CONSTRUCTION OF SLOWLY INCREASING FUNCTIONS

Hiroshi Ando, Toshio Horiuchi and Eitchi Nakai

Received March 30, 2012

Abstract

We construct a continuous and bijective function $L:(0, \infty) \rightarrow(-\infty, \infty)$ which is increasing slower than any nth iterate of logarithmic function. Further, we construct a function which is increasing slower than any nth iterate of L. Using our method, we can construct more and more slowly increasing functions.

1 Introduction In this paper we construct a very slowly increasing function, namely, we construct a continuous and strictly increasing function $L:(0, \infty) \rightarrow(-\infty, \infty)$ such that

$$
\lim _{r \rightarrow 0} L(r)=-\infty, \quad L(1)=0, \quad \lim _{r \rightarrow \infty} L(r)=\infty
$$

and

$$
\lim _{r \rightarrow 0} \frac{L(r)}{\log ^{n}(1 / r)}=\lim _{r \rightarrow \infty} \frac{L(r)}{\log ^{n} r}=0 \quad \text { for each } n \in \mathbb{N}=\{1,2, \cdots\}
$$

where $\log ^{0} r=r$ and $\log ^{n} r=\log \left(\log ^{n-1} r\right), n \in \mathbb{N}$. While the logarithmic function has the property $\log r^{n}=n \log r$, the function $L(r)$ has the following property: There exists a positive constant c such that, for large r,

$$
L(r) \leq L(\exp (r)) \leq c L(r)
$$

Further, letting $L^{\langle 1\rangle}(r)=L(r)$, we construct continuous and strictly increasing functions $L^{\langle m\rangle}:(0, \infty) \rightarrow(-\infty, \infty), m \geq 2$, such that

$$
\lim _{r \rightarrow 0} L^{\langle m\rangle}(r)=-\infty, \quad L^{\langle m\rangle}(1)=0, \quad \lim _{r \rightarrow \infty} L^{\langle m\rangle}(r)=\infty
$$

and

$$
\lim _{r \rightarrow 0} \frac{L^{\langle m+1\rangle}(r)}{\log ^{n} L^{\langle m\rangle}(1 / r)}=\lim _{r \rightarrow \infty} \frac{L^{\langle m+1\rangle}(r)}{\log ^{n} L^{\langle m\rangle}(r)}=0 \quad \text { for each } m, n \in \mathbb{N}
$$

Moreover, letting $L^{\langle 0, m\rangle}(r)=L^{\langle m\rangle}(r), m \in \mathbb{N}$, we can construct continuous and strictly increasing functions $L^{\langle\ell, m\rangle}:(0, \infty) \rightarrow(-\infty, \infty), \ell, m \in \mathbb{N}$, such that

$$
\begin{aligned}
& \lim _{r \rightarrow 0} L^{\langle\ell, m\rangle}(r)=-\infty, \quad L^{\langle\ell, m\rangle}(1)=0, \quad \lim _{r \rightarrow \infty} L^{\langle\ell, m\rangle}(r)=\infty, \\
& \lim _{r \rightarrow 0} \frac{L^{\langle\ell, 1\rangle}(r)}{L^{\langle\ell-1, m\rangle}(1 / r)}=\lim _{r \rightarrow \infty} \frac{L^{\langle\ell, 1\rangle}(r)}{L^{\langle\ell-1, m\rangle}(r)}=0 \quad \text { for each } \ell, m \in \mathbb{N},
\end{aligned}
$$

and

$$
\lim _{r \rightarrow 0} \frac{L^{\langle\ell, m+1\rangle}(r)}{\log ^{n} L^{\langle\ell, m\rangle}(1 / r)}=\lim _{r \rightarrow \infty} \frac{L^{\langle\ell, m+1\rangle}(r)}{\log ^{n} L^{\langle\ell, m\rangle}(r)}=0 \quad \text { for each } \ell, m, n \in \mathbb{N}
$$

2010 Mathematics Subject Classification. Primary 26A12; Secondary 26A18.
Key words and phrases. logarithm, super logarithm, slowly increasing function, rapidly increasing function.

In particular, letting $L^{0}(r)=r$ and $L^{m}(r)=L\left(L^{m-1}(r)\right), m \in \mathbb{N}$, we have

$$
\lim _{r \rightarrow 0} \frac{L^{\langle 1,1\rangle}(r)}{L^{m}(1 / r)}=\lim _{r \rightarrow \infty} \frac{L^{\langle 1,1\rangle}(r)}{L^{m}(r)}=0 \quad \text { for each } m \in \mathbb{N}
$$

since the relation $L^{\langle m+1\rangle}(r) \leq L\left(L^{\langle m\rangle}(r)\right) \leq c L^{\langle m+1\rangle}(r)$ holds for large r.
Using our method, we can construct more and more slowly increasing functions. Moreover, the inverse functions of them are rapidly increasing as $r \rightarrow \infty$ and rapidly decreasing to 0 as $r \rightarrow-\infty$. Let E be the inverse function of L. Then

$$
\lim _{r \rightarrow-\infty} \frac{\exp ^{n}(-r)}{\frac{1}{E(r)}}=\lim _{r \rightarrow \infty} \frac{\exp ^{n}(r)}{E(r)}=0 \quad \text { for each } n \in \mathbb{N}
$$

where $\exp ^{0}(r)=r$ and $\exp ^{n}(r)=\exp \left(\exp ^{n-1}(r)\right), n \in \mathbb{N}$.
Several functions are known as rapidly increasing functions, for example, the tetration, the hyperoperation, Ackermann functions, etc., see [1, 5, 6]. The inverse functions of them are slowly increasing. On our functions we can easily check their differentiability. All of our slowly increasing functions are differentiable on $(0, \infty)$ and infinitely differentiable except at 1 , and the inverse functions of them are differentiable on $(-\infty, \infty)$ and infinitely differentiable except at 0 .

In Sections 2 and 3 we state the definitions and properties of L and $L^{\langle m\rangle}, m \in \mathbb{N}$, respectively. Then, based on the idea in Sections 2 and 3, we give the method of construction of slowly increasing functions in Section 4, In the last section we state the definitions and properties of $L^{\langle\ell, m\rangle}, \ell, m \in \mathbb{N}$, and more slowly increasing functions. Our idea comes from the study of missing terms of Hardy-Sobolev inequalities [2, 3, 4].

2 Construction of $L(r)$ First we define two sets of functions.
Definition 2.1. Let \mathcal{L} be the set of all continuous, increasing and bijective functions f from $(0, \infty)$ to $(-\infty, \infty)$ satisfying

$$
\lim _{r \rightarrow 0} f(r)=-\infty, \quad f(1)=0, \quad \lim _{r \rightarrow \infty} f(r)=\infty
$$

For example, the logarithmic function $\log r$ is in \mathcal{L}.
Definition 2.2. For $a>1$, let \mathcal{F}_{a} be the set of all continuous, increasing and bijective functions from $[a, \infty)$ to itself.

If $f \in \mathcal{F}_{a}$, then $f(a)=a$ and $\lim _{u \rightarrow \infty} f(u)=\infty$. For a function $f \in \mathcal{F}_{a}$, let $f^{0}(u)=u$ and $f^{k}(u)=f\left(f^{k-1}(u)\right), k \in \mathbb{N}$. Then f^{k} is also in \mathcal{F}_{a}.

