tilde{\lambda}(\varphi_m, \varphi_M, \psi \circ \varphi^{-1}, \psi^{-1}) = \frac{\psi^{-1} \left(\theta^* \psi(M) + (1 - \theta^*) \psi(m)\right)}{\varphi^{-1} \left(\theta^* \varphi(M) + (1 - \theta^*) \varphi(m)\right)}.$$

Let Φ and A be as in Remark 6. Then the equality

$$\psi^{-1}(\Phi(\psi(A))) = \tilde{\lambda}(\varphi_m, \varphi_M, \psi \circ \varphi^{-1}, \psi^{-1}) \varphi^{-1}(\Phi(\varphi(A)))$$

holds. Indeed,

$$\begin{split} \psi^{-1}(\Phi(\psi(A))) &= \psi^{-1}\left(\Phi(\begin{pmatrix} \psi(m) & 0 \\ 0 & \psi(M) \end{pmatrix})\right) \\ &= \frac{\psi^{-1}\left((1-\theta^*)\psi(m) + \theta^*\psi(M)\right)}{\varphi^{-1}\left((1-\theta^*)\varphi(m) + \theta^*\varphi(M)\right)} \cdot \varphi^{-1}\left((1-\theta^*)\varphi(m) + \theta^*\varphi(M)\right) \\ &= \tilde{\lambda}(\varphi_m, \varphi_M, \psi \circ \varphi^{-1}, \psi^{-1}) \ \varphi^{-1}(\Phi(\varphi(A))). \end{split}$$

4 Difference type complementary order among quasi-arithmetic means Let A be a selfadjoint operator on a Hilbert space H such that $mI \leq A \leq MI$ for some scalars m < M, let $\varphi \in C[m,M]$ be a convex function. By using the Mond-Pečarić method for convex functions, Mond-Pečarić [7] showed that

$$\varphi((Ax, x)) \le (\varphi(A)x, x) \le \varphi((Ax, x)) + \nu(m, M, \varphi)$$

holds for every unit vector $x \in H$, where

$$(4.1) \qquad \nu(m,M,\varphi) = \max\left\{\frac{\varphi(M) - \varphi(m)}{M - m}(t - m) + \varphi(m) - \varphi(t) : t \in [m,M]\right\} \ge 0.$$

If φ is concave on [m, M], then

$$\xi(m, M, \varphi) + \varphi((Ax, x)) < (\varphi(A)x, x) < \varphi((Ax, x))$$

holds for every unit vector $x \in H$, where

$$(4.2) \qquad \xi(m,M,\varphi) = \min\left\{\frac{\varphi(M) - \varphi(m)}{M - m}(t - m) + \varphi(m) - \varphi(t) : t \in [m,M]\right\} \ge 0.$$

In particular, if $\varphi(t) = t^p$, then the constant $\nu(m, M, t^p)$ (resp. $\xi(m, M, t^p)$) coincides with a generalized Kantorovich constant for the difference C(m, M, p) for $p \notin [0, 1]$ (resp. $p \in [0, 1]$) defined by

$$C(m, M, p) = (p-1) \left(\frac{1}{p} \frac{M^p - m^p}{M - m} \right)^{\frac{p}{p-1}} + \frac{M m^p - m M^p}{M - m}$$
 for any $p \in \mathbb{R}$,

also see [5, Chapter 2]. We remark that $C(m, M, 1) = \lim_{p \to 1} C(m, M, p) = 0$.

Similarly as in the previous section, we can obtain the complementary order to (2.1) for the difference case. When $\psi \circ \varphi^{-1}$ is operator convex and ψ^{-1} is not operator monotone, we obtain the following theorem corresponding to Theorem 5.

Theorem 11. Let Φ be a normalized positive linear map, A a selfadjoint operator such that $mI \leq A \leq MI$ for some scalars m < M and $\varphi, \psi \in C[m, M]$ strictly monotone functions.

