CONSTRUCTION OF SLOWLY INCREASING FUNCTIONS

HIROSHI ANDO, TOSHIO HORIUCHI AND EIICHI NAKAI

Received March 30, 2012

ABSTRACT. We construct a continuous and bijective function $L: (0, \infty) \to (-\infty, \infty)$ which is increasing slower than any *n*th iterate of logarithmic function. Further, we construct a function which is increasing slower than any *n*th iterate of L. Using our method, we can construct more and more slowly increasing functions.

1 Introduction In this paper we construct a very slowly increasing function, namely, we construct a continuous and strictly increasing function $L: (0, \infty) \to (-\infty, \infty)$ such that

$$\lim_{r \to 0} L(r) = -\infty, \quad L(1) = 0, \quad \lim_{r \to \infty} L(r) = \infty,$$

and

$$\lim_{r \to 0} \frac{L(r)}{\log^n(1/r)} = \lim_{r \to \infty} \frac{L(r)}{\log^n r} = 0 \quad \text{for each } n \in \mathbb{N} = \{1, 2, \cdots\},$$

where $\log^0 r = r$ and $\log^n r = \log(\log^{n-1} r)$, $n \in \mathbb{N}$. While the logarithmic function has the property $\log r^n = n \log r$, the function L(r) has the following property: There exists a positive constant c such that, for large r,

$$L(r) \le L(\exp(r)) \le cL(r).$$

Further, letting $L^{\langle 1 \rangle}(r) = L(r)$, we construct continuous and strictly increasing functions $L^{\langle m \rangle}: (0, \infty) \to (-\infty, \infty), \ m \ge 2$, such that

$$\lim_{r \to 0} L^{\langle m \rangle}(r) = -\infty, \quad L^{\langle m \rangle}(1) = 0, \quad \lim_{r \to \infty} L^{\langle m \rangle}(r) = \infty$$

and

$$\lim_{r \to 0} \frac{L^{\langle m+1 \rangle}(r)}{\log^n L^{\langle m \rangle}(1/r)} = \lim_{r \to \infty} \frac{L^{\langle m+1 \rangle}(r)}{\log^n L^{\langle m \rangle}(r)} = 0 \quad \text{for each } m, n \in \mathbb{N}.$$

Moreover, letting $L^{\langle 0,m\rangle}(r) = L^{\langle m\rangle}(r), m \in \mathbb{N}$, we can construct continuous and strictly increasing functions $L^{\langle \ell,m\rangle}: (0,\infty) \to (-\infty,\infty), \ \ell, m \in \mathbb{N}$, such that

$$\lim_{r \to 0} L^{\langle \ell, m \rangle}(r) = -\infty, \quad L^{\langle \ell, m \rangle}(1) = 0, \quad \lim_{r \to \infty} L^{\langle \ell, m \rangle}(r) = \infty$$

$$\lim_{r \to 0} \frac{L^{\langle \ell, 1 \rangle}(r)}{L^{\langle \ell-1, m \rangle}(1/r)} = \lim_{r \to \infty} \frac{L^{\langle \ell, 1 \rangle}(r)}{L^{\langle \ell-1, m \rangle}(r)} = 0 \quad \text{for each } \ell, m \in \mathbb{N},$$

and

$$\lim_{r \to 0} \frac{L^{\langle \ell, m+1 \rangle}(r)}{\log^n L^{\langle \ell, m \rangle}(1/r)} = \lim_{r \to \infty} \frac{L^{\langle \ell, m+1 \rangle}(r)}{\log^n L^{\langle \ell, m \rangle}(r)} = 0 \quad \text{for each } \ell, m, n \in \mathbb{N}.$$

2010 Mathematics Subject Classification. Primary 26A12; Secondary 26A18.

 $Key\ words\ and\ phrases.$ logarithm, super logarithm, slowly increasing function, rapidly increasing function .

In particular, letting $L^0(r) = r$ and $L^m(r) = L(L^{m-1}(r)), m \in \mathbb{N}$, we have

$$\lim_{r \to 0} \frac{L^{\langle 1,1 \rangle}(r)}{L^m(1/r)} = \lim_{r \to \infty} \frac{L^{\langle 1,1 \rangle}(r)}{L^m(r)} = 0 \quad \text{for each } m \in \mathbb{N},$$

since the relation $L^{\langle m+1 \rangle}(r) \leq L(L^{\langle m \rangle}(r)) \leq c L^{\langle m+1 \rangle}(r)$ holds for large r.

Using our method, we can construct more and more slowly increasing functions. Moreover, the inverse functions of them are rapidly increasing as $r \to \infty$ and rapidly decreasing to 0 as $r \to -\infty$. Let E be the inverse function of L. Then

$$\lim_{r \to -\infty} \frac{\exp^n(-r)}{\frac{1}{E(r)}} = \lim_{r \to \infty} \frac{\exp^n(r)}{E(r)} = 0 \quad \text{for each } n \in \mathbb{N},$$

where $\exp^0(r) = r$ and $\exp^n(r) = \exp(\exp^{n-1}(r)), n \in \mathbb{N}$.

Several functions are known as rapidly increasing functions, for example, the tetration, the hyperoperation, Ackermann functions, etc., see [1, 5, 6]. The inverse functions of them are slowly increasing. On our functions we can easily check their differentiability. All of our slowly increasing functions are differentiable on $(0, \infty)$ and infinitely differentiable except at 1, and the inverse functions of them are differentiable on $(-\infty, \infty)$ and infinitely differentiable except at 0.

In Sections 2 and 3 we state the definitions and properties of L and $L^{\langle m \rangle}$, $m \in \mathbb{N}$, respectively. Then, based on the idea in Sections 2 and 3, we give the method of construction of slowly increasing functions in Section 4, In the last section we state the definitions and properties of $L^{\langle \ell,m \rangle}$, $\ell, m \in \mathbb{N}$, and more slowly increasing functions. Our idea comes from the study of missing terms of Hardy-Sobolev inequalities [2, 3, 4].

2 Construction of L(r) First we define two sets of functions.

Definition 2.1. Let \mathcal{L} be the set of all continuous, increasing and bijective functions f from $(0, \infty)$ to $(-\infty, \infty)$ satisfying

$$\lim_{r \to 0} f(r) = -\infty, \quad f(1) = 0, \quad \lim_{r \to \infty} f(r) = \infty.$$

For example, the logarithmic function $\log r$ is in \mathcal{L} .

Definition 2.2. For a > 1, let \mathcal{F}_a be the set of all continuous, increasing and bijective functions from $[a, \infty)$ to itself.