We define a function $F \in \mathcal{F}_{a}$ as

$$
\begin{equation*}
F(u)=F_{a}(u)=a-\log a+\log u \quad(u \geq a) \tag{2.1}
\end{equation*}
$$

Then the relation

$$
\begin{equation*}
\left(F^{k}(u)\right)^{\prime}=\frac{1}{F^{k-1}(u) \cdots F^{1}(u) F^{0}(u)} \tag{2.2}
\end{equation*}
$$

holds. That is,

$$
\begin{equation*}
F^{k}(u)=a+\int_{a}^{u} \frac{d t}{F^{k-1}(t) \cdots F^{1}(t) F^{0}(t)} \tag{2.3}
\end{equation*}
$$

Let

$$
\begin{equation*}
\ell_{k}(r)=F^{k}(a r)-a=\int_{a}^{a r} \frac{d t}{F^{k-1}(t) \cdots F^{1}(t) F^{0}(t)} \quad(r \geq 1) \tag{2.4}
\end{equation*}
$$

and let

$$
\begin{equation*}
\ell_{k}(r)=-\ell_{k}(1 / r)=-\int_{a}^{a / r} \frac{d t}{F^{k-1}(t) \cdots F^{1}(t) F^{0}(t)} \quad(0<r<1) \tag{2.5}
\end{equation*}
$$

Then $\ell_{k} \in \mathcal{L}$ and

$$
\begin{equation*}
\lim _{r \rightarrow 0} \frac{\ell_{k}(r)}{\log ^{k}(1 / r)}=\lim _{r \rightarrow \infty} \frac{\ell_{k}(r)}{\log ^{k} r}=1 \quad \text { for each } k \in \mathbb{N} \tag{2.6}
\end{equation*}
$$

To construct the limit function of ℓ_{k} as $k \rightarrow \infty$, we use the integral

$$
\begin{equation*}
\int_{a}^{u} \frac{d t}{F^{k-1}(t) \cdots F^{1}(t) F^{0}(t)} \tag{2.7}
\end{equation*}
$$

with exchanging

$$
F^{k-1}(t) \cdots F^{1}(t) F^{0}(t) \quad \text { for } \quad \frac{F^{k-1}(t)}{a} \cdots \frac{F^{1}(t)}{a} \frac{F^{0}(t)}{a}
$$

Then we can show that the limit exists. This is our main idea.
Definition 2.3. For $a>1$, let

$$
\begin{equation*}
\tilde{F}(u)=\tilde{F}_{a}(u)=a \prod_{k=0}^{\infty} \frac{F^{k}(u)}{a} \quad(u \geq a) \tag{2.8}
\end{equation*}
$$

and let

$$
\begin{equation*}
\phi(u)=\phi_{a}(u)=a+\int_{a}^{u} \frac{1}{\tilde{F}(t)} d t \quad(u \geq a) \tag{2.9}
\end{equation*}
$$

The convergence of the infinite product in (2.8) will be proven later. Note that, if $a=1$, then the infinite product in (2.8) diverges, see Remark 4.1.

Definition 2.4. For $a>1$, let

$$
\begin{equation*}
L(r)=L_{a}(r)=\phi(a r)-a=\int_{a}^{a r} \frac{1}{\tilde{F}(t)} d t \quad(r \geq 1) \tag{2.10}
\end{equation*}
$$

and let

$$
\begin{equation*}
L(r)=-L(1 / r)=-\int_{a}^{a / r} \frac{1}{\tilde{F}(t)} d t \quad(0<r<1) \tag{2.11}
\end{equation*}
$$

where \tilde{F} and ϕ are as in (2.8) and (2.9), respectively.
Then we have the following.
Theorem 2.1. Let $a>1$.
(i) The function \tilde{F} is in \mathcal{F}_{a}, infinitely differentiable and has the following expression:

$$
\begin{equation*}
\tilde{F}(u)=\exp (V(u)), \quad V(u)=\log a+\int_{a}^{u}\left(\sum_{k=0}^{\infty} \frac{1}{\prod_{j=0}^{k} F^{j}(t)}\right) d t \tag{2.12}
\end{equation*}
$$

Further, $\left(\frac{d}{d u}\right)^{k} \frac{\tilde{F}^{\prime}}{\tilde{F}}$ is bounded for each $k \in\{0\} \cup \mathbb{N}$.
(ii) The function ϕ is in \mathcal{F}_{a}, infinitely differentiable and concave on $[a, \infty)$.
(iii) For each $n \in \mathbb{N}$,

$$
\begin{equation*}
\lim _{u \rightarrow \infty} \frac{\phi(u)}{F^{n}(u)}=0 \tag{2.13}
\end{equation*}
$$

(iv) The function L is in \mathcal{L}, differentiable on $(0, \infty)$, infinitely differentiable except at 1 , and, concave on $[1, \infty)$, Moreover, if $a \geq 2$, then L is concave on $(0, \infty)$.
(v) For each $n \in \mathbb{N}$,

$$
\begin{equation*}
\lim _{r \rightarrow 0} \frac{L(r)}{\log ^{n}(1 / r)}=\lim _{r \rightarrow \infty} \frac{L(r)}{\log ^{n} r}=0 \tag{2.14}
\end{equation*}
$$

(vi) For $r \geq \exp (a)$,

$$
L(r) \leq L(\exp (r)) \leq(1+a) L(r)
$$

We will prove the theorem above in more general form in Section 4.
By (iv) in Theorem 2.1, L is bijective from $(0, \infty)$ to $(-\infty, \infty)$.
Definition 2.5. Let $E:(-\infty, \infty) \rightarrow(0, \infty)$ be the inverse function of L.
Then by Theorem 2.1 we have the following:
Corollary 2.2. The function E is continuous and strictly increasing and has the following properties:
(i) $\lim _{r \rightarrow-\infty} E(r)=0, \quad E(0)=1, \quad \lim _{r \rightarrow \infty} E(r)=\infty$.
(ii) The function E is convex on $[0, \infty)$, differentiable on $(-\infty, \infty)$ and infinitely differentiable except at 0 . If $a \geq 2$, then E is convex on $(-\infty, \infty)$.
(iii) $\lim _{r \rightarrow-\infty} \frac{\exp ^{n}(-r)}{\frac{1}{E(r)}}=\lim _{r \rightarrow \infty} \frac{\exp ^{n}(r)}{E(r)}=0 \quad$ for each $n \in \mathbb{N}$.
(iv) $E(r) \leq \exp (E(r)) \leq E((1+a) r) \quad$ for $r \geq L(\exp (a))$.

Proof. (i), (ii) and (iv) follows from the theorem immediately. Since $-L(s)=L(1 / s)$ and $0 \leq L(s) \leq \log ^{n+1}(s)$ for large $s>0$,

$$
0 \leq \lim _{r \rightarrow-\infty} \frac{\exp ^{n}(-r)}{\frac{1}{E(r)}}=\lim _{s \rightarrow \infty} \frac{\exp ^{n}(L(s))}{\frac{1}{E(-L(s))}} \leq \lim _{s \rightarrow \infty} \frac{\exp ^{n}\left(\log ^{n+1}(s)\right)}{s}=0
$$

and

$$
0 \leq \lim _{r \rightarrow \infty} \frac{\exp ^{n}(r)}{E(r)}=\lim _{s \rightarrow \infty} \frac{\exp ^{n}(L(s))}{E(L(s))} \leq \lim _{s \rightarrow \infty} \frac{\exp ^{n}\left(\log ^{n+1}(s)\right)}{s}=0
$$

These show (iii).

