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Abstract. The purpose of the present paper is to introduce two notions of conditional
entropy of a finite commutative hypergroup K, one of which is associated with the
normalized Haar measure of K and the other is associated with the canonical state of
Mb(K) which is a ∗-algebra consisted of all measures on K. For a subhypergroup or
a generalized orbital hypergroup, the dual relations of these conditional entropy are
discussed. Moreover, it is shown that the structures of hypergroups are characterized
by these entropy.

1 Introduction The notion of a hypergroup is a generalized one of a group. Roughly
speaking, the hypergroup convolution is a probabilistic extension of the group convolution.
The axiom of hypergroups was set up by C. F. Dunkl[D], R. I. Jewett[J] and R. Spector[S]
around 1975.

We study extension problems in the category of finite commutative hypergroups in
[HJKK], [HKKK], [IK1], [IK2], [IKS], [KI], [KKY], [KM] and [KST], and in the category of
locally compact hypergroups in [HK1], [HK2], [HK3], [K], [KSY] and [KY].

In the present paper, we introduce two kinds of conditional entropy in the category of
finite commutative signed hypergroups related to the extension problem. One of them is
associated with the normalized Haar measure of a finite commutative signed hypergroup K.
The other is associated with the canonical state of M b(K) which is a ∗-algebra consisted of
all measures on K.

Let K̂ denote the set of all characters of K with the product as functions on K. Then K̂
becomes a commutative signed hypergroup and the duality ˆ̂K ∼= K holds.

Let K = {c0, c1, · · · , cn} be a finite commutative signed hypergroup with unit c0. The
notion of a signed action of K has been introduced in our paper [KSTY]. For an irreducible
signed action α of K on a finite set X, there exists uniquely the invariant probability measure
µα on X under the action α. Then the entropy H(α) of an irreducible action α of K on X
is given by H(α) := H(µα) where H(µα) is Shannon’s entropy of the probability measure
µα on X. Applying the entropy H(α), we characterize two dimensional irreducible actions
of a hypergroup Zq(2) of order two.

Since the regular action ρK of K is irreducible and the normalized Haar measure eK of
K is invariant under ρK, the entropy H(K) of K is given by H(K) := H(ρK) = H(eK).
A state φ of ∗-algebra M b(K) is called the canonical state if φ(δc0) = 1 and φ(δci) = 0
for ci 6= c0. We denote the entropy Hφ(M b(K)) associated with the canonical state φ of
M b(K) by Hφ(K). Let K̂ be the dual signed hypergroup of K and φ̂ be the canonical state
of M b(K̂). Then we obtain the duality: H(K̂) = Hφ(K) and Hφ̂(K̂) = H(K).
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Let H be a signed subhypergroup of a finite commutative signed hypergroup K and L be
the quotient signed hypergroup K/H of K by H. The conditional entropy H(K|L) is given
associated with the normalized Haar measure eK of K and the quotient mapping ϕ : K → L.
The other conditional entropy HE

φ (K|H) is given associated with the canonical state φ of
M b(K) and the conditional expectation E : M b(K) → M b(H) such that φ ◦ E = φ. Then
we obtain the duality: H(K̂|Ĥ) = HE

φ (K|H) and HÊ
φ̂

(K̂|L̂) = H(K|L).
These conditional entropy plays an important role to characterize equivalence classes of

extension hypergroups of a hypergroup Zq(2) by a hypergroup Zp(2).

Let KE be a generalized orbital hypergroup of a finite commutative signed hypergroup
K. In the similar way to the above, we consider the conditional entropy H(K|KE) associ-
ated with the normalized Haar measure eK of K and the conditional entropy HE

φ (K|KE)

associated with the canonical state φ of M b(K). Then we obtain the duality: H(K̂|K̂E) =
HE

φ (K|KE) and HÊ
φ̂

(K̂|K̂E) = H(K|KE).