If $f \in \mathcal{F}_a$, then f(a) = a and $\lim_{u \to \infty} f(u) = \infty$. For a function $f \in \mathcal{F}_a$, let $f^0(u) = u$ and $f^k(u) = f(f^{k-1}(u)), k \in \mathbb{N}$. Then f^k is also in \mathcal{F}_a . We define a function $F \in \mathcal{F}_a$ as

(2.1)
$$F(u) = F_a(u) = a - \log a + \log u \quad (u \ge a).$$

Then the relation

(2.2)
$$(F^k(u))' = \frac{1}{F^{k-1}(u)\cdots F^1(u)F^0(u)}$$

holds. That is,

(2.3)
$$F^{k}(u) = a + \int_{a}^{u} \frac{dt}{F^{k-1}(t)\cdots F^{1}(t)F^{0}(t)}$$

Let

(2.4)
$$\ell_k(r) = F^k(ar) - a = \int_a^{ar} \frac{dt}{F^{k-1}(t)\cdots F^1(t)F^0(t)} \quad (r \ge 1),$$

and let

(2.5)
$$\ell_k(r) = -\ell_k(1/r) = -\int_a^{a/r} \frac{dt}{F^{k-1}(t)\cdots F^1(t)F^0(t)} \quad (0 < r < 1).$$

Then $\ell_k \in \mathcal{L}$ and

(2.6)
$$\lim_{r \to 0} \frac{\ell_k(r)}{\log^k(1/r)} = \lim_{r \to \infty} \frac{\ell_k(r)}{\log^k r} = 1 \quad \text{for each } k \in \mathbb{N}.$$

To construct the limit function of ℓ_k as $k \to \infty$, we use the integral

(2.7)
$$\int_{a}^{u} \frac{dt}{F^{k-1}(t)\cdots F^{1}(t)F^{0}(t)}$$

with exchanging

$$F^{k-1}(t) \cdots F^{1}(t)F^{0}(t)$$
 for $\frac{F^{k-1}(t)}{a} \cdots \frac{F^{1}(t)}{a} \frac{F^{0}(t)}{a}$

Then we can show that the limit exists. This is our main idea.

Definition 2.3. For a > 1, let

(2.8)
$$\tilde{F}(u) = \tilde{F}_a(u) = a \prod_{k=0}^{\infty} \frac{F^k(u)}{a} \quad (u \ge a),$$

and let

(2.9)
$$\phi(u) = \phi_a(u) = a + \int_a^u \frac{1}{\tilde{F}(t)} dt \quad (u \ge a).$$

The convergence of the infinite product in (2.8) will be proven later. Note that, if a = 1, then the infinite product in (2.8) diverges, see Remark 4.1.

Definition 2.4. For a > 1, let

(2.10)
$$L(r) = L_a(r) = \phi(ar) - a = \int_a^{ar} \frac{1}{\tilde{F}(t)} dt \quad (r \ge 1),$$

and let

(2.11)
$$L(r) = -L(1/r) = -\int_{a}^{a/r} \frac{1}{\tilde{F}(t)} dt \quad (0 < r < 1),$$

where \tilde{F} and ϕ are as in (2.8) and (2.9), respectively.

Then we have the following.

Theorem 2.1. Let a > 1.

(i) The function \tilde{F} is in \mathcal{F}_a , infinitely differentiable and has the following expression:

(2.12)
$$\tilde{F}(u) = \exp(V(u)), \quad V(u) = \log a + \int_a^u \left(\sum_{k=0}^\infty \frac{1}{\prod_{j=0}^k F^j(t)}\right) dt.$$

Further, $\left(\frac{d}{du}\right)^k \frac{\tilde{F}'}{\tilde{F}}$ is bounded for each $k \in \{0\} \cup \mathbb{N}$.

- (ii) The function ϕ is in \mathcal{F}_a , infinitely differentiable and concave on $[a, \infty)$.
- (iii) For each $n \in \mathbb{N}$,

(2.13)
$$\lim_{u \to \infty} \frac{\phi(u)}{F^n(u)} = 0.$$

- (iv) The function L is in \mathcal{L} , differentiable on $(0, \infty)$, infinitely differentiable except at 1, and, concave on $[1, \infty)$, Moreover, if $a \ge 2$, then L is concave on $(0, \infty)$.
- (v) For each $n \in \mathbb{N}$,

(2.14)
$$\lim_{r \to 0} \frac{L(r)}{\log^n(1/r)} = \lim_{r \to \infty} \frac{L(r)}{\log^n r} = 0.$$

(vi) For $r \ge \exp(a)$,

$$L(r) \le L(\exp(r)) \le (1+a)L(r).$$

We will prove the theorem above in more general form in Section 4. By (iv) in Theorem 2.1, L is bijective from $(0, \infty)$ to $(-\infty, \infty)$.

Definition 2.5. Let $E: (-\infty, \infty) \to (0, \infty)$ be the inverse function of L.

Then by Theorem 2.1 we have the following:

Corollary 2.2. The function E is continuous and strictly increasing and has the following properties:

- (i) $\lim_{r \to -\infty} E(r) = 0$, E(0) = 1, $\lim_{r \to \infty} E(r) = \infty$.
- (ii) The function E is convex on [0,∞), differentiable on (-∞,∞) and infinitely differentiable except at 0. If a ≥ 2, then E is convex on (-∞,∞).

(iii)
$$\lim_{r \to -\infty} \frac{\exp^n(-r)}{\frac{1}{E(r)}} = \lim_{r \to \infty} \frac{\exp^n(r)}{E(r)} = 0 \quad for \ each \ n \in \mathbb{N}.$$

(iv) $E(r) \le \exp(E(r)) \le E((1+a)r)$ for $r \ge L(\exp(a))$.

Proof. (i), (ii) and (iv) follows from the theorem immediately. Since -L(s) = L(1/s) and $0 \le L(s) \le \log^{n+1}(s)$ for large s > 0,

$$0 \le \lim_{r \to -\infty} \frac{\exp^n(-r)}{\frac{1}{E(r)}} = \lim_{s \to \infty} \frac{\exp^n(L(s))}{\frac{1}{E(-L(s))}} \le \lim_{s \to \infty} \frac{\exp^n(\log^{n+1}(s))}{s} = 0,$$

and

$$0 \le \lim_{r \to \infty} \frac{\exp^n(r)}{E(r)} = \lim_{s \to \infty} \frac{\exp^n(L(s))}{E(L(s))} \le \lim_{s \to \infty} \frac{\exp^n(\log^{n+1}(s))}{s} = 0.$$

These show (iii).