3 Construction of $L^{\langle m\rangle}(r)$ To construct more slowly increasing function, we first give a simple observation. By the relation (2.2) and the definition of ϕ we have

$$
\left(F^{k}(\phi(u))\right)^{\prime}=\frac{1}{F^{k-1}(\phi(u)) \cdots F^{1}(\phi(u)) F^{0}(\phi(u)) \tilde{F}(u)}
$$

That is,

$$
F^{k}(\phi(u))=a+\int_{a}^{u} \frac{d t}{F^{k-1}(\phi(t)) \cdots F^{1}(\phi(t)) F^{0}(\phi(t)) \tilde{F}(t)} .
$$

Then, as the limit of $F^{k}(\phi(u))$, we let

$$
\phi^{\langle 2\rangle}(u)=a+\int_{a}^{u} \frac{d t}{\tilde{F}(\phi(t)) \tilde{F}(t)} \quad(u \geq a) .
$$

Similarly, we have

$$
\left(F^{k}\left(\phi^{\langle 2\rangle}(u)\right)\right)^{\prime}=\frac{1}{F^{k-1}\left(\phi^{\langle 2\rangle}(u)\right) \cdots F^{1}\left(\phi^{\langle 2\rangle}(u)\right) F^{0}\left(\phi^{\langle 2\rangle}(u)\right) \tilde{F}(\phi(u)) \tilde{F}(u)},
$$

and

$$
F^{k}\left(\phi^{\langle 2\rangle}(u)\right)=a+\int_{a}^{u} \frac{d t}{F^{k-1}\left(\phi^{\langle 2\rangle}(t)\right) \cdots F^{1}\left(\phi^{\langle 2\rangle}(t)\right) F^{0}\left(\phi^{\langle 2\rangle}(t)\right) \tilde{F}(\phi(t)) \tilde{F}(t)} .
$$

So we define $\phi^{\langle m\rangle}$ and $L^{\langle m\rangle}$ as the following:
Definition 3.1. For $a>1$ and $m \in \mathbb{N}$, let

$$
\begin{equation*}
\phi^{\langle m\rangle}(u)=\phi_{a}^{\langle m\rangle}(u)=a+\int_{a}^{u} \frac{d t}{\prod_{j=0}^{m-1} \tilde{F}\left(\phi^{\langle j\rangle}(t)\right)} \quad(u \geq a), \tag{3.1}
\end{equation*}
$$

where $\phi^{\langle 0\rangle}(u)=u$ and \tilde{F} is as in (2.8).
Note that $\phi^{\langle 1\rangle}$ is the same as ϕ defined by (2.9).
Definition 3.2. For $a>1$ and $m \in \mathbb{N}$, let

$$
L^{\langle m\rangle}(r)=L_{a}^{\langle m\rangle}(r)=\phi^{\langle m\rangle}(a r)-a=\int_{a}^{a r} \frac{d t}{\prod_{j=0}^{m-1} \tilde{F}\left(\phi^{\langle j\rangle}(t)\right)} \quad(r \geq 1),
$$

and let

$$
L^{\langle m\rangle}(r)=-L^{\langle m\rangle}(1 / r)=-\int_{a}^{a / r} \frac{d t}{\prod_{j=0}^{m-1} \tilde{F}\left(\phi^{\langle j\rangle}(t)\right)} \quad(0<r<1),
$$

where \tilde{F} and $\phi^{\langle m\rangle}$ are as in (2.8) and (3.1), respectively.
Proposition 3.1. The function $\phi^{\langle m\rangle}$ coincides with $\phi^{m}, m \in \mathbb{N}$, and there exists a positive constant c such that, for large r,

$$
\begin{equation*}
L^{\langle m+1\rangle}(r) \leq L\left(L^{\langle m\rangle}(r)\right) \leq c L^{\langle m+1\rangle}(r) . \tag{3.2}
\end{equation*}
$$

Proof. Using the relation $\left(\phi^{\langle m\rangle}(t)\right)^{\prime}=\frac{1}{\prod_{j=0}^{m-1} \tilde{F}\left(\phi^{\langle j\rangle}(t)\right)}$, we have

$$
\begin{aligned}
\phi^{\langle m+1\rangle}(u)-a & =\int_{a}^{u} \frac{d t}{\prod_{j=0}^{m} \tilde{F}\left(\phi^{\langle j\rangle}(t)\right)}=\int_{a}^{u} \frac{\left(\phi^{\langle m\rangle}(t)\right)^{\prime}}{\tilde{F}\left(\phi^{\langle m\rangle}(t)\right)} d t=\int_{a}^{\phi^{\langle m\rangle}(u)} \frac{d s}{\tilde{F}(s)} \\
& =\phi\left(\phi^{\langle m\rangle}(u)\right)-a .
\end{aligned}
$$

This shows that $\phi^{\langle m\rangle}=\phi^{m}$. Moreover, the equality $\phi^{\langle m+1\rangle}(u)=\phi\left(\phi^{\langle m\rangle}(u)\right)$ means $L^{\langle m+1\rangle}(r)=L\left(1+L^{\langle m\rangle}(r) / a\right)$. By the increasingness and the concavity of L, we have (3.2).

By Proposition 3.1 and (v) in Theorem 2.1 we have the following:
Corollary 3.2. For each $m \in \mathbb{N}$, the function $\phi^{\langle m\rangle}$ is in \mathcal{F}_{a}, infinitely differentiable and concave on $[a, \infty)$. The function $L^{\langle m\rangle}$ is in \mathcal{L}, differentiable on $(0, \infty)$, infinitely differentiable except at 1 , and, concave on $[1, \infty)$. Moreover, if $a \geq a_{m}$, then $L^{\langle m\rangle}$ is concave on $(0, \infty)$, where a_{m} is in $[2,2+\sqrt{2})$ and satisfies the equation

$$
\frac{a_{m}^{2}}{\left(a_{m}-1\right)^{2}}\left(1-\frac{1}{a_{m}^{m}}\right)=2 .
$$

For each $m, n \in \mathbb{N}$,

$$
\begin{equation*}
\lim _{r \rightarrow 0} \frac{L^{\langle m+1\rangle}(r)}{\log ^{n} L^{\langle m\rangle}(1 / r)}=\lim _{r \rightarrow \infty} \frac{L^{\langle m+1\rangle}(r)}{\log ^{n} L^{\langle m\rangle}(r)}=0 \tag{3.3}
\end{equation*}
$$

We will prove the corollary above in Section 4.
Since $L^{\langle m\rangle} \in \mathcal{L}, L^{\langle m\rangle}$ is bijective from $(0, \infty)$ to $(-\infty, \infty)$.
Definition 3.3. For $m \in \mathbb{N}$, let $E^{\langle m\rangle}:(-\infty, \infty) \rightarrow(0, \infty)$ be the inverse function of $L^{\langle m\rangle}$.
Then by Proposition 3.1 and Corollary 3.2 we have the following:
Corollary 3.3. For each $m \in \mathbb{N}$, the function $E^{\langle m\rangle}$ is continuous and strictly increasing and has the following properties:
(i) $\lim _{r \rightarrow-\infty} E^{\langle m\rangle}(r)=0, \quad E^{\langle m\rangle}(0)=1, \quad \lim _{r \rightarrow \infty} E^{\langle m\rangle}(r)=\infty$.
(ii) The function $E^{\langle m\rangle}$ is convex on $[0, \infty)$, differentiable on $(-\infty, \infty)$ and infinitely differentiable except at 0 . If $a \geq a_{m}$, then $E^{\langle m\rangle}$ is convex on $(-\infty, \infty)$.
(iii) $\lim _{r \rightarrow-\infty} \frac{E^{\langle m\rangle}\left(\exp ^{n}(-r)\right)}{\frac{1}{E^{\langle m+1\rangle}(r)}}=\lim _{r \rightarrow \infty} \frac{E^{\langle m\rangle}\left(\exp ^{n}(r)\right)}{E^{\langle m+1\rangle}(r)}=0 \quad$ for each $n \in \mathbb{N}$.
(iv) There exists a positive constant c such that, for large $r, E^{\langle m\rangle}(E(r)) \leq E^{\langle m+1\rangle}(r) \leq$ $E^{\langle m\rangle}(E(c r))$.