- (I) Suppose that $\psi \circ \varphi^{-1}$ is operator convex.
 - (i) If ψ^{-1} is increasing convex (resp. decreasing convex), then

(4.3)
$$\varphi^{-1}(\Phi(\varphi(A))) \leq \psi^{-1}(\Phi(\psi(A))) + \nu(\psi(m), \psi(M), \psi^{-1}).$$

$$(resp. \qquad \psi^{-1}(\Phi(\psi(A))) - \nu(\psi(M), \psi(m), \psi^{-1}) \leq \varphi^{-1}(\Phi(\varphi(A))). \qquad)$$

(ii) If ψ^{-1} is increasing concave (resp. decreasing concave), then

$$\varphi^{-1}(\Phi(\varphi(A))) \le \psi^{-1}(\Phi(\psi(A))) - \xi(\psi(m), \psi(M), \psi^{-1}).$$
(resp. $\xi(\psi(M), \psi(m), \psi^{-1}) + \psi^{-1}(\Phi(\psi(A))) \le \varphi^{-1}(\Phi(\varphi(A))).$)

- (II) Suppose that $\psi \circ \varphi^{-1}$ is operator concave.
 - (i)' If ψ^{-1} is decreasing concave (resp. increasing concave), then

$$\varphi^{-1}(\Phi(\varphi(A))) \le \psi^{-1}(\Phi(\psi(A))) - \xi(\psi(M), \psi(m), \psi^{-1}).$$
 (resp. $\xi(\psi(m), \psi(M), \psi^{-1}) + \psi^{-1}(\Phi(\psi(A))) \le \varphi^{-1}(\Phi(\varphi(A))).$)

(ii)' If ψ^{-1} is decreasing convex (resp. increasing convex), then

$$\varphi^{-1}(\Phi(\varphi(A))) \le \psi^{-1}(\Phi(\psi(A))) + \nu(\psi(M), \psi(m), \psi^{-1}),$$
(resp.
$$\psi^{-1}(\Phi(\psi(A))) - \nu(\psi(m), \psi(M), \psi^{-1}) \le \varphi^{-1}(\Phi(\varphi(A))),$$
)

where the constants $\nu(m, M, \varphi)$ and $\xi(m, M, \varphi)$ are defined as (4.1) and (4.2) respectively.

The proof of this theorem is quite similar to one of Theorem 5 and we omit it.

Remark 12. The inequalities in Theorem 11 are sharp in the sense of Remark 6. In (4.3), there exists $\theta^* \in [0,1]$ such that

$$\begin{array}{lcl} \nu(\psi(m),\psi(M),\psi^{-1}) & = & \theta^*M + (1-\theta^*)m - \psi^{-1}\left(\theta^*\psi(M) + (1-\theta^*)\psi(m)\right) \\ & = & \max_{0 \le \theta \le 1} \left\{\theta M + (1-\theta)m - \psi^{-1}\left(\theta\psi(M) + (1-\theta)\psi(m)\right)\right\}, \end{array}$$

since

$$\begin{aligned} & \max_{\psi(m) \leq t \leq \psi(M)} \left\{ \frac{M-m}{\psi(M) - \psi(m)} \left(t - \psi(m) \right) + m \right) - \psi^{-1}(t) \right\} \\ &= & \max_{0 < \theta < 1} \left\{ \theta M + (1-\theta)m - \psi^{-1} \left(\theta \psi(M) + (1-\theta)\psi(m) \right) \right\}. \end{aligned}$$

Let Φ , A and φ be as in Remark 6. Then the equality

$$\varphi^{-1}(\Phi(\varphi(A))) = \psi^{-1}(\Phi(\psi(A))) + \nu(\psi(m), \psi(M), \psi^{-1})$$

holds. Indeed,

$$\varphi^{-1}(\Phi(\varphi(A))) = \varphi^{-1}(\theta^*\varphi(m) + (1 - \theta^*)\varphi(M))$$

$$= \theta^*m + (1 - \theta^*)M$$

$$= \psi^{-1}(\theta^*\psi(m) + (1 - \theta^*)\psi(M)) + \nu(\psi(m), \psi(M), \psi^{-1})$$