3 Construction of $L^{\langle m \rangle}(r)$ To construct more slowly increasing function, we first give a simple observation. By the relation (2.2) and the definition of ϕ we have

$$(F^{k}(\phi(u)))' = \frac{1}{F^{k-1}(\phi(u))\cdots F^{1}(\phi(u))F^{0}(\phi(u))\tilde{F}(u)}.$$

That is,

$$F^{k}(\phi(u)) = a + \int_{a}^{u} \frac{dt}{F^{k-1}(\phi(t))\cdots F^{1}(\phi(t))F^{0}(\phi(t))\tilde{F}(t)}.$$

Then, as the limit of $F^k(\phi(u))$, we let

$$\phi^{\langle 2 \rangle}(u) = a + \int_a^u \frac{dt}{\tilde{F}(\phi(t))\tilde{F}(t)} \quad (u \ge a).$$

Similarly, we have

$$(F^{k}(\phi^{\langle 2 \rangle}(u)))' = \frac{1}{F^{k-1}(\phi^{\langle 2 \rangle}(u)) \cdots F^{1}(\phi^{\langle 2 \rangle}(u))F^{0}(\phi^{\langle 2 \rangle}(u))\tilde{F}(\phi(u))\tilde{F}(u)},$$

and

$$F^{k}(\phi^{\langle 2 \rangle}(u)) = a + \int_{a}^{u} \frac{dt}{F^{k-1}(\phi^{\langle 2 \rangle}(t)) \cdots F^{1}(\phi^{\langle 2 \rangle}(t))F^{0}(\phi^{\langle 2 \rangle}(t))\tilde{F}(\phi(t))\tilde{F}(t)}$$

So we define $\phi^{\langle m \rangle}$ and $L^{\langle m \rangle}$ as the following:

Definition 3.1. For a > 1 and $m \in \mathbb{N}$, let

(3.1)
$$\phi^{\langle m \rangle}(u) = \phi_a^{\langle m \rangle}(u) = a + \int_a^u \frac{dt}{\prod_{j=0}^{m-1} \tilde{F}(\phi^{\langle j \rangle}(t))} \quad (u \ge a),$$

where $\phi^{\langle 0 \rangle}(u) = u$ and \tilde{F} is as in (2.8).

Note that $\phi^{(1)}$ is the same as ϕ defined by (2.9).

Definition 3.2. For a > 1 and $m \in \mathbb{N}$, let

$$L^{\langle m \rangle}(r) = L_a^{\langle m \rangle}(r) = \phi^{\langle m \rangle}(ar) - a = \int_a^{ar} \frac{dt}{\prod_{j=0}^{m-1} \tilde{F}(\phi^{\langle j \rangle}(t))} \quad (r \ge 1),$$

and let

$$L^{\langle m \rangle}(r) = -L^{\langle m \rangle}(1/r) = -\int_{a}^{a/r} \frac{dt}{\prod_{j=0}^{m-1} \tilde{F}(\phi^{\langle j \rangle}(t))} \quad (0 < r < 1).$$

where \tilde{F} and $\phi^{\langle m \rangle}$ are as in (2.8) and (3.1), respectively.

Proposition 3.1. The function $\phi^{(m)}$ coincides with ϕ^m , $m \in \mathbb{N}$, and there exists a positive constant c such that, for large r,

(3.2)
$$L^{\langle m+1 \rangle}(r) \le L(L^{\langle m \rangle}(r)) \le cL^{\langle m+1 \rangle}(r).$$

Proof. Using the relation $(\phi^{\langle m \rangle}(t))' = \frac{1}{\prod_{j=0}^{m-1} \tilde{F}(\phi^{\langle j \rangle}(t))}$, we have

$$\begin{split} \phi^{\langle m+1\rangle}(u) - a &= \int_a^u \frac{dt}{\prod_{j=0}^m \tilde{F}(\phi^{\langle j\rangle}(t))} = \int_a^u \frac{(\phi^{\langle m\rangle}(t))'}{\tilde{F}(\phi^{\langle m\rangle}(t))} \, dt = \int_a^{\phi^{\langle m\rangle}(u)} \frac{ds}{\tilde{F}(s)} \\ &= \phi(\phi^{\langle m\rangle}(u)) - a. \end{split}$$

This shows that $\phi^{\langle m \rangle} = \phi^m$. Moreover, the equality $\phi^{\langle m+1 \rangle}(u) = \phi(\phi^{\langle m \rangle}(u))$ means $L^{\langle m+1 \rangle}(r) = L(1 + L^{\langle m \rangle}(r)/a)$. By the increasingness and the concavity of L, we have (3.2).

By Proposition 3.1 and (v) in Theorem 2.1 we have the following:

Corollary 3.2. For each $m \in \mathbb{N}$, the function $\phi^{\langle m \rangle}$ is in \mathcal{F}_a , infinitely differentiable and concave on $[a, \infty)$. The function $L^{\langle m \rangle}$ is in \mathcal{L} , differentiable on $(0, \infty)$, infinitely differentiable except at 1, and, concave on $[1, \infty)$. Moreover, if $a \geq a_m$, then $L^{\langle m \rangle}$ is concave on $(0, \infty)$, where a_m is in $[2, 2 + \sqrt{2})$ and satisfies the equation

$$\frac{{a_m}^2}{(a_m-1)^2}\left(1-\frac{1}{{a_m}^m}\right) = 2.$$

For each $m, n \in \mathbb{N}$,

(3.3)
$$\lim_{r \to 0} \frac{L^{\langle m+1 \rangle}(r)}{\log^n L^{\langle m \rangle}(1/r)} = \lim_{r \to \infty} \frac{L^{\langle m+1 \rangle}(r)}{\log^n L^{\langle m \rangle}(r)} = 0.$$

We will prove the corollary above in Section 4.

Since $L^{\langle m \rangle} \in \mathcal{L}$, $L^{\langle m \rangle}$ is bijective from $(0, \infty)$ to $(-\infty, \infty)$.

Definition 3.3. For $m \in \mathbb{N}$, let $E^{\langle m \rangle} : (-\infty, \infty) \to (0, \infty)$ be the inverse function of $L^{\langle m \rangle}$.