4 Method of construction of slowly increasing functions To construct the limit function of $L^{\langle m\rangle}$ as $m \rightarrow \infty$, we extend Theorem 2.1 to general form. First, we set, for $f \in \mathcal{F}_{a}$,

$$
\begin{equation*}
L_{f}(r)=\int_{a}^{a r} \frac{d t}{f(t)} \quad(r \geq 1), \quad L_{f}(r)=-\int_{a}^{a / r} \frac{d t}{f(t)} \quad(0<r<1) \tag{4.1}
\end{equation*}
$$

Theorem 4.1. For $a>1$, let f and g be in \mathcal{F}_{a} and satisfy the relation

$$
\begin{equation*}
f(u)=a+\int_{a}^{u} \frac{d t}{g(t)} . \tag{4.2}
\end{equation*}
$$

Assume that g is infinitely differentiable and that $\left(\frac{d}{d u}\right)^{k} \frac{g^{\prime}}{g}$ is bounded for each $k \in\{0\} \cup \mathbb{N}$. Let

$$
\begin{equation*}
h(u)=a \prod_{k=0}^{\infty} \frac{g\left(f^{k}(u)\right)}{a}, \quad \varphi(u)=a+\int_{a}^{u} \frac{d t}{h(t)} \quad(u \geq a) \tag{4.3}
\end{equation*}
$$

Then we have the following:
(i) The function h is in \mathcal{F}_{a}, infinitely differentiable and has the following expression:

$$
\begin{equation*}
h(u)=\exp (v(u)), \quad v(u)=\log a+\int_{a}^{u}\left(\sum_{k=0}^{\infty} \frac{g^{\prime}\left(f^{k}(t)\right)}{\prod_{j=0}^{k} g\left(f^{j}(u)\right)}\right) d t \tag{4.4}
\end{equation*}
$$

Further, $\left(\frac{d}{d u}\right)^{k} \frac{h^{\prime}}{h}$ is bounded for each $k \in\{0\} \cup \mathbb{N}$.
(ii) The function φ is in \mathcal{F}_{a}, infinitely differentiable and concave on $[a, \infty)$.
(iii) For each $n \in \mathbb{N}$,

$$
\begin{equation*}
\lim _{u \rightarrow \infty} \frac{\varphi(u)}{f^{n}(u)}=0 \tag{4.5}
\end{equation*}
$$

(iv) The function L_{h} is in \mathcal{L}, differentiable on $(0, \infty)$, infinitely differentiable except at 1 , and, concave on $[1, \infty)$. Moreover, if $u v^{\prime}(u) \leq 2(u \geq a)$, then L_{h} is concave on $(0, \infty)$.
(v) Let $g_{n}(u)=\prod_{j=0}^{n-1} g\left(f^{j}(u)\right), n \in \mathbb{N}$. Then $L_{g_{n}}$ is in \mathcal{L} for each $n \in \mathbb{N}$ and

$$
\begin{equation*}
\lim _{r \rightarrow 0} \frac{L_{h}(r)}{L_{g_{n}}(r)}=\lim _{r \rightarrow \infty} \frac{L_{h}(r)}{L_{g_{n}}(r)}=0 \tag{4.6}
\end{equation*}
$$

(vi) Let L_{g}^{-1} be the inverse function of L_{g}. Then, for $r \geq L_{g}^{-1}(a)$,

$$
\begin{equation*}
L_{h}(r) \leq L_{h}\left(L_{g}^{-1}(r)\right) \leq(1+a) L_{h}(r) \tag{4.7}
\end{equation*}
$$

Proof of (i). We first prove that the infinite product in (4.3) converges and that h has the expression (4.4). From the relation (4.2) it follows that

$$
\left(f^{k}(u)\right)^{\prime}=f^{\prime}\left(f^{k-1}(u)\right)\left(f^{k-1}(u)\right)^{\prime}=\frac{\left(f^{k-1}(u)\right)^{\prime}}{g\left(f^{k-1}(u)\right)}
$$

Then we have the relation

$$
\begin{equation*}
\left(f^{k}(u)\right)^{\prime}=\frac{1}{\prod_{j=0}^{k-1} g\left(f^{j}(u)\right)} \quad(u \geq a), \quad k \in \mathbb{N} \tag{4.8}
\end{equation*}
$$

Let

$$
v_{n}(u)=\log \left(a \prod_{k=0}^{n} \frac{g\left(f^{k}(u)\right)}{a}\right)=\log a+\sum_{k=0}^{n} \log \frac{g\left(f^{k}(u)\right)}{a}
$$

Then

$$
\begin{aligned}
v_{n}(u) & =v_{n}(a)+\int_{a}^{u} v_{n}^{\prime}(t) d t \\
& =\log a+\int_{a}^{u}\left(\sum_{k=0}^{n} \log \frac{g\left(f^{k}(t)\right)}{a}\right)^{\prime} d t \\
& =\log a+\int_{a}^{u}\left(\sum_{k=0}^{n} \frac{g^{\prime}\left(f^{k}(t)\right)}{\prod_{j=0}^{k} g\left(f^{j}(t)\right)}\right) d t
\end{aligned}
$$

where we use the relation (4.8). Since $g(u) \geq a$ and $0 \leq g^{\prime}(u) / g(u) \leq c_{g}$ for some positive constant c_{g},

$$
\sum_{k=0}^{n} \frac{g^{\prime}\left(f^{k}(t)\right)}{\prod_{j=0}^{k} g\left(f^{j}(t)\right)} \leq c_{g} \sum_{k=0}^{n} \frac{1}{a^{k}} \quad(t \geq a)
$$

Then the sum converges uniformly and the limit function $v(u)$ exists such that

$$
v(u)=\lim _{n \rightarrow \infty} v_{n}(u)=\log a+\int_{a}^{u}\left(\sum_{k=0}^{\infty} \frac{g^{\prime}\left(f^{k}(t)\right)}{\prod_{j=0}^{k} g\left(f^{j}(t)\right)}\right) d t
$$

This shows that v is continuous and strictly increasing and that the infinite product in (4.3) converges to $\exp (v(u))$. That is, $h(u)=\exp (v(u))$ which is also continuous and strictly increasing. Further, h is bijective from $[a, \infty)$ to itself, since

$$
h(u)=g(u) \times \sum_{k=1}^{\infty} \frac{g\left(f^{k}(u)\right)}{a} \geq g(u) \rightarrow \infty \quad \text { as } u \rightarrow \infty
$$

Hence $h \in \mathcal{F}_{a}$.
Moreover, we have

$$
\frac{h^{\prime}(u)}{h(u)}=v^{\prime}(u)=\sum_{k=0}^{\infty} \frac{g^{\prime}\left(f^{k}(u)\right)}{\prod_{j=0}^{k} g\left(f^{j}(u)\right)} \leq c_{g} \sum_{k=0}^{\infty} \frac{1}{a^{k}}=c_{g} \frac{a}{a-1} .
$$

Similarly, from the boundedness of $\left(\frac{d}{d u}\right)^{j} \frac{g^{\prime}}{g}, 0 \leq j \leq k$, we see that $\left(\frac{d}{d u}\right)^{k+1} v$ is bounded. Therefore, h is infinitely differentiable and all derivatives of h^{\prime} / h is bounded.