2 Preliminaries We recall some notions and facts on finite signed hypergroups from
Bloom-Heyer’s book [BH] and Wildberger’s paper [W]. For a finite set X ={x1, x2, · · · , xm},
we denote by M b(X),M1

R(X) and M1(X) the set of all complex valued measures, real valued
probability measures and non-negative probability measures on X respectively, namely,

M b(X) =
{

µ =
m∑

j=1

ajδxj : aj ∈ C
}

,

M1
R(X) =

{ m∑
j=1

ajδxj : aj ∈ R,

m∑
j=1

aj = 1
}

,

M1(X) =
{ m∑

j=1

ajδxj : aj ≥ 0,
m∑

j=1

aj = 1
}

where the symbol δx stands for the Dirac measure at x ∈ X. For µ =
∑m

j=1 ajδxj in M b(X),
the support of µ is given by

supp(µ) := {xj ∈ X : aj 6= 0}.

Definition. A finite signed hypergroup K consists of a finite set K = {c0, c1, · · · , cn} to-
gether with a product (called convolution) ◦ and an involution ∗ in M b(K) satisfying the
following conditions.

1. (M b(K), ◦, ∗) is an associative ∗-algebra over C with unit δc0 .

2. For ci, cj ∈ K, the convolution δci ◦ δcj belongs to M1
R(K).

3. There exists an involutive bijection ci 7→ c∗i on K such that δc∗i
= δ∗ci

and cj = c∗i if
and only if c0 ∈ supp(δci ◦ δcj ) for all ci, cj ∈ K. Moreover, the coefficient of the unit
δc0 of δci ◦ δc∗i

is positive.

A finite signed hypergroup K = (K,M b(K), ◦, ∗) is called a hypergroup if the convolution
δci ◦ δcj belongs to M1(K) for any ci, cj ∈ K.
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A finite signed hypergroup K is said to be commutative if the convolution ◦ in M b(K)
is commutative.

Let K = {c0, c1, · · · , cn} be a finite commutative signed hypergroup. The weight of the
element ci of K is w(ci) := (n0

i )
−1 where δci ◦ δ∗ci

=
∑n

k=0 nk
i δck

. The total weight of K
is w(K) :=

∑n
i=0 w(ci). We note that w(ci) > 0 and w(c∗i ) = w(ci). Let eK denote the

normalized Haar measure of K which is given by

eK =
n∑

k=0

w(ck)
w(K)

δck
.

A complex valued function χ on K is called a character of K if

(1) χ(c0) = 1, (2) χ(c∗i ) = χ(ci), (3) χ(ci)χ(cj) =
n∑

k=0

nk
ijχ(ck)

where δci ◦ δcj =
∑n

k=0 nk
ijδck

. We denote the trivial character by χ0. The set K̂ of all
characters of K becomes a signed hypergroup with the product of functions on K. In the
category of finite signed hypergroups, the duality ˆ̂K ∼= K holds. Then, K̂ is called the
dual signed hypergroup of K. When K is a finite hypergroup, K̂ is not necessary a finite
hypergroup but a finite signed hypergroup.

We give some facts from harmonic analysis for a finite commutative signed hypergroup
K according to Wildberger’s paper [W].

We denote the dual signed hypergroup K̂ by K̂ = {χ0, χ1, · · · , χn}. We note that w(K̂) =
w(K). There exist minimal projections e0, e1, · · · , en of M b(K) such that χi(ej) = δij for
χi ∈ K̂. Each projection ei is given by

ei =
w(χi)
w(K)

n∑
j=0

w(cj)χi(cj)δcj .

Let φ be a state of M b(K) such that φ(δc0) = 1 and φ(δci) = 0 for i = 1, 2, · · · , n. Then
it is clear that φ(ei) = w(χi)

w(K) by the above formula. We call the state φ the canonical state
of M b(K).

For a finite set X = {x1, x2, · · · , xm}, B(M b(X)) denotes the algebra of all linear
transformations on M b(X).

We call a signed action α of a signed hypergroup K on a set X in our paper [KSTY] if
α satisfies the following.

1. α is a homomorphism from M b(K) to B(M b(X)) as algebras such that α(δc0) is the
identity on M b(X).

2. For ci ∈ K and µ ∈ M1(X), α(δci)µ ∈ M1
R(X).

3. For the normalized Haar measure eK of K and µ ∈ M1(X), α(eK)µ ∈ M1(X).

If K is a hypergroup and α(δci)µ belongs to M1(X) for ci ∈ K and µ ∈ M1(X), α is
called an action of K on X.