Then by Proposition 3.1 and Corollary 3.2 we have the following:

Corollary 3.3. For each $m \in \mathbb{N}$, the function $E^{\langle m \rangle}$ is continuous and strictly increasing and has the following properties:

- (i) $\lim_{r \to -\infty} E^{\langle m \rangle}(r) = 0$, $E^{\langle m \rangle}(0) = 1$, $\lim_{r \to \infty} E^{\langle m \rangle}(r) = \infty$.
- (ii) The function E^{⟨m⟩} is convex on [0,∞), differentiable on (-∞,∞) and infinitely differentiable except at 0. If a ≥ a_m, then E^{⟨m⟩} is convex on (-∞,∞).

(iii)
$$\lim_{r \to -\infty} \frac{E^{\langle m \rangle}(\exp^n(-r))}{\frac{1}{E^{\langle m+1 \rangle}(r)}} = \lim_{r \to \infty} \frac{E^{\langle m \rangle}(\exp^n(r))}{E^{\langle m+1 \rangle}(r)} = 0 \quad for \ each \ n \in \mathbb{N}.$$

(iv) There exists a positive constant c such that, for large r, $E^{\langle m \rangle}(E(r)) \leq E^{\langle m+1 \rangle}(r) \leq E^{\langle m \rangle}(E(cr))$.

4 Method of construction of slowly increasing functions To construct the limit function of $L^{\langle m \rangle}$ as $m \to \infty$, we extend Theorem 2.1 to general form. First, we set, for $f \in \mathcal{F}_a$,

(4.1)
$$L_f(r) = \int_a^{ar} \frac{dt}{f(t)} \quad (r \ge 1), \quad L_f(r) = -\int_a^{a/r} \frac{dt}{f(t)} \quad (0 < r < 1).$$

Theorem 4.1. For a > 1, let f and g be in \mathcal{F}_a and satisfy the relation

(4.2)
$$f(u) = a + \int_a^u \frac{dt}{g(t)}$$

Assume that g is infinitely differentiable and that $\left(\frac{d}{du}\right)^k \frac{g'}{g}$ is bounded for each $k \in \{0\} \cup \mathbb{N}$. Let

(4.3)
$$h(u) = a \prod_{k=0}^{\infty} \frac{g(f^k(u))}{a}, \quad \varphi(u) = a + \int_a^u \frac{dt}{h(t)} \quad (u \ge a).$$

Then we have the following:

(i) The function h is in \mathcal{F}_a , infinitely differentiable and has the following expression:

(4.4)
$$h(u) = \exp(v(u)), \quad v(u) = \log a + \int_a^u \left(\sum_{k=0}^\infty \frac{g'(f^k(t))}{\prod_{j=0}^k g(f^j(u))}\right) dt.$$

Further,
$$\left(\frac{d}{du}\right)^k \frac{h'}{h}$$
 is bounded for each $k \in \{0\} \cup \mathbb{N}$.

- (ii) The function φ is in \mathcal{F}_a , infinitely differentiable and concave on $[a, \infty)$.
- (iii) For each $n \in \mathbb{N}$,

(4.5)
$$\lim_{u \to \infty} \frac{\varphi(u)}{f^n(u)} = 0.$$

- (iv) The function L_h is in \mathcal{L} , differentiable on $(0, \infty)$, infinitely differentiable except at 1, and, concave on $[1, \infty)$. Moreover, if $uv'(u) \leq 2$ $(u \geq a)$, then L_h is concave on $(0, \infty)$.
- (v) Let $g_n(u) = \prod_{j=0}^{n-1} g(f^j(u)), n \in \mathbb{N}$. Then L_{g_n} is in \mathcal{L} for each $n \in \mathbb{N}$ and

(4.6)
$$\lim_{r \to 0} \frac{L_h(r)}{L_{g_n}(r)} = \lim_{r \to \infty} \frac{L_h(r)}{L_{g_n}(r)} = 0.$$

(vi) Let L_g^{-1} be the inverse function of L_g . Then, for $r \ge L_g^{-1}(a)$,

(4.7)
$$L_h(r) \le L_h(L_g^{-1}(r)) \le (1+a)L_h(r).$$

Proof of (i). We first prove that the infinite product in (4.3) converges and that h has the expression (4.4). From the relation (4.2) it follows that

$$(f^{k}(u))' = f'(f^{k-1}(u))(f^{k-1}(u))' = \frac{(f^{k-1}(u))'}{g(f^{k-1}(u))}$$

Then we have the relation

(4.8)
$$(f^k(u))' = \frac{1}{\prod_{j=0}^{k-1} g(f^j(u))} \quad (u \ge a), \quad k \in \mathbb{N}.$$

Let

$$v_n(u) = \log\left(a\prod_{k=0}^n \frac{g(f^k(u))}{a}\right) = \log a + \sum_{k=0}^n \log \frac{g(f^k(u))}{a}.$$

Then

$$v_n(u) = v_n(a) + \int_a^u v'_n(t) dt$$

= $\log a + \int_a^u \left(\sum_{k=0}^n \log \frac{g(f^k(t))}{a} \right)' dt$
= $\log a + \int_a^u \left(\sum_{k=0}^n \frac{g'(f^k(t))}{\prod_{j=0}^k g(f^j(t))} \right) dt,$

where we use the relation (4.8). Since $g(u) \ge a$ and $0 \le g'(u)/g(u) \le c_g$ for some positive constant c_g ,

$$\sum_{k=0}^{n} \frac{g'(f^k(t))}{\prod_{j=0}^{k} g(f^j(t))} \le c_g \sum_{k=0}^{n} \frac{1}{a^k} \quad (t \ge a).$$

Then the sum converges uniformly and the limit function v(u) exists such that

$$v(u) = \lim_{n \to \infty} v_n(u) = \log a + \int_a^u \left(\sum_{k=0}^\infty \frac{g'(f^k(t))}{\prod_{j=0}^k g(f^j(t))} \right) dt.$$

This shows that v is continuous and strictly increasing and that the infinite product in (4.3) converges to $\exp(v(u))$. That is, $h(u) = \exp(v(u))$ which is also continuous and strictly increasing. Further, h is bijective from $[a, \infty)$ to itself, since

$$h(u) = g(u) \times \sum_{k=1}^{\infty} \frac{g(f^k(u))}{a} \ge g(u) \to \infty \text{ as } u \to \infty.$$

Hence $h \in \mathcal{F}_a$.