Proof of (ii). Since h is in \mathcal{F}_{a} and infinitely differentiable, φ is strictly increasing and infinitely differentiable. To prove $\varphi \in \mathcal{F}_{a}$ we show that $\varphi(u) \rightarrow \infty$ as $u \rightarrow \infty$. Choose $u_{n} \in[a, \infty)$ such that $f^{n}\left(u_{n}\right)=2 a$. Then

$$
\begin{aligned}
\prod_{k=n}^{\infty} \frac{g\left(f^{k}\left(u_{n}\right)\right)}{a} & =\frac{g\left(f^{n}\left(u_{n}\right)\right)}{a} \times \frac{g\left(f^{n+1}\left(u_{n}\right)\right)}{a} \times \frac{g\left(f^{n+2}\left(u_{n}\right)\right)}{a} \times \cdots \\
& =\frac{g(2 a)}{a} \times \frac{g(f(2 a))}{a} \times \frac{g\left(f^{2}(2 a)\right)}{a} \times \cdots \\
& =\frac{h(2 a)}{a}=C_{a}
\end{aligned}
$$

which is independent of n, and, for $t \in\left[a, u_{n}\right]$,

$$
\begin{aligned}
h(t) & =a \prod_{k=0}^{n-1} \frac{g\left(f^{k}(t)\right)}{a} \prod_{k=n}^{\infty} \frac{g\left(f^{k}(t)\right)}{a} \\
& \leq a \prod_{k=0}^{n-1} \frac{g\left(f^{k}(t)\right)}{a} \prod_{k=n}^{\infty} \frac{g\left(f^{k}\left(u_{n}\right)\right)}{a} \\
& =\frac{\prod_{k=0}^{n-1} g\left(f^{k}(t)\right)}{a^{n-1}} \times C_{a} .
\end{aligned}
$$

Hence, by the relation (4.8),

$$
\varphi\left(u_{n}\right)-a=\int_{a}^{u_{n}} \frac{d t}{h(t)} \geq \frac{a^{n-1}}{C_{a}} \int_{a}^{u_{n}} \frac{d t}{\prod_{k=0}^{n-1} g\left(f^{k}(t)\right)}=\frac{a^{n-1}}{C_{a}}\left(f^{n}\left(u_{n}\right)-a\right)=\frac{a^{n}}{C_{a}}
$$

for each $n \geq 1$. Combining this and the strictly increasingness of φ, we have

$$
\lim _{u \rightarrow \infty} \varphi(u)=\infty
$$

From the expression (4.4) it follows that

$$
\varphi^{\prime}(u)=\frac{1}{h(u)}=\exp (-v(u))>0, \quad \varphi^{\prime \prime}(u)=-v^{\prime}(u) \exp (-v(u))<0
$$

Hence φ is concave.
Proof of (iii). For $t \in[a, \infty)$,

$$
h(t)=a \prod_{k=0}^{\infty} \frac{g\left(f^{k}(t)\right)}{a} \geq a \prod_{k=0}^{n} \frac{g\left(f^{k}(t)\right)}{a}=\frac{1}{a^{n}} \prod_{k=0}^{n} g\left(f^{k}(t)\right)
$$

and

$$
\varphi(u)-a=\int_{a}^{u} \frac{d t}{h(t)} \leq a^{n} \int_{a}^{u} \frac{d t}{\prod_{k=0}^{n} g\left(f^{k}(t)\right)}=a^{n}\left(f^{n+1}(u)-a\right)
$$

That is, $0<\varphi(u) / f^{n+1}(u) \leq 2 a^{n}$ for large u. From the relation (4.2) it follows that

$$
0<\frac{f(u)}{u}=\frac{a}{u}+\frac{1}{u} \int_{a}^{u} \frac{d t}{g(t)} \rightarrow 0 \quad \text { as } u \rightarrow \infty .
$$

Hence $f^{n+1}(u) / f^{n}(u) \rightarrow 0$ as $u \rightarrow \infty$. Therefore, we have (4.5).
Proof of (iv). Since $L_{h}(r)=\varphi(a r)-a(r \geq 1)$, the result in (ii) implies $L_{h} \in \mathcal{L}$, the concavity of L_{h} on $[1, \infty)$, and infinitely differentiability on $(0,1) \cup(1, \infty)$. Moreover, from

$$
\lim _{r \rightarrow 1-0} L_{h}^{\prime}(r)=\lim _{r \rightarrow 1+0} L_{h}^{\prime}(r)=1
$$

it follows that L_{h} is differentiable on $(0, \infty)$.
If $u v^{\prime}(u) \leq 2(u \geq a)$, then, for $0<r<1$,

$$
\left(L_{h}(r)\right)^{\prime}=\left(-L_{h}(1 / r)\right)^{\prime}=(-\varphi(a / r)+a)^{\prime}=\frac{a \varphi^{\prime}(a / r)}{r^{2}}=\frac{a \exp (-v(a / r))}{r^{2}}>0
$$

and

$$
\left(L_{h}(r)\right)^{\prime \prime}=\left(\frac{a \exp (-v(a / r))}{r^{2}}\right)^{\prime}=a \exp (-v(a / r)) \frac{(a / r) v^{\prime}(a / r)-2}{r^{3}} \leq 0
$$

Therefore, L_{h}^{\prime} is decreasing on $(0, \infty)$. That is, L_{h} is concave on $(0, \infty)$.

Proof of (v). From the relation (4.8) it follows that $L_{g_{n}}(r)=f^{n}(a r)-a(r \geq 1)$ and $L_{g_{n}}(r)=-f^{n}(a / r)+a(0<r<1)$. Hence $L_{g_{n}}(r)$ is in \mathcal{L} for each $n \in \mathbb{N}$. The property (4.6) is a direct consequence of (4.5).