$$= \psi^{-1}(\Phi(\psi(A))) + \nu(\psi(m), \psi(M), \psi^{-1}).$$

Remark 13. If we put $\varphi(t) = t^r$ and $\psi(t) = t^s$ in inequalities involving the complementary order among quasi-arithmetic means given in Section 3 and 4, we obtain the same bound as in [5, Theorem 4.4]. For instance, using Theorem 9, we obtain that

$$\Phi(A^s)^{1/s} \le \max_{0 \le \theta \le 1} \left\{ \frac{\sqrt[r]{(\theta M^r + (1 - \theta)m^r)}}{\sqrt[s]{(\theta M^s + (1 - \theta)m^s)}} \right\} \Phi(A^r)^{1/r} = \Delta(h, r, s)\Phi(A^r)^{1/r}$$

holds for $r \leq s$, $s \geq 1$ or $r \leq s \leq -1$, where $\Delta(h, r, s)$ is the generalized Specht ratio defined by (see [5, (2.97)])

$$\Delta(h,r,s) = \left\{ \frac{r(h^s - h^r)}{(s-r)(h^r - 1)} \right\}^{\frac{1}{s}} \left\{ \frac{s(h^r - h^s)}{(r-s)(h^s - 1)} \right\}^{-\frac{1}{r}}, \quad h = \frac{M}{m}.$$

Indeed, a function $f(\theta) := \sqrt[r]{(\theta M^r + (1-\theta)m^r)}/\sqrt[s]{(\theta M^s + (1-\theta)m^s)}$ has one stationary point

$$\theta_0 = \frac{r(h^s - 1) - s(h^r - 1)}{(s - r)(h^r - 1)(h^s - 1)}$$

and we have

$$\max_{0 \le \theta \le 1} f(\theta) = f(\theta_0) = \Delta(h, s, r).$$

References

- [1] M.D. Choi, A Schwarz inequality for positive linear maps on C*-algebras, Illinois J. Math., 18 (1974), 565–574.
- [2] R. Cooper, Notes on certain inequalities, II, J. London Math. Soc., 2 (1927), 159–163.
- [3] C. Davis, A Schwartz inequality for convex operator functions, Proc. Amer. Math. Soc., 8 (1957), 42–44.
- [4] J.I. Fujii, M. Nakamura and S.-E. Takahasi, Cooper's approach to chaotic operator means, Sci. Math. Japon., 63 (2006), 319–324.
- [5] T. Furuta, J. Mićić Hot, J. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities, Monographs in Inequalities 1, Element, Zagreb, 2005.
- [6] A. Matsumoto and M. Tominaga, Mond-Pečarić method for a mean-like transformation of operator functions, Sci. Math. Japon., 61 (2005), 243–247.
- [7] B. Mond and J. Pečarić, Convex inequalities in Hilbert space, Houston J. Math., 19 (1993), 405–420.
- [8] B. Mond and J. Pečarić, Converses of Jensen's inequality for several operators, Rev. Anal. Numer. Theor. Approx., 23 (1994), 179–183.
- [9] J. Mićić Hot and J. Pečarić, Order among power means of positive operators, Sci. Math. Japon.,
 61 (2005), 25–46.
- [10] J. Mićić Hot and J. Pečarić, Order among power means of positive operators, II, Sci. Math. Japon., 71 (2010), 93–109.
- [11] J. Mićić Hot, J. Pečarić, Y. Seo and M. Tominaga, Inequalities for positive linear maps on Hermitian matrices, Math. Inequal. Appl., 3 (2000), 559–591.
- [12] W.F. Stinespring, Positive functions on C*-algebras, Proc. Amer. Math. Soc., 6 (1955), 211–216.

Communicated by Masatoshi Fujii

* Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10000 Zagreb, Croatia.

 $E ext{-}mail\ address: jmicic@fsb.hr}$

** Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 30, 10000 Zagreb, Croatia.

 $E ext{-}mail\ address: pecaric@hazu.hr}$

*** Department of Mathematics Education, Osaka Kyoiku University, 4-698-1 Asahigaoka Kashiwara Osaka 582-8582 Japan.

E-mail address: yukis@cc.osaka-kyoiku.ac.jp