Moreover, we have

$$\frac{h'(u)}{h(u)} = v'(u) = \sum_{k=0}^{\infty} \frac{g'(f^k(u))}{\prod_{j=0}^k g(f^j(u))} \le c_g \sum_{k=0}^{\infty} \frac{1}{a^k} = c_g \frac{a}{a-1}.$$

Similarly, from the boundedness of $\left(\frac{d}{du}\right)^j \frac{g'}{g}$, $0 \leq j \leq k$, we see that $\left(\frac{d}{du}\right)^{k+1} v$ is bounded. Therefore, h is infinitely differentiable and all derivatives of h'/h is bounded. \Box

Proof of (ii). Since h is in \mathcal{F}_a and infinitely differentiable, φ is strictly increasing and infinitely differentiable. To prove $\varphi \in \mathcal{F}_a$ we show that $\varphi(u) \to \infty$ as $u \to \infty$. Choose $u_n \in [a, \infty)$ such that $f^n(u_n) = 2a$. Then

$$\prod_{k=n}^{\infty} \frac{g(f^k(u_n))}{a} = \frac{g(f^n(u_n))}{a} \times \frac{g(f^{n+1}(u_n))}{a} \times \frac{g(f^{n+2}(u_n))}{a} \times \cdots$$
$$= \frac{g(2a)}{a} \times \frac{g(f(2a))}{a} \times \frac{g(f^2(2a))}{a} \times \cdots$$
$$= \frac{h(2a)}{a} = C_a,$$

which is independent of n, and, for $t \in [a, u_n]$,

$$h(t) = a \prod_{k=0}^{n-1} \frac{g(f^{k}(t))}{a} \prod_{k=n}^{\infty} \frac{g(f^{k}(t))}{a}$$
$$\leq a \prod_{k=0}^{n-1} \frac{g(f^{k}(t))}{a} \prod_{k=n}^{\infty} \frac{g(f^{k}(u_{n}))}{a}$$
$$= \frac{\prod_{k=0}^{n-1} g(f^{k}(t))}{a^{n-1}} \times C_{a}.$$

Hence, by the relation (4.8),

$$\varphi(u_n) - a = \int_a^{u_n} \frac{dt}{h(t)} \ge \frac{a^{n-1}}{C_a} \int_a^{u_n} \frac{dt}{\prod_{k=0}^{n-1} g(f^k(t))} = \frac{a^{n-1}}{C_a} (f^n(u_n) - a) = \frac{a^n}{C_a}.$$

for each $n \geq 1$. Combining this and the strictly increasingness of φ , we have

$$\lim_{u \to \infty} \varphi(u) = \infty.$$

From the expression (4.4) it follows that

$$\varphi'(u) = \frac{1}{h(u)} = \exp(-v(u)) > 0, \quad \varphi''(u) = -v'(u)\exp(-v(u)) < 0.$$

Hence φ is concave.

Proof of (iii). For $t \in [a, \infty)$,

$$h(t) = a \prod_{k=0}^{\infty} \frac{g(f^k(t))}{a} \ge a \prod_{k=0}^n \frac{g(f^k(t))}{a} = \frac{1}{a^n} \prod_{k=0}^n g(f^k(t)),$$

and

$$\varphi(u) - a = \int_{a}^{u} \frac{dt}{h(t)} \le a^{n} \int_{a}^{u} \frac{dt}{\prod_{k=0}^{n} g(f^{k}(t))} = a^{n} (f^{n+1}(u) - a).$$

That is, $0 < \varphi(u)/f^{n+1}(u) \le 2a^n$ for large u. From the relation (4.2) it follows that

$$0 < \frac{f(u)}{u} = \frac{a}{u} + \frac{1}{u} \int_{a}^{u} \frac{dt}{g(t)} \to 0 \quad \text{as } u \to \infty.$$

Hence $f^{n+1}(u)/f^n(u) \to 0$ as $u \to \infty$. Therefore, we have (4.5).

Proof of (iv). Since $L_h(r) = \varphi(ar) - a$ $(r \ge 1)$, the result in (ii) implies $L_h \in \mathcal{L}$, the concavity of L_h on $[1, \infty)$, and infinitely differentiability on $(0, 1) \cup (1, \infty)$. Moreover, from

$$\lim_{r \to 1-0} L'_h(r) = \lim_{r \to 1+0} L'_h(r) = 1,$$

it follows that L_h is differentiable on $(0, \infty)$.

If $uv'(u) \le 2$ $(u \ge a)$, then, for 0 < r < 1,

$$(L_h(r))' = (-L_h(1/r))' = (-\varphi(a/r) + a)' = \frac{a\varphi'(a/r)}{r^2} = \frac{a\exp(-v(a/r))}{r^2} > 0,$$

and

$$(L_h(r))'' = \left(\frac{a\exp(-v(a/r))}{r^2}\right)' = a\exp(-v(a/r))\frac{(a/r)v'(a/r) - 2}{r^3} \le 0$$

Therefore, L'_h is decreasing on $(0, \infty)$. That is, L_h is concave on $(0, \infty)$.

Proof of (v). From the relation (4.8) it follows that $L_{g_n}(r) = f^n(ar) - a$ $(r \ge 1)$ and $L_{g_n}(r) = -f^n(a/r) + a \ (0 < r < 1)$. Hence $L_{g_n}(r)$ is in \mathcal{L} for each $n \in \mathbb{N}$. The property (4.6) is a direct consequence of (4.5).

Proof of (vi). From

$$L_g(r) = \int_a^{ar} \frac{dt}{g(t)} \le \int_a^{ar} \frac{dt}{a} \le r$$

it follows that $r \leq L_g^{-1}(r)$ $(r \geq 1)$. Hence the first inequality holds. Next we show the second inequality. Since $L_g(t) = f(at) - a \leq f(at)$ $(t \geq 1)$, for $L_g(t) \ge a,$

$$g(at)h(L_g(t)) \le g(at)h(f(at)) = g(f^0(at))a \prod_{k=0}^{\infty} \frac{g(f^k(f(at)))}{a} = ah(at).$$

Observing $L_q^{-1}(r) > 1$ for r > 0, we have, for $r \ge L_q^{-1}(a)$,

$$\begin{split} L_h(L_g^{-1}(r)) &\leq L_h(L_g^{-1}(ar)) \\ &= \int_a^{aL_g^{-1}(ar)} \frac{1}{h(t)} dt \\ &= \int_a^{aL_g^{-1}(a)} \frac{1}{h(t)} dt + \int_{aL_g^{-1}(a)}^{aL_g^{-1}(ar)} \frac{1}{h(t)} dt \\ &= \int_a^{aL_g^{-1}(a)} \frac{1}{h(t)} dt + \int_{L_g^{-1}(a)}^{L_g^{-1}(ar)} \frac{a}{h(at)} dt \\ &\leq \int_a^{ar} \frac{1}{h(t)} dt + \int_{L_g^{-1}(a)}^{L_g^{-1}(ar)} \frac{a^2}{g(at)h(L_g(t))} dt \\ &= (1+a) \int_a^{ar} \frac{1}{h(t)} dt = (1+a)L_h(r). \end{split}$$

This is the second inequality.