Proof of (vi). From

$$
L_{g}(r)=\int_{a}^{a r} \frac{d t}{g(t)} \leq \int_{a}^{a r} \frac{d t}{a} \leq r
$$

it follows that $r \leq L_{g}^{-1}(r)(r \geq 1)$. Hence the first inequality holds.
Next we show the second inequality. Since $L_{g}(t)=f(a t)-a \leq f(a t)(t \geq 1)$, for $L_{g}(t) \geq a$,

$$
g(a t) h\left(L_{g}(t)\right) \leq g(a t) h(f(a t))=g\left(f^{0}(a t)\right) a \prod_{k=0}^{\infty} \frac{g\left(f^{k}(f(a t))\right)}{a}=a h(a t)
$$

Observing $L_{g}^{-1}(r)>1$ for $r>0$, we have, for $r \geq L_{g}^{-1}(a)$,

$$
\begin{aligned}
L_{h}\left(L_{g}^{-1}(r)\right) & \leq L_{h}\left(L_{g}^{-1}(a r)\right) \\
& =\int_{a}^{a L_{g}^{-1}(a r)} \frac{1}{h(t)} d t \\
& =\int_{a}^{a L_{g}^{-1}(a)} \frac{1}{h(t)} d t+\int_{a L_{g}^{-1}(a)}^{a L_{g}^{-1}(a r)} \frac{1}{h(t)} d t \\
& =\int_{a}^{a L_{g}^{-1}(a)} \frac{1}{h(t)} d t+\int_{L_{g}^{-1}(a)}^{L_{g}^{-1}(a r)} \frac{a}{h(a t)} d t \\
& \leq \int_{a}^{a r} \frac{1}{h(t)} d t+\int_{L_{g}^{-1}(a)}^{L_{g}^{-1}(a r)} \frac{a^{2}}{g(a t) h\left(L_{g}(t)\right)} d t \\
& =(1+a) \int_{a}^{a r} \frac{1}{h(t)} d t=(1+a) L_{h}(r) .
\end{aligned}
$$

This is the second inequality.
Proof of Theorem 2.1. In Theorem 4.1, if $f(u)=a-\log a+\log u$ and $g(u)=u$, then we have Theorem 2.1 immediately. Only for the concavity of L on $(0, \infty)$, we need to check that $u V^{\prime}(u) \leq 2$, where V is as in (2.12). Actually,

$$
\begin{equation*}
u V^{\prime}(u)=u \times \sum_{k=0}^{\infty} \frac{1}{\prod_{j=0}^{k} F^{j}(u)} \leq u \times \frac{1}{u} \sum_{k=0}^{\infty} \frac{1}{a^{k}}=\frac{a}{a-1} \leq 2, \quad \text { if } a \geq 2 \tag{4.9}
\end{equation*}
$$

since $F^{0}(u)=u$ and $F^{j}(u) \geq a, j \in \mathbb{N}$.
Remark 4.1. In (2.1) if we take $a=1$, then $F(u)=F_{1}(u)=1+\log u$. In this case $\lim _{k \rightarrow \infty} F_{1}^{k}(u)=1$ for all $u \geq 1$, since the graph of $y=1+\log x$ is concave and touches the line $y=x$ at the point $(1,1)$ in the plane. However, the infinite product $\prod_{k=0}^{\infty} F_{1}^{k}(u)$ diverges for all $u>1$. Actually, letting

$$
V_{n}(u)=\log \left(\prod_{k=0}^{n} F_{1}^{k}(u)\right)=\sum_{k=0}^{n} \log F_{1}^{k}(u),
$$

we have

$$
V_{n}(u)=\int_{1}^{u} V_{n}^{\prime}(t) d t=\int_{1}^{u} \sum_{k=0}^{n}\left(\log F_{1}^{k}(t)\right)^{\prime} d t=\int_{1}^{u}\left(\sum_{k=0}^{n} \frac{1}{\prod_{j=0}^{k} F_{1}^{j}(t)}\right) d t
$$

If there exists $u>1$ such that the product $\prod_{j=0}^{k} F_{1}^{j}(u)$ converges to some constant $c_{u} \geq 1$, then it also converges to some constant $c_{t} \in\left[1, c_{u}\right]$ for $t \in[1, u]$. This implies that the sum in the integral sign diverges for $t \in[1, u]$ and that $V_{n}(u)$ diverges, which contradicts the convergence of the product.
Proof of Corollary 3.2. By Proposition 3.1 we have $\phi^{\langle m\rangle}=\phi^{m}$. So the properties of $\phi^{\langle m\rangle}$ and $L^{\langle m\rangle}$ follow from the property of $\phi \in \mathcal{F}_{a}$ except for the concavity of $L^{\langle m\rangle}$ on $(0, \infty)$. To check the concavity, we note that

$$
\frac{\left(\phi^{m}\right)^{\prime \prime}(u)}{\left(\phi^{m}\right)^{\prime}(u)}=-\sum_{k=0}^{m-1} \frac{\tilde{F}^{\prime}\left(\phi^{k}(u)\right)}{\prod_{j=0}^{k} \tilde{F}\left(\phi^{j}(u)\right)},
$$

and

$$
\begin{equation*}
\frac{\tilde{F}^{\prime}(u)}{\tilde{F}(u)}=V^{\prime}(u)=\sum_{k=0}^{\infty} \frac{1}{\prod_{j=0}^{k} F^{j}(u)} \leq \frac{1}{u} \sum_{k=0}^{\infty} \frac{1}{a^{j}} \leq \frac{1}{a-1} \tag{4.10}
\end{equation*}
$$

Then we can show

$$
\begin{equation*}
u \times \sum_{k=0}^{m-1} \frac{\tilde{F}^{\prime}\left(\phi^{k}(u)\right)}{\prod_{j=0}^{k} \tilde{F}\left(\phi^{j}(u)\right)} \leq \frac{a^{2}}{(a-1)^{2}}\left(1-\frac{1}{a^{m}}\right) \tag{4.11}
\end{equation*}
$$

Actually, using (4.9), (4.10) and $\tilde{F}(u)=u \times \prod_{k=1}^{\infty} \frac{F^{k}(u)}{a} \geq u$, we have

$$
\begin{aligned}
& u \times \sum_{k=0}^{m-1} \frac{\tilde{F}^{\prime}\left(\phi^{k}(u)\right)}{\prod_{j=0}^{k} \tilde{F}\left(\phi^{j}(u)\right)} \\
& =\frac{u \tilde{F}^{\prime}(u)}{\tilde{F}(u)}+\frac{u}{\tilde{F}(u)} \frac{\tilde{F}^{\prime}(\phi(u))}{\tilde{F}(\phi(u))}+\frac{u}{\tilde{F}(u)} \sum_{k=2}^{m-1} \frac{\tilde{F}^{\prime}\left(\phi^{k}(u)\right)}{\tilde{F}\left(\phi^{k}(u)\right) \prod_{j=1}^{k-1} \tilde{F}\left(\phi^{j}(u)\right)} \\
& \leq u V^{\prime}(u)+V^{\prime}(\phi(u))+\sum_{k=2}^{m-1} V^{\prime}\left(\phi^{k}(u)\right) \frac{1}{a^{k-1}} \\
& \leq \frac{a}{a-1}+\frac{1}{a-1}+\sum_{k=2}^{m-1} \frac{1}{a-1} \frac{1}{a^{k-1}}=\frac{a^{2}}{(a-1)^{2}}\left(1-\frac{1}{a^{m}}\right)
\end{aligned}
$$

Then, for $0<r<1$,

$$
\left(L^{\langle m\rangle}(r)\right)^{\prime}=\left(-L^{\langle m\rangle}(1 / r)\right)^{\prime}=\frac{a\left(\phi^{m}\right)^{\prime}(a / r)}{r^{2}}>0
$$

and

$$
\begin{aligned}
\left(L^{\langle m\rangle}(r)\right)^{\prime \prime} & =\left(\frac{a\left(\phi^{m}\right)^{\prime}(a / r)}{r^{2}}\right)^{\prime} \\
& =\frac{a\left(\phi^{m}\right)^{\prime}(a / r)}{r^{3}}\left(\frac{a}{r} \sum_{k=0}^{m-1} \frac{\tilde{F}^{\prime}\left(\phi^{k}(a / r)\right)}{\prod_{j=0}^{k} \tilde{F}\left(\phi^{j}(a / r)\right)}-2\right) \\
& \leq \frac{a\left(\phi^{m}\right)^{\prime}(a / r)}{r^{3}}\left(\frac{a^{2}}{(a-1)^{2}}\left(1-\frac{1}{a^{m}}\right)-2\right) \leq 0
\end{aligned}
$$

if $a \geq a_{m}$. This shows the concavity on $(0,1)$, and hence the concavity on $(0, \infty)$ because of the differentiability at 1 and the concavity on $(0,1) \cup(1, \infty)$. Finally, the relation (3.3) follows from (2.14) and (3.2).