The dimension of a signed action α of K on X is the dimension of M b(X), namely, the
cardinal number |X| of X. A subset S of X is called invariant under the signed action α
if supp(α(eK)δs) ⊂ S for all s ∈ S.

A signed action α of K on X is called irreducible if a non-empty subset S of X which is
invariant under the signed action α must be X.
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3 Entropy of hypergroups Let X = {x1, x2, · · · , xm} be a finite set. For a probability
measure µ = a1δx1 + a2δx2 + · · · + amδxm on X, Shannon’s entropy H(µ) of µ is

H(µ) =
m∑

j=1

η(aj),

where η(x) is the entropy function i.e.

η(x) =

{
−x log x 0 < x ≤ 1,

0 x = 0.

Let K be a finite signed hypergroup and X be a finite set. For an irreducible signed
action α of K on X, there exists the unique invariant probability measure µα on X under
α, see our paper [KSTY]. We define the entropy H(α) of the irreducible signed action α of
K on X by

H(α) := H(µα).

Moreover, we denote the entropy H(ρK) by H(K) for the regular action ρK of K.

Let M be a finite commutative ∗-algebra with unit 1 which is generated by minimal
projections e0, e1, · · · , en such that

∑n
i=0 ei = 1. For a state φ of M , the entropy Hφ(M)

of φ is given by

Hφ(M) =
n∑

i=0

η(φ(ei)).

Let K = (K,M b(K)) be a signed hypergroup. For the canonical state φ of M b(K), we
denote Hφ(M b(K)) by Hφ(K).

Proposition 3.1. Let K = (K,M b(K)) be a finite commutative signed hypergroup and K̂ be
the dual signed hypergroup of K. Let φ and φ̂ be the canonical state of M b(K) and M b(K̂)
respectively.

Then, the following formulae hold.

1. H(K) = log w(K) −
∑
c∈K

w(c)
w(K)

log w(c),

2. Hφ(K) = log w(K̂) −
∑
χ∈K̂

w(χ)
w(K̂)

log w(χ),

3. H(K̂) = Hφ(K), Hφ̂(K̂) = H(K).

Proof. (1) Since the regular action ρK of K is irreducible and the ρK-invariant probability
measure µρK

on K is the normalized Haar measure

eK =
∑
c∈K

w(c)
w(K)

δc
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of K, we have

H(K) = H(ρK) = H(eK) =
∑
c∈K

η

(
w(c)
w(K)

)
=

∑
c∈K

w(c)
w(K)

log w(K) −
∑
c∈K

w(c)
w(K)

log w(c)

= log w(K) −
∑
c∈K

w(c)
w(K)

log w(c).

(2) Let K̂ = {χ0, · · · , χn} be the dual signed hypergroup of K. We denote the minimal
projection by ei corresponding to each χi ∈ K̂. Since φ(ei) = w(χi)

w(K) and w(K̂) = w(K), we
have

Hφ(K) =
n∑

i=0

η(φ(ei)) =
n∑

i=0

η

(
w(χi)
w(K)

)
= log w(K̂) −

∑
χ∈K̂

w(χ)
w(K̂)

log w(χ)

in a similar way to the above.
(3) Applying the formula (1) to K̂, one can obtain

H(K̂) = log w(K̂) −
∑
χ∈K̂

w(χ)
w(K̂)

log w(χ).

Hence it is clear that H(K̂) = Hφ(K) by the formula (2).
Moreover, we have

Hφ̂(K̂) = H( ˆ̂K) = H(K)

by the above equality and the duality ˆ̂K ∼= K.

Remark. It is easy to check that

H(K) ≤ log |K|.

The entropy H(K) attains the maximum value log |K| if and only if K is a group.

Example 1. Let K = {0, 1} be a signed hypergroup of order two with unit 0 where the
structure is characterized by a parameter q (0 < q) as follows.

δ1 ◦ δ1 = qδ0 + (1 − q)δ1.