Proof of Theorem 2.1. In Theorem 4.1, if $f(u) = a - \log a + \log u$ and g(u) = u, then we have Theorem 2.1 immediately. Only for the concavity of L on $(0,\infty)$, we need to check that $uV'(u) \leq 2$, where V is as in (2.12). Actually,

(4.9)
$$uV'(u) = u \times \sum_{k=0}^{\infty} \frac{1}{\prod_{j=0}^{k} F^{j}(u)} \le u \times \frac{1}{u} \sum_{k=0}^{\infty} \frac{1}{a^{k}} = \frac{a}{a-1} \le 2, \text{ if } a \ge 2,$$

since $F^0(u) = u$ and $F^j(u) \ge a, j \in \mathbb{N}$.

Remark 4.1. In (2.1) if we take a = 1, then $F(u) = F_1(u) = 1 + \log u$. In this case $\lim_{k\to\infty} F_1^k(u) = 1$ for all $u \ge 1$, since the graph of $y = 1 + \log x$ is concave and touches the line y = x at the point (1,1) in the plane. However, the infinite product $\prod_{k=0}^{\infty} F_1^k(u)$ diverges for all u > 1. Actually, letting

$$V_n(u) = \log\left(\prod_{k=0}^n F_1^k(u)\right) = \sum_{k=0}^n \log F_1^k(u),$$

we have

$$V_n(u) = \int_1^u V'_n(t) \, dt = \int_1^u \sum_{k=0}^n \left(\log F_1^k(t) \right)' \, dt = \int_1^u \left(\sum_{k=0}^n \frac{1}{\prod_{j=0}^k F_1^j(t)} \right) \, dt$$

If there exists u > 1 such that the product $\prod_{j=0}^{k} F_{1}^{j}(u)$ converges to some constant $c_{u} \ge 1$, then it also converges to some constant $c_{t} \in [1, c_{u}]$ for $t \in [1, u]$. This implies that the sum in the integral sign diverges for $t \in [1, u]$ and that $V_{n}(u)$ diverges, which contradicts the convergence of the product.

Proof of Corollary 3.2. By Proposition 3.1 we have $\phi^{\langle m \rangle} = \phi^m$. So the properties of $\phi^{\langle m \rangle}$ and $L^{\langle m \rangle}$ follow from the property of $\phi \in \mathcal{F}_a$ except for the concavity of $L^{\langle m \rangle}$ on $(0, \infty)$. To check the concavity, we note that

$$\frac{(\phi^m)''(u)}{(\phi^m)'(u)} = -\sum_{k=0}^{m-1} \frac{\tilde{F}'(\phi^k(u))}{\prod_{j=0}^k \tilde{F}(\phi^j(u))},$$

and

(4.10)
$$\frac{\tilde{F}'(u)}{\tilde{F}(u)} = V'(u) = \sum_{k=0}^{\infty} \frac{1}{\prod_{j=0}^{k} F^{j}(u)} \le \frac{1}{u} \sum_{k=0}^{\infty} \frac{1}{a^{j}} \le \frac{1}{a-1}.$$

Then we can show

(4.11)
$$u \times \sum_{k=0}^{m-1} \frac{\tilde{F}'(\phi^k(u))}{\prod_{j=0}^k \tilde{F}(\phi^j(u))} \le \frac{a^2}{(a-1)^2} \left(1 - \frac{1}{a^m}\right).$$

Actually, using (4.9), (4.10) and $\tilde{F}(u) = u \times \prod_{k=1}^{\infty} \frac{F^k(u)}{a} \ge u$, we have

$$\begin{aligned} u \times \sum_{k=0}^{m-1} \frac{\tilde{F}'(\phi^k(u))}{\prod_{j=0}^k \tilde{F}(\phi^j(u))} \\ &= \frac{u\tilde{F}'(u)}{\tilde{F}(u)} + \frac{u}{\tilde{F}(u)} \frac{\tilde{F}'(\phi(u))}{\tilde{F}(\phi(u))} + \frac{u}{\tilde{F}(u)} \sum_{k=2}^{m-1} \frac{\tilde{F}'(\phi^k(u))}{\tilde{F}(\phi^k(u)) \prod_{j=1}^{k-1} \tilde{F}(\phi^j(u))} \\ &\leq uV'(u) + V'(\phi(u)) + \sum_{k=2}^{m-1} V'(\phi^k(u)) \frac{1}{a^{k-1}} \\ &\leq \frac{a}{a-1} + \frac{1}{a-1} + \sum_{k=2}^{m-1} \frac{1}{a-1} \frac{1}{a^{k-1}} = \frac{a^2}{(a-1)^2} \left(1 - \frac{1}{a^m}\right). \end{aligned}$$

Then, for 0 < r < 1,

$$(L^{\langle m \rangle}(r))' = (-L^{\langle m \rangle}(1/r))' = \frac{a(\phi^m)'(a/r)}{r^2} > 0,$$

and

$$(L^{\langle m \rangle}(r))'' = \left(\frac{a(\phi^m)'(a/r)}{r^2}\right)' \\ = \frac{a(\phi^m)'(a/r)}{r^3} \left(\frac{a}{r} \sum_{k=0}^{m-1} \frac{\tilde{F}'(\phi^k(a/r))}{\prod_{j=0}^k \tilde{F}(\phi^j(a/r))} - 2\right) \\ \le \frac{a(\phi^m)'(a/r)}{r^3} \left(\frac{a^2}{(a-1)^2} \left(1 - \frac{1}{a^m}\right) - 2\right) \le 0,$$

if $a \ge a_m$. This shows the concavity on (0, 1), and hence the concavity on $(0, \infty)$ because of the differentiability at 1 and the concavity on $(0, 1) \cup (1, \infty)$. Finally, the relation (3.3) follows from (2.14) and (3.2).

5 Construction of $L^{\langle \ell,m \rangle}(r)$ In this section, by using Theorem 4.1, we construct more slowly increasing functions.