5 Construction of $L^{\langle\ell, m\rangle}(r)$ In this section, by using Theorem 4.1, we construct more slowly increasing functions.

Definition 5.1. For $a>1$, let

$$
\begin{equation*}
\tilde{F}^{\langle i i\rangle}(u)=a \prod_{m=0}^{\infty} \frac{\tilde{F}\left(\phi^{m}(u)\right)}{a} \quad(u \geq a) \tag{5.1}
\end{equation*}
$$

and let

$$
\begin{equation*}
\phi^{\langle 1,1\rangle}(u)=\phi_{a}^{\langle 1,1\rangle}(u)=a+\int_{a}^{u} \frac{d t}{\tilde{F}^{\langle i\rangle\rangle}(t)} \quad(u \geq a) \tag{5.2}
\end{equation*}
$$

where \tilde{F} and ϕ are as in (2.8) and (2.9), respectively.
Definition 5.2. For $a>1$, let

$$
L^{\langle 1,1\rangle}(r)=L_{a}^{\langle 1,1\rangle}(r)=\phi^{\langle 1,1\rangle}(a r)-a=\int_{a}^{a r} \frac{d t}{\tilde{F}^{\langle i i\rangle}(t)} \quad(r \geq 1)
$$

and let

$$
L^{\langle 1,1\rangle}(r)=-L^{\langle 1,1\rangle}(1 / r)=-\int_{a}^{a / r} \frac{d t}{\tilde{F}^{\langle i i\rangle}(t)} \quad(0<r<1)
$$

where $\tilde{F}^{\langle i i\rangle}$ and $\phi^{\langle 1,1\rangle}$ are as in (5.1) and (5.2), respectively.
Then we have the following:
Theorem 5.1. Let $a>1$.
(i) The function $\tilde{F}^{\langle i i\rangle}$ is in \mathcal{F}_{a}, infinitely differentiable, and has the following expression:

$$
\tilde{F}^{\langle i i\rangle}(u)=\exp \left(V^{\langle i i\rangle}(u)\right), \quad V^{\langle i i\rangle}(u)=\log a+\int_{a}^{u}\left(\sum_{k=0}^{\infty} \frac{\tilde{F}^{\prime}\left(\phi^{k}(t)\right)}{\prod_{j=0}^{k} \tilde{F}\left(\phi^{j}(t)\right)}\right) d t
$$

Further, $\left(\frac{d}{d u}\right)^{k} \frac{\left(\tilde{F}^{\langle i i\rangle}\right)^{\prime}}{\tilde{F}^{\langle i i\rangle}}$ is bounded for each $k \in\{0\} \cup \mathbb{N}$.
(ii) The function $\phi^{\langle 1,1\rangle}$ is in \mathcal{F}_{a}, infinitely differentiable and concave on $[a, \infty)$.
(iii) For each $n \in \mathbb{N}$,

$$
\lim _{u \rightarrow \infty} \frac{\phi^{\langle 1,1\rangle}(u)}{\phi^{n}(u)}=0
$$

(iv) The function $L^{\langle 1,1\rangle}$ is in \mathcal{L}, differentiable on $(0, \infty)$, infinitely differentiable except at 1 , and, concave on $[1, \infty)$. Moreover, if $a \geq 2+\sqrt{2}$, then $L^{\langle 1,1\rangle}$ is concave on $(0, \infty)$.
(v) For each $n \in \mathbb{N}$,

$$
\begin{equation*}
\lim _{r \rightarrow 0} \frac{L^{\langle 1,1\rangle}(r)}{L^{\langle n\rangle}(r)}=\lim _{r \rightarrow \infty} \frac{L^{\langle 1,1\rangle}(r)}{L^{\langle n\rangle}(r)}=0 \tag{5.3}
\end{equation*}
$$

(vi) For $r \geq E(a)$,

$$
L^{\langle 1,1\rangle}(r) \leq L^{\langle 1,1\rangle}(E(r)) \leq(1+a) L^{\langle 1,1\rangle}(r)
$$

Proof. By the definition (2.9) and Theorem 2.1 the assumptions in Theorem 4.1 hold with $h=\tilde{F}$ and $\varphi=\phi^{\langle 1,1\rangle}$. Therefore, we have the conclusion except for the concavity of $L^{\langle 1,1\rangle}$ on $(0, \infty)$. Using the inequality (4.11), we have

$$
u\left(V^{\langle i i\rangle}(u)\right)^{\prime}=u \times \sum_{k=0}^{\infty} \frac{\tilde{F}^{\prime}\left(\phi^{k}(u)\right)}{\prod_{j=0}^{k} \tilde{F}\left(\phi^{j}(u)\right)} \leq \frac{a^{2}}{(a-1)^{2}} \leq 2
$$

if $a \geq 2+\sqrt{2}$. Therefore, we have also the concavity.
Next, observing

$$
\left(F^{k}\left(\phi^{\langle 1,1\rangle}(u)\right)\right)^{\prime}=\frac{1}{F^{k-1}\left(\phi^{\langle 1,1\rangle}(u)\right) \cdots F^{1}\left(\phi^{\langle 1,1\rangle}(u)\right) F^{0}\left(\phi^{\langle 1,1\rangle}(u)\right) \tilde{F}^{\langle i i\rangle}(u)}
$$

we let

$$
\phi^{\langle 1,2\rangle}(u)=a+\int_{a}^{u} \frac{1}{\tilde{F}\left(\phi^{\langle 1,1\rangle}(t)\right) \tilde{F}^{\langle i i\rangle}(t)} d t
$$

In general, for $m \geq 2$, let

$$
\phi^{\langle 1, m\rangle}(u)=\phi_{a}^{\langle 1, m\rangle}(u)=a+\int_{a}^{u} \frac{d t}{\left(\prod_{j=1}^{m-1} \tilde{F}\left(\phi^{\langle 1, j\rangle}(t)\right)\right) \tilde{F}^{\langle i i\rangle}(t)} \quad(u \geq a)
$$

Here, in the same way as Proposition 3.1, we have $\phi^{\langle 1, m+1\rangle}(u)=\phi\left(\phi^{\langle 1, m\rangle}(u)\right)$. That is,

$$
\prod_{j=1}^{m-1} \tilde{F}\left(\phi^{\langle 1, j\rangle}(t)\right)=\prod_{j=1}^{m-1} \tilde{F}\left(\phi^{j-1}\left(\phi^{\langle 1,1\rangle}(t)\right)\right)=\prod_{j=0}^{m-2} \tilde{F}\left(\phi^{j}\left(\phi^{\langle 1,1\rangle}(t)\right)\right)
$$

Then, we let

$$
\phi^{\langle 2,1\rangle}(u)=\phi_{a}^{\langle 2,1\rangle}(u)=a+\int_{a}^{u} \frac{d t}{\tilde{F}^{\langle i i\rangle}\left(\phi^{\langle 1,1\rangle}(t)\right) \tilde{F}^{\langle i i\rangle}(t)} \quad(u \geq a) .
$$