We often denote this hypergroup K by Zq(2). Let α be an m-dimensional irreducible signed
action of Zq(2) on X = {x1, x2, · · · , xm}. Then the representing matrix of the action α
associated with the basis δx1 , δx2 , · · · , δxm in M b(X) is given by

Tα(δ0) = I, Tα(δ1) =


(1 + q)t1 − q (1 + q)t1 . . . (1 + q)t1

(1 + q)t2 (1 + q)t2 − q . . . (1 + q)t2
...

...
. . .

...
(1 + q)tm (1 + q)tm . . . (1 + q)tm − q


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where 0 < ti < 1 and
∑m

i=1 ti = 1 (see [KSTY]).
The above action α is determined by the parameters t := (t1, t2, · · · , tm) so that we

denote the action α by αt.
In the case that K = Zq(2) is a hypergroup, namely 0 < q ≤ 1, the signed action αt of

K is an action if and only if dimαt = m ≤ 1+q
q and q

1+q ≤ ti ≤ 1
1+q (m ≥ 2).

Proposition 3.2. Let αt be an m-dimensional irreducible action of Zq(2) on X where a
parameter t = (t1, t2, · · · , tm) satisfies that q

1+q ≤ ti ≤ 1
1+q for all i and

∑m
i=1 ti = 1.

Then the following hold.

1. H(αt) =
∑m

i=1 η(ti).

2. H(αt) attains the maximum value log m if and only if αt is a ∗-action.

3. For a two-dimensional irreducible action αt of Zq(2), H(αt) has the minimum value
if and only if αt is equivalent to the regular action of Zq(2).　

4. For two-dimensional irreducible actions αt and αt′ of Zq(2), αt is equivalent to αt′ as
actions if and only if H(αt) = H(αt′).

Proof. (1) Since the invariant probability measure µαt

under the action αt of Zq(2) on X
is

µαt

= t1δx1 + t2δx2 + · · · + tmδxm ,

we see that the entropy of αt is

H(αt) = H(µαt

) =
m∑

i=1

η(ti).

(2) It is known that H(αt) ≤ log m. Moreover H(αt) =
∑m

i=1 η(ti) = log m if and only
if t1 = t2 = · · · = tm = 1

m . This condition is equivalent to Tαt(δ1)∗ = Tαt(δ1), namely, αt

is a ∗-action of Zq(2) in the sense of Sunder-Wildberger [SW].
(3) The two dimensional irreducible action αt is parameterized by t = (t, 1 − t) such

that q
1+q ≤ t ≤ 1

1+q . Under the condition that q
1+q ≤ t ≤ 1

1+q , it is easy to see that H(αt)
has the minimum value if and only if t = q

1+q or t = 1
1+q . This condition implies that αt is

equivalent to the regular action of Zq(2).
(4) It is easy to see the statement (4) by the fact that αt ∼= αt′ if and only if t = t′ or

t = 1 − t′, see [KMTY].

Remark. Let αt (0 < t < 1) be a two-dimensional irreducible signed action of Zq(2) =
{0, 1} and πt be the representation of Zq(2) associated with the action αt. The representing
matrix of πt(δ1) is given by

Tπt(δ1) =
(

(1 + q)t − q (1 + q)
√

t
√

1 − t

(1 + q)
√

t
√

1 − t (1 + q)(1 − t) − q

)
.

Let ut be the unitary matrix such that

(ut)∗Tπt(δ1)ut =
(

1 0
0 −q

)
.
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Then ut is given by

ut =
( √

t −
√

1 − t√
1 − t

√
t

)
.

The entropy H(bt) of the unistochastic matrix bt defined by ut is

H(bt) = η(t) + η(1 − t).

Let At be the maximal abelian ∗-subalgebra of M2(C) which is generated by Tπt(δ0)
and Tπt(δ1), and B be the diagonal algebra of M2(C). Here we note that B = (ut)∗Atut.
By the paper [C], M. Choda introduced the conditional entropy h(At|B) and showed that
h(At|B) = H(ut) under the above situation. Then we have a remarkable fact :

H(αt) = H(ut) = h(At|B).