Definition 5.1. For a > 1, let

(5.1)
$$\tilde{F}^{\langle ii\rangle}(u) = a \prod_{m=0}^{\infty} \frac{\tilde{F}(\phi^m(u))}{a} \quad (u \ge a),$$

and let

(5.2)
$$\phi^{\langle 1,1\rangle}(u) = \phi_a^{\langle 1,1\rangle}(u) = a + \int_a^u \frac{dt}{\tilde{F}^{\langle ii\rangle}(t)} \quad (u \ge a),$$

where \tilde{F} and ϕ are as in (2.8) and (2.9), respectively.

Definition 5.2. For a > 1, let

$$L^{\langle 1,1\rangle}(r) = L_a^{\langle 1,1\rangle}(r) = \phi^{\langle 1,1\rangle}(ar) - a = \int_a^{ar} \frac{dt}{\tilde{F}^{\langle ii\rangle}(t)} \quad (r \ge 1),$$

and let

$$L^{\langle 1,1 \rangle}(r) = -L^{\langle 1,1 \rangle}(1/r) = -\int_{a}^{a/r} \frac{dt}{\tilde{F}^{\langle ii \rangle}(t)} \quad (0 < r < 1),$$

where $\tilde{F}^{\langle ii \rangle}$ and $\phi^{\langle 1,1 \rangle}$ are as in (5.1) and (5.2), respectively.

Then we have the following:

Theorem 5.1. Let a > 1.

(i) The function $\tilde{F}^{\langle ii \rangle}$ is in \mathcal{F}_a , infinitely differentiable, and has the following expression:

$$\begin{split} \tilde{F}^{\langle ii\rangle}(u) &= \exp(V^{\langle ii\rangle}(u)), \quad V^{\langle ii\rangle}(u) = \log a + \int_a^u \left(\sum_{k=0}^\infty \frac{\tilde{F}'(\phi^k(t))}{\prod_{j=0}^k \tilde{F}(\phi^j(t))}\right) \, dt. \\ Further, \, \left(\frac{d}{du}\right)^k \frac{(\tilde{F}^{\langle ii\rangle})'}{\tilde{F}^{\langle ii\rangle}} \text{ is bounded for each } k \in \{0\} \cup \mathbb{N}. \end{split}$$

- (ii) The function $\phi^{(1,1)}$ is in \mathcal{F}_a , infinitely differentiable and concave on $[a,\infty)$.
- (iii) For each $n \in \mathbb{N}$,

$$\lim_{u \to \infty} \frac{\phi^{\langle 1, 1 \rangle}(u)}{\phi^n(u)} = 0$$

(iv) The function $L^{\langle 1,1\rangle}$ is in \mathcal{L} , differentiable on $(0,\infty)$, infinitely differentiable except at 1, and, concave on $[1,\infty)$. Moreover, if $a \geq 2 + \sqrt{2}$, then $L^{\langle 1,1\rangle}$ is concave on $(0,\infty)$.

(v) For each $n \in \mathbb{N}$,

(5.3)
$$\lim_{r \to 0} \frac{L^{\langle 1,1 \rangle}(r)}{L^{\langle n \rangle}(r)} = \lim_{r \to \infty} \frac{L^{\langle 1,1 \rangle}(r)}{L^{\langle n \rangle}(r)} = 0$$

(vi) For $r \ge E(a)$,

$$L^{\langle 1,1\rangle}(r) \le L^{\langle 1,1\rangle}(E(r)) \le (1+a)L^{\langle 1,1\rangle}(r).$$

Proof. By the definition (2.9) and Theorem 2.1 the assumptions in Theorem 4.1 hold with $h = \tilde{F}$ and $\varphi = \phi^{\langle 1,1 \rangle}$. Therefore, we have the conclusion except for the concavity of $L^{\langle 1,1 \rangle}$ on $(0,\infty)$. Using the inequality (4.11), we have

$$u(V^{\langle ii \rangle}(u))' = u \times \sum_{k=0}^{\infty} \frac{\tilde{F}'(\phi^k(u))}{\prod_{j=0}^k \tilde{F}(\phi^j(u))} \le \frac{a^2}{(a-1)^2} \le 2,$$

if $a \ge 2 + \sqrt{2}$. Therefore, we have also the concavity.

Next, observing

$$(F^{k}(\phi^{\langle 1,1\rangle}(u)))' = \frac{1}{F^{k-1}(\phi^{\langle 1,1\rangle}(u))\cdots F^{1}(\phi^{\langle 1,1\rangle}(u))F^{0}(\phi^{\langle 1,1\rangle}(u))\tilde{F}^{\langle ii\rangle}(u)},$$

we let

$$\phi^{\langle 1,2\rangle}(u) = a + \int_a^u \frac{1}{\tilde{F}(\phi^{\langle 1,1\rangle}(t))\tilde{F}^{\langle ii\rangle}(t)} \, dt.$$

In general, for $m \ge 2$, let

$$\phi^{\langle 1,m\rangle}(u) = \phi_a^{\langle 1,m\rangle}(u) = a + \int_a^u \frac{dt}{\left(\prod_{j=1}^{m-1} \tilde{F}(\phi^{\langle 1,j\rangle}(t))\right) \tilde{F}^{\langle ii\rangle}(t)} \quad (u \ge a).$$

Here, in the same way as Proposition 3.1, we have $\phi^{(1,m+1)}(u) = \phi(\phi^{(1,m)}(u))$. That is,

$$\prod_{j=1}^{m-1} \tilde{F}(\phi^{\langle 1,j\rangle}(t)) = \prod_{j=1}^{m-1} \tilde{F}(\phi^{j-1}(\phi^{\langle 1,1\rangle}(t))) = \prod_{j=0}^{m-2} \tilde{F}(\phi^{j}(\phi^{\langle 1,1\rangle}(t))).$$

Then, we let

$$\phi^{\langle 2,1\rangle}(u) = \phi_a^{\langle 2,1\rangle}(u) = a + \int_a^u \frac{dt}{\tilde{F}^{\langle ii\rangle}(\phi^{\langle 1,1\rangle}(t))\tilde{F}^{\langle ii\rangle}(t)} \quad (u \ge a).$$

Further, in general, we have

(5.4)
$$\phi^{\langle \ell, m+1 \rangle}(u) = \phi(\phi^{\langle \ell, m \rangle}(u)), \quad \ell, m \in \mathbb{N}$$

in the same way as Proposition 3.1. So we give the following definition.