Further, in general, we have

$$
\begin{equation*}
\phi^{\langle\ell, m+1\rangle}(u)=\phi\left(\phi^{\langle\ell, m\rangle}(u)\right), \quad \ell, m \in \mathbb{N} \tag{5.4}
\end{equation*}
$$

in the same way as Proposition 3.1. So we give the following definition.
Definition 5.3. For $a>1$ and $\ell \in \mathbb{N}$, let

$$
\phi^{\langle\ell, 1\rangle}(u)=\phi_{a}^{\langle\ell, 1\rangle}(u)=a+\int_{a}^{u} \frac{d t}{\prod_{j=0}^{\ell-1} \tilde{F}^{\langle i i\rangle}\left(\phi^{\langle j, 1\rangle}(t)\right)} \quad(u \geq a)
$$

where $\phi^{\langle 0,1\rangle}(u)=u$. For $m \in \mathbb{N}$ with $m \geq 2$,

$$
\begin{aligned}
\phi^{\langle\ell, m\rangle}(u) & =\phi_{a}^{\langle\ell, m\rangle}(u) \\
& =a+\int_{a}^{u} \frac{d t}{\left(\prod_{k=1}^{m-1} \tilde{F}\left(\phi^{\langle\ell, k\rangle}(t)\right)\right)\left(\prod_{j=0}^{\ell-1} \tilde{F}^{\langle i i\rangle}\left(\phi^{\langle j, 1\rangle}(t)\right)\right)} \quad(u \geq a) .
\end{aligned}
$$

Definition 5.4. For $a>1$ and $\ell, m \in \mathbb{N}$, let

$$
L^{\langle\ell, m\rangle}(r)=L_{a}^{\langle\ell, m\rangle}(r)=\phi^{\langle\ell, m\rangle}(a r)-a \quad(r \geq 1)
$$

and let

$$
L^{\langle\ell, m\rangle}(r)=-L^{\langle\ell, m\rangle}(1 / r) \quad(0<r<1) .
$$

Moreover, in the same way as Proposition 3.1 again, we have

$$
\begin{equation*}
\phi^{\langle 1,1\rangle}\left(\phi^{\langle\ell, 1\rangle}(u)\right)=\phi^{\langle\ell+1,1\rangle}(u), \quad \ell \in \mathbb{N} . \tag{5.5}
\end{equation*}
$$

By this property and (5.4) we see that $\phi^{\langle\ell, m\rangle} \in \mathcal{F}_{a}$ and $L^{\langle\ell, m\rangle} \in \mathcal{L}$ for each $\ell, m \in \mathbb{N}$, and that there exists a positive constant c such that, for large r,

$$
\begin{aligned}
L^{\langle\ell+1,1\rangle}(r) & \leq L^{\langle 1,1\rangle}\left(L^{\langle\ell, 1\rangle}(r)\right) \leq c L^{\langle\ell+1,1\rangle}(r), \\
L^{\langle\ell, m+1\rangle}(r) & \leq L\left(L^{\langle\ell, m\rangle}(r)\right) \leq c L^{\langle\ell, m+1\rangle}(r)
\end{aligned}
$$

Combining these inequalities and the relations (2.14) and (5.3), we have the following.
Corollary 5.2. For each $\ell, m \in \mathbb{N}$,

$$
\lim _{r \rightarrow 0} \frac{L^{\langle\ell, 1\rangle}(r)}{L^{\langle\ell-1, m\rangle}(1 / r)}=\lim _{r \rightarrow \infty} \frac{L^{\langle\ell, 1\rangle}(r)}{L^{\langle\ell-1, m\rangle}(r)}=0
$$

and, for each $\ell, m, n \in \mathbb{N}$

$$
\lim _{r \rightarrow 0} \frac{L^{\langle\ell, m+1\rangle}(r)}{\log ^{n} L^{\langle\ell, m\rangle}(1 / r)}=\lim _{r \rightarrow \infty} \frac{L^{\langle\ell, m+1\rangle}(r)}{\log ^{n} L^{\langle\ell, m\rangle}(r)}=0
$$

Let $\psi(u)=\phi^{\langle 1,1\rangle}(u)$. Then $\phi^{\langle\ell, 1\rangle}(u)=\psi^{\ell}(u)$ by (5.5). Using this relation, we give the following definition.

Definition 5.5. For $a>1$, let

$$
\tilde{F}^{\langle i i i\rangle}(u)=a \prod_{m=0}^{\infty} \frac{\tilde{F}^{\langle i i\rangle}\left(\psi^{m}(u)\right)}{a} \quad(u \geq a)
$$

and let

$$
\phi^{\langle 1,1,1\rangle}(u)=\phi_{a}^{\langle 1,1,1\rangle}(u)=a+\int_{a}^{u} \frac{d t}{\tilde{F}^{\langle i i i\rangle}(t)} \quad(u \geq a)
$$

Definition 5.6. For $a>1$, let

$$
L^{\langle 1,1,1\rangle}(r)=L_{a}^{\langle 1,1,1\rangle}(r)=\phi^{\langle 1,1,1\rangle}(a r)-a=\int_{a}^{a r} \frac{d t}{\tilde{F}^{\langle i i i\rangle}(t)} \quad(r \geq 1)
$$

and let

$$
L^{\langle 1,1,1\rangle}(r)=-L^{\langle 1,1,1\rangle}(1 / r)=-\int_{a}^{a / r} \frac{d t}{\tilde{F}^{\langle i i i\rangle}(t)} \quad(0<r<1) .
$$

In this way, we can construct more and more slowly increasing functions such that $L^{\langle k, \ell, m\rangle}, L^{\langle 1,1,1,1\rangle}, L^{\langle j, k, \ell, m\rangle}$, and so on.

Acknowledgment The authors wish to express their deep thanks to the referee for his/her very careful reading and valuable comments. The second author was partially supported by Grant-in-Aid for Scientific Research (C), No. 20540153 and No. 24540157, Japan Society for the Promotion of Science. The third author was partially supported by Grant-in-Aid for Scientific Research (C), No. 20540167 and No. 24540159, Japan Society for the Promotion of Science

References

[1] W. Ackermann, Zum Hilbertschen Aufbau der reellen Zahlen, Math. Ann., 99 (1928), 118-133.
[2] H. Ando and T. Horiuchi, Missing terms in the weighted Hardy-Sobolev inequalities and its application, J. Math. Kyoto Univ., to appear.
[3] H. Ando, T. Horiuchi and E. Nakai, Weighted Hardy inequalities with infinitely many sharp missing terms, in preparation.
[4] A. Detalla, T. Horiuchi and H. Ando, Sharp remainder terms of Hardy-Sobolev inequalities Math. J. Ibaraki Univ., 37 (2005), 39-52.
[5] R. L. Goodstein, Transfinite ordinals in recursive number theory, J. Symbolic Logic 12 (1947), 123-129.
[6] P. St-Amant, Number theories, Int. J. Algebra 4 (2010), 959-994.

Communicated by Masatoshi Fujii

Hiroshi Ando
Department of Mathematics
Ibaraki University
Mito, Ibaraki 310-8512, Japan
hando@mx.ibaraki.ac.jp

Toshio Horiuchi
Department of Mathematics
Ibaraki University
Mito, Ibaraki 310-8512, Japan
horiuchi@mx.ibaraki.ac.jp

Eiichi Nakai
Department of Mathematics
Ibaraki University
Mito, Ibaraki 310-8512, Japan
enakai@mx.ibaraki.ac.jp