4 Conditional entropy associated with a subhypergroup. First, we recall the clas-
sical conditional entropy. Let µ be a probability measure of a finite set X = {x0, x1, · · · , xn}.
For a mapping ψ from X onto Y = {y0, y1, · · · , ym}, we have a decomposition {B0, B1, · · · ,
Bm} of X by Bj = ψ−1(yj) and the conditional probability measure µj on Bj by

µj(x) =
µ(x)
µ(Bj)

for x ∈ Bj . Then the conditional entropy of the decomposition of (X,µ) given by ψ : X −→
Y is defined by

Hµ(ψ : X|Y ) =
m∑

j=0

µ(Bj)H(µj)

where

H(µj) =
∑

x∈Bj

η(µj(x)) =
∑

x∈Bj

η

(
µ(x)
µ(Bj)

)
.

Let M be a finite commutative ∗-algebra with unit 1 such that M consists of linear hulls
of the minimal projections e0, e1, · · · , en such that

∑n
i=0 ei = 1. Let N be a ∗-subalgebra

of M with the unit 1 of M . We denote the minimal projections of N by f0, f1 · · · , fm such
that

∑m
j=0 fj = 1. For each minimal projection ei of M , there exists the unique minimal

projection fj of N such that ei ◦ fj = ei. Then, we define a mapping σ from {0, 1, · · · , n}
onto {0, 1, · · · ,m} by ei ◦ fσ(i) = ei. We note that fj =

∑
i∈σ−1(j) ei. Let φ be a state of M .

Then, the conditional entropy of the conditional expectation E from M onto N such that
φ ◦ E = φ is defined by

HE
φ (M |N) =

n∑
i=0

φ(η(E(ei))) =
m∑

j=0

φ(fj)Hφ(σ−1(j))

where

Hφ(σ−1(j)) :=
∑

i∈σ−1(j)

η

(
φ(ei)
φ(fj)

)
.
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Let H,K,L be finite commutative hypergroups. Let H be a subhypergroup of K and ϕ
be a hypergroup homomorphism from K onto L such that Kerϕ = H, namely,

1 −→ H −→ K ϕ−→ L −→ 1

is exact. Then the hypergroup K is called an extension of L by H. Let eK be the normalized
Haar measure of K.

Under the above situation, we define the conditional entropy H(K|L) of the decompo-
sition of (K, eK) given by ϕ : K −→ L by

H(K|L) := HeK(ϕ : K|L).

We denote the conditional entropy HE
φ (K|H) of the conditional expectation E from M b(K)

onto the ∗-subalgebra M b(H) such that φ ◦ E = φ for the canonical state φ of M b(K) by

HE
φ (K|H) := HE

φ (M b(K)|M b(H)).

Remark. In the case that K,H,L are finite commutative signed hypergroups, the above
two definitions of conditional entropy are also well-defined.

Let Ĥ, K̂, L̂ be the dual signed hypergroups of H,K,L respectively. Then, we have the
dual exact sequence:

1 −→ L̂ −→ K̂ ϕ̂−→ Ĥ −→ 1.

Let Ê be the conditional expectation from M b(K̂) onto M b(L̂) such that φ̂ ◦ Ê = φ̂ for the
canonical state φ̂ of M b(K̂).

Theorem 4.1. Let H be a subhypergroup of a finite commutative hypergroup K and L be
the quotient hypergroup K/H of K by H. Under the above situation, the following formulae
hold.

1. H(K|L) =
∑
`∈L

∑
c∈ϕ−1(`)

w(c)
w(K)

log
w(`)w(H)

w(c)
= H(K) − H(L).

2. HE
φ (K|H) =

∑
τ∈Ĥ

∑
χ∈ϕ̂−1(τ)

w(χ)
w(K̂)

log
w(τ)w(L̂)

w(χ)
= Hφ(K) − Hφ(H).

3. H(K̂|Ĥ) = HE
φ (K|H) and HÊ

φ̂
(K̂|L̂) = H(K|L).

Proof. (1) For each ` ∈ L, the conditional probability measure µ` of eK on ϕ−1(`) is given
by

µ` =
∑

c∈ϕ−1(`)

w(c)
w(ϕ−1(`))

δc.