Definition 5.3. For a > 1 and $\ell \in \mathbb{N}$, let

$$\phi^{\langle \ell, 1 \rangle}(u) = \phi_a^{\langle \ell, 1 \rangle}(u) = a + \int_a^u \frac{dt}{\prod_{j=0}^{\ell-1} \tilde{F}^{\langle ii \rangle}(\phi^{\langle j, 1 \rangle}(t))} \quad (u \ge a),$$

where $\phi^{(0,1)}(u) = u$. For $m \in \mathbb{N}$ with $m \ge 2$,

$$\begin{split} \phi^{\langle \ell, m \rangle}(u) &= \phi_a^{\langle \ell, m \rangle}(u) \\ &= a + \int_a^u \frac{dt}{\left(\prod_{k=1}^{m-1} \tilde{F}(\phi^{\langle \ell, k \rangle}(t))\right) \left(\prod_{j=0}^{\ell-1} \tilde{F}^{\langle ii \rangle}(\phi^{\langle j, 1 \rangle}(t))\right)} \quad (u \ge a). \end{split}$$

Definition 5.4. For a > 1 and $\ell, m \in \mathbb{N}$, let

$$L^{\langle \ell,m\rangle}(r) = L_a^{\langle \ell,m\rangle}(r) = \phi^{\langle \ell,m\rangle}(ar) - a \quad (r \ge 1),$$

and let

$$L^{\langle \ell, m \rangle}(r) = -L^{\langle \ell, m \rangle}(1/r) \quad (0 < r < 1).$$

Moreover, in the same way as Proposition 3.1 again, we have

(5.5)
$$\phi^{\langle 1,1\rangle}(\phi^{\langle \ell,1\rangle}(u)) = \phi^{\langle \ell+1,1\rangle}(u), \quad \ell \in \mathbb{N}.$$

By this property and (5.4) we see that $\phi^{\langle \ell, m \rangle} \in \mathcal{F}_a$ and $L^{\langle \ell, m \rangle} \in \mathcal{L}$ for each $\ell, m \in \mathbb{N}$, and that there exists a positive constant c such that, for large r,

$$\begin{split} L^{\langle \ell+1,1\rangle}(r) &\leq L^{\langle 1,1\rangle}(L^{\langle \ell,1\rangle}(r)) \leq c L^{\langle \ell+1,1\rangle}(r), \\ L^{\langle \ell,m+1\rangle}(r) &\leq L(L^{\langle \ell,m\rangle}(r)) \leq c L^{\langle \ell,m+1\rangle}(r). \end{split}$$

Combining these inequalities and the relations (2.14) and (5.3), we have the following.

Corollary 5.2. For each $\ell, m \in \mathbb{N}$,

$$\lim_{r \to 0} \frac{L^{\langle \ell, 1 \rangle}(r)}{L^{\langle \ell-1, m \rangle}(1/r)} = \lim_{r \to \infty} \frac{L^{\langle \ell, 1 \rangle}(r)}{L^{\langle \ell-1, m \rangle}(r)} = 0,$$

and, for each $\ell, m, n \in \mathbb{N}$

$$\lim_{r \to 0} \frac{L^{\langle \ell, m+1 \rangle}(r)}{\log^n L^{\langle \ell, m \rangle}(1/r)} = \lim_{r \to \infty} \frac{L^{\langle \ell, m+1 \rangle}(r)}{\log^n L^{\langle \ell, m \rangle}(r)} = 0.$$

Let $\psi(u) = \phi^{\langle 1,1 \rangle}(u)$. Then $\phi^{\langle \ell,1 \rangle}(u) = \psi^{\ell}(u)$ by (5.5). Using this relation, we give the following definition.

Definition 5.5. For a > 1, let

$$\tilde{F}^{\langle iii\rangle}(u) = a \prod_{m=0}^{\infty} \frac{\tilde{F}^{\langle ii\rangle}(\psi^m(u))}{a} \quad (u \ge a),$$

and let

$$\phi^{\langle 1,1,1\rangle}(u)=\phi^{\langle 1,1,1\rangle}_a(u)=a+\int_a^u\frac{dt}{\tilde{F}^{\langle iii\rangle}(t)}\quad (u\geq a).$$

Definition 5.6. For a > 1, let

$$L^{\langle 1,1,1\rangle}(r) = L_a^{\langle 1,1,1\rangle}(r) = \phi^{\langle 1,1,1\rangle}(ar) - a = \int_a^{ar} \frac{dt}{\tilde{F}^{\langle iii\rangle}(t)} \quad (r \ge 1),$$

and let

$$L^{\langle 1,1,1 \rangle}(r) = -L^{\langle 1,1,1 \rangle}(1/r) = -\int_{a}^{a/r} \frac{dt}{\tilde{F}^{\langle iii \rangle}(t)} \quad (0 < r < 1)$$

In this way, we can construct more and more slowly increasing functions such that $L^{\langle k,\ell,m\rangle}$, $L^{\langle 1,1,1,1\rangle}$, $L^{\langle j,k,\ell,m\rangle}$, and so on.

Acknowledgment The authors wish to express their deep thanks to the referee for his/her very careful reading and valuable comments. The second author was partially supported by Grant-in-Aid for Scientific Research (C), No. 20540153 and No. 24540157, Japan Society for the Promotion of Science. The third author was partially supported by Grant-in-Aid for Scientific Research (C), No. 24540159, Japan Society for the Promotion of Science.

References

- [1] W. Ackermann, Zum Hilbertschen Aufbau der reellen Zahlen, Math. Ann., 99 (1928), 118–133.
- [2] H. Ando and T. Horiuchi, Missing terms in the weighted Hardy-Sobolev inequalities and its application, J. Math. Kyoto Univ., to appear.
- [3] H. Ando, T. Horiuchi and E. Nakai, Weighted Hardy inequalities with infinitely many sharp missing terms, in preparation.
- [4] A. Detalla, T. Horiuchi and H. Ando, Sharp remainder terms of Hardy-Sobolev inequalities, Math. J. Ibaraki Univ., 37 (2005), 39–52.
- [5] R. L. Goodstein, Transfinite ordinals in recursive number theory, J. Symbolic Logic 12 (1947), 123–129.
- [6] P. St-Amant, Number theories, Int. J. Algebra 4 (2010), 959–994.

Communicated by Masatoshi Fujii

Hiroshi Ando Department of Mathematics Ibaraki University Mito, Ibaraki 310-8512, Japan hando@mx.ibaraki.ac.jp

Toshio Horiuchi Department of Mathematics Ibaraki University Mito, Ibaraki 310-8512, Japan horiuchi@mx.ibaraki.ac.jp

Eiichi Nakai Department of Mathematics Ibaraki University Mito, Ibaraki 310-8512, Japan enakai@mx.ibaraki.ac.jp