Then we have

H(K|L) =
∑
`∈L

eK(ϕ−1(`))H(µ`) =
∑
`∈L

∑
c∈ϕ−1(`)

w(ϕ−1(`))
w(K)

η

(
w(c)

w(ϕ−1(`))

)

=
∑
`∈L

∑
c∈ϕ−1(`)

w(c)
w(K)

log
w(ϕ−1(`))

w(c)
.
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By the fact that w(ϕ−1(`)) = w(`)w(H) (see [IK2]), we get the desired formula.
(2) Let K̂ = {χ0, · · · , χn} and Ĥ = {τ0, · · · , τm}. Then we have minimal projections

{ei}n
i=0 in M b(K) and {fj}m

j=0 in M b(H) which satisfy

χp(ei) = δpi, τq(fj) = δqj

for χp ∈ K̂ and τq ∈ Ĥ respectively. We note that φ(ei) = w(χi)

w(K̂)
and φ(fj) = w(τj)

w(Ĥ)
. Let σ

be the mapping from {0, 1, · · · , n} onto {0, 1, · · · ,m} given by ei ◦ fσ(i) = ei. Hence,

HE
φ (K|H) =

m∑
j=0

φ(fj)
∑

i∈σ−1(j)

η

(
φ(ei)
φ(fj)

)
=

m∑
j=0

∑
i∈σ−1(j)

φ(ei) log
φ(fj)
φ(ei)

=
m∑

j=0

∑
i∈σ−1(j)

w(χi)
w(K̂)

log

(
w(τj)
w(Ĥ)

· w(K̂)
w(χi)

)
.

It is easy to see that ei ◦fj = ei if and only if ϕ̂(χi) = τj . This means that i ∈ σ−1(j) if and
only if χi ∈ ϕ̂−1(τj). By the fact that w(K̂) = w(Ĥ)w(L̂) (see [IK2]), we get the desired
conclusion.

(3) Applying the formula (1) to the exact sequence: 1 −→ L̂ −→ K̂ ϕ̂−→ Ĥ −→ 1, one
can obtain

H(K̂|Ĥ) =
∑
τ∈Ĥ

∑
χ∈ϕ̂−1(τ)

w(χ)
w(K̂)

log
w(τ)w(L̂)

w(χ)
.

Hence it is clear that H(K̂|Ĥ) = HE
φ (K|H) by the formula (2).

Moreover, we have
HÊ

φ̂
(K̂|L̂) = H( ˆ̂K| ˆ̂L) = H(K|L)

by the above formula and the duality.

Remark. (1) In the category of finite commutative signed hypergroups, the above state-
ments are also valid.

(2) For the regular action ρK of a finite hypergroup K, let ρKH be the action of K which
is the restriction of ρK to H. Then ρKH is decomposed as

(ρKH,K) =
∑
`∈L

⊕(ρ`, ϕ
−1(`))

where ρ` is an irreducible action of H on ϕ−1(`) for each ` ∈ L and ρ`0 = ρH because
ϕ−1(`0) = H for the unit `0 of L. Then, we know that the invariant probability measure
under the action ρ` on ϕ−1(`) is the conditional probability measure of eK on ϕ−1(`).
Therefore, the conditional entropy H(K|L) of the decomposition can be rewritten as

H(K|L) =
∑
`∈L

w(`)
w(L)

H(ρ`).

An application and an example for the extension problem.
We consider the exact sequence

1 −→ H −→ K ϕ−→ L −→ 1
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in the case of H = Zq(2)(0 < q ≤ 1) and L = Zp(2)(0 < p ≤ 1) where the order of
an extension hypergroup K is four. In the paper [KMTY], an extension K = K(t, r) is
determined by two-dimensional irreducible actions ρt and ρr of Zq(2) and Zp(2) which are
parameterized by q

1+q ≤ t ≤ 1
1+q and p

1+p ≤ r ≤ 1
1+p respectively. Let φ and φ′ be the

canonical states of M b(K) and M b(L) respectively. By the formula in Theorem 4.1, we have

H(H) = Hφ(H) = log(1 + q) +
1

1 + q
η(q),

H(L) = Hφ′(L) = log(1 + p) +
1

1 + p
η(p),

H(K) = H(K|L) + H(L) =
p

1 + p
H(H) +

1
1 + p

(η(t) + η(1 − t)) + H(L),

Hφ(K) = HE
φ (K|H) + H(H) =

q

1 + q
Hφ′(L) +

1
1 + q

(η(r) + η(1 − r)) + Hφ(H).

Proposition 4.2. Under the above situation, For two extensions K1 = K(t1, r1) and K2 =
K(t2, r2) of Zp(2) by Zq(2), K1 is equivalent to K2 if and only if H(K1) = H(K2) and
Hφ(K1) = Hφ(K2) hold.

Proof. By the paper [IK1], it is known that K1 = K(t1, r1) is equivalent to K2 = K(t2, r2)
if and only if t2 = t1 or t2 = 1 − t1, and r2 = r1 or r2 = 1 − r1. The latter condition is
equivalent to H(K1) = H(K2) and Hφ(K1) = Hφ(K2).

Remark. Two extensions K(t) and K(t′) of Z2 by Zq(2) are equivalent as extensions if and
only if H(K(t)) = H(K(t′)) holds.

5 conditional entropy associated with a generalized orbital hypergroup We
modify the definition of a generalized orbital hypergroup in [FK].

Definition. Let K = (K,M b(K)) be a finite hypergroup and φ be the canonical state
of M b(K). Let N be a ∗-subalgebra with the unit of M b(K). Let E be the conditional
expectation from M b(K) onto N such that φ ◦ E = φ. For a finite hypergroup K1 =
(K1,M

b(K1)), if M b(K1) is isomorphic to N by a ∗-isomorphism Ψ from M b(K1) onto N
and for c ∈ K there exists b ∈ K1 such that E(c) = Ψ(b), then we say K1 a generalized
orbital hypergroup of K by E and denote K1 by KE .

We note that the above definition of a generalized orbital hypergroup is well-defined for
a finite signed hypergroup.

In the present paper, we identify N with M b(KE) hereafter.

Lemma 5.1. Let ψ be a mapping from K onto KE which is the restriction to K of the
conditional expectation E. Then we have,

1. w(ψ−1(b)) = w(b) for b ∈ KE,

2. w(K) = w(KE).
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Proof. Take the Haar measure µK =
∑

c∈K w(c)δc of K and µKE =
∑

b∈KE w(b)δb of KE

respectively. For any ν ∈ M b(KE), ν ◦ E(µK) = E(ν ◦ µK) = E(µK) holds. Hence one can
write E(µK) = aµKE for some a ≥ 0. Since φ(E(µK)) = φ(µK) = 1 and φ(µKE ) = 1, we
get a = 1, namely E(µK) = µKE . We obtain

E(µK) =
∑
c∈K

w(c)E(δc) =
∑

b∈KE

∑
c∈ψ−1(b)

w(c)δb,

so that we arrive at the equation (1). Moreover, it is easy to see the equality (2) by (1).

In a similar way to the section 4, two kinds of entropy associated with a generalized
orbital hypergroup KE of K are defined by

H(K|KE) := HeK(ψ : K|KE) and HE
φ (K|KE) := HE

φ (M b(K)|M b(KE)).

Let K̂ and K̂E be the dual signed hypergroups of K and KE respectively. Then we have
a conditional expectation Ê from M b(K̂) onto M b(K̂E) given by Ê(χ) = χ|Mb(KE) for a

character χ of M b(K) and a mapping ψ̂ from K̂ onto K̂E by the restriction of Ê to K̂. We
note that φ̂ ◦ Ê = φ̂ for the canonical state φ̂ of M b(K̂).

Theorem 5.2. Let KE be a generalized orbital hypergroup of a finite commutative hyper-
group K by the conditional expectation E such that φ ◦ E = φ for the canonical state φ of
M b(K). Under the above situation, the following formulae hold.

1. H(K|KE) =
∑

b∈KE

∑
c∈ψ−1(b)

w(c)
w(K)

log
w(b)
w(c)

= H(K) − H(KE).

2. HE
φ (K|KE) =

∑
τ∈dKE

∑
χ∈ψ̂−1(τ)

w(χ)
w(K̂)

log
w(τ)
w(χ)

= Hφ(K) − Hφ(KE).

3. H(K̂|K̂E) = HE
φ (K|KE) and HÊ

φ̂
(K̂|K̂E) = H(K|KE).

Proof. (1) For each b ∈ KE , the conditional probability measure µb of eK on ψ−1(b) is
given by

µb =
∑

c∈ψ−1(b)

w(c)
w(ψ−1(b))

δc.

Then we have

H(K|KE) =
∑

b∈KE

eK(ψ−1(b))H(µb) =
∑

b∈KE

∑
c∈ψ−1(b)

w(ψ−1(b))
w(K)

η

(
w(c)

w(ψ−1(b))

)

=
∑

b∈KE

∑
c∈ψ−1(b)

w(c)
w(K)

log
w(ψ−1(b))

w(c)
.

Since w(ψ−1(b)) = w(b) by (1) of Lemma 5.1, we get the desired formula.
(2) Let K̂ and K̂E be K̂ = {χ0, · · · , χn} and K̂E = {τ0, · · · , τm} respectively. Then we

have minimal projections {ei}n
i=0 in M b(K) and {fj}m

j=0 in M b(KE) which satisfy

χp(ei) = δpi, τq(fj) = δqj
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for χp ∈ K̂ and τq ∈ K̂E respectively. We note that φ(ei) = w(χi)

w(K̂)
and φ(fj) = w(τj)

w(dKE)
. Let

σ be the mapping from {0, 1, · · · , n} onto {0, 1, · · · ,m} given by ei ◦ fσ(i) = ei. Hence,

HE
φ (K|KE) =

m∑
j=0

φ(fj)
∑

i∈σ−1(j)

η

(
φ(ei)
φ(fj)

)
=

m∑
j=0

∑
i∈σ−1(j)

φ(ei) log
φ(fj)
φ(ei)

=
m∑

j=0

∑
i∈σ−1(j)

w(χi)
w(K̂)

log

(
w(τj)

w(K̂E)
· w(K̂)
w(χi)

)
.

It is easy to see that ei ◦ fj = ei if and only if ψ̂(χi) = τj . This means that i ∈ σ−1(j) if
and only if χi ∈ ψ̂−1(τj). Since w(K) = w(KE) by (2) of Lemma 5.1, we get the desired
conclusion.

(3) We can show that K̂E = K̂Ê holds. Applying the formula (1) to ψ̂ : K̂ → K̂Ê , one
can obtain

H(K̂|K̂E) = H(K̂|K̂Ê) =
∑

τ∈K̂Ê

∑
χ∈ψ̂−1(τ)

w(χ)
w(K̂)

log
w(τ)
w(χ)

.

Hence it is clear that H(K̂|K̂E) = HE
φ (K|KE) by the formula (2).

Moreover, we have

HÊ
φ̂

(K̂|K̂E) = HÊ
φ̂

(K̂|K̂Ê) = H( ˆ̂K|̂̂KÊ) = H( ˆ̂K|̂̂KE) = H(K|KE)

by the above equality and the duality ˆ̂K ∼= K and
̂̂KE ∼= KE .

Remark. Let Kα = {b0, b1, · · · , bm} be the orbital hypergroup by an action α of a finite
group G on a finite commutative hypergroup K. Let α̂ be the action of G on the dual
signed hypergroup K̂ defined by α̂g(χ)(c) := χ(αg−1(c)) for g ∈ G,χ ∈ K̂ and c ∈ K. We
denote by Oj α-orbit corresponding to bj ∈ Kα. Let ψ be a mapping from K onto Kα such
that ψ−1(bj) = Oj and E be the conditional expectation from M b(K) onto M b(Kα) such
that E|K = ψ and φ ◦ E = φ for the canonical state φ of M b(K). We note that M b(Kα)
is equal to the fixed point algebra M b(K)α of M b(K) by α. Let O′

j be the α̂−orbit in K̂
corresponding to τj ∈ K̂α. We denote |Oj | and |O′

j | by dj and d′j respectively.
Then we remark the following.

1. H(K|Kα) =
∑m

j=0
w(c(j))
w(K) dj log dj , where c(j) ∈ Oj .

2. HE
φ (K|Kα) =

∑m
j=0

w(χ(j))
w(K) d′j log d′

j , where χ(j) ∈ O′
j .
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