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CONSTRUCTION OF SLOWLY INCREASING FUNCTIONS

HirosHI ANDO, TOSHIO HORIUCHI AND EIICHI NAKAI

Received March 30, 2012

ABSTRACT. We construct a continuous and bijective function L : (0, 00) — (—o0, 00)
which is increasing slower than any nth iterate of logarithmic function. Further, we
construct a function which is increasing slower than any nth iterate of L. Using our
method, we can construct more and more slowly increasing functions.

1 Introduction In this paper we construct a very slowly increasing function, namely, we
construct a continuous and strictly increasing function L : (0, 00) — (—00, 00) such that

lim L(r) = —o0, L(1)=0, lim L(r) = oo,

r—0 r—00

and

L L
limn(ir):hm (Z) =0 foreachneN={1,2,---},
r—0log"(1/r) r—oclog"r

where log” r = r and log" r = log(log" ' r), n € N. While the logarithmic function has

the property logr™ = nlogr, the function L(r) has the following property: There exists a

positive constant ¢ such that, for large r,

L(r) < L(exp(r)) < cL(r).

Further, letting L™ (r) = L(r), we construct continuous and strictly increasing functions
L) 2 (0,00) — (—00,00), m > 2, such that

lim L™ (r) = —00, L™ (1) =0, lim L™ (r) =00

r—0 7—00

(m+1) (m+1)
L Lim

im ———— 7 fym =) _ 0 for each m,n € N.
T.I_I)I(l) logn L<m>(1/1") gl logn L<m> (T’) or eacn m.,n

Moreover, letting L™ (r) = L™ (r), m € N, we can construct continuous and strictly
increasing functions L™ : (0, 00) — (—00,00), £,m € N, such that

lim L™ (r) = =00, L™ (1) =0, lim L™ (r) = oo,

r—0 r—o0

(€,1) (€,1)
lim L (r) = lim L (r)

S T (1) = A, Tty =0 foreach Lm €N,

and (€ ) (¢ )
LEmFL) () LEMFLD (1)
hm—:llmizﬂ foreachﬁmnEN.
r—0 log™ L&m) (1/r)  r—oc log™ L&) (1) B
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In particular, letting L°(r) = r and L™(r) = L(L™ (r)), m € N, we have

) L<1’1>(r) . ,
}%WZTEIEOWZO foreachmEN,

since the relation L™+1(r) < L(L{™ (1)) < eL{™+1) () holds for large 7.
Using our method, we can construct more and more slowly increasing functions. More-

over, the inverse functions of them are rapidly increasing as r — oo and rapidly decreasing
to 0 as r — —oo. Let E be the inverse function of L. Then

lim L(_T) = lim exp"(r) =0 foreach n €N,
r——00 1 r—00 E(’/‘)
E(r)

where exp®(r) = r and exp™(r) = exp(exp”~1(r)), n € N.

Several functions are known as rapidly increasing functions, for example, the tetration,
the hyperoperation, Ackermann functions, etc., see [1, 5, 6]. The inverse functions of them
are slowly increasing. On our functions we can easily check their differentiability. All
of our slowly increasing functions are differentiable on (0, 00) and infinitely differentiable
except at 1, and the inverse functions of them are differentiable on (—o0, c0) and infinitely
differentiable except at 0.

In Sections 2 and 3 we state the definitions and properties of L and L™, m € N,
respectively. Then, based on the idea in Sections 2 and 3, we give the method of construction
of slowly increasing functions in Section 4, In the last section we state the definitions and
properties of L™ ¢ m e N, and more slowly increasing functions. Our idea comes from
the study of missing terms of Hardy-Sobolev inequalities [2, 3, 4].

2 Construction of L(r) First we define two sets of functions.

Definition 2.1. Let £ be the set of all continuous, increasing and bijective functions f
from (0, 00) to (—o0, c0) satisfying

lim f(r) = —oco, f(1)=0, lim f(r)=oc.

r—0 r—00

For example, the logarithmic function logr is in L.

Definition 2.2. For a > 1, let F, be the set of all continuous, increasing and bijective
functions from [a, c0) to itself.

If f € F,, then f(a) = a and lim f(u) = co. For a function f € F,, let f%(u) = u and

fE(u) = f(f*1(u)), k € N. Then f* is also in F,.
We define a function F' € F, as

(2.1) F(u) = F,(u) =a—loga+logu (u>a).

Then the relation

(2.2) (F*(w)’

holds. That is,

(2.3) F*(u) :“‘L/a FE=1(t) - FY(t)FO(t)
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Lot
(2.4) (n(r) = F¥(ar) —a = / FT .C.Zim(t)FO(t) (r>1),

and let

| - e 0<r <D,
Then £, € £ and

(2.6) )y By o cach ke N

im
r=01ogh(1/r) oo loghr

To construct the limit function of ¢, as k — oo, we use the integral

v dt
2.
@7 | m e
with exchanging

FFIt)  FU(t) FO(t)

FF=L(t)... FY(t)F°(t) for

Then we can show that the limit exists. This is our main idea.

Definition 2.3. For a > 1, let

~ ~ > k u
(2.8) F(u) = a(u):aHFCE ) (u > a),
k=0
and let
(2.9) d(u) = Po(u) =a+ /“ Ftt) dt (u>a).

The convergence of the infinite product in (2.8) will be proven later. Note that, if a = 1,
then the infinite product in (2.8) diverges, see Remark 4.1.

Definition 2.4. For a > 1, let

(2.10) L(r) = La(r) = (ar) — a = / Ftt) it (r>1),
and let

a/r
(2.11) L(r) = —L(1/r) = _/ Ftt) dt (0<r<1),

where F' and ¢ are as in (2.8) and (2.9), respectively.
Then we have the following.

Theorem 2.1. Let a > 1.
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(i) The function F is in Fy, infinitely differentiable and has the following expression:

(2.12) F(u) =exp(V(u)), V(u)=loga+ /“ (Z M) dt.
@ \k=0 llj=0

d\" F
Further, () — is bounded for each k € {0} UN.
du Ia

(ii) The function ¢ is in F,, infinitely differentiable and concave on [a,c0).

(iii) For each n € N,

=0.

. B(u)
(2.13) A )

(iv) The function L is in L, differentiable on (0,00), infinitely differentiable except at 1,
and, concave on [1,00), Moreover, if a > 2, then L is concave on (0, 00).
(v) For eachn € N,

L L
(2.14) lim — 20 2O
r—0log"(1/r)  r—oclog™r

(vi) Forr > exp(a),
L(r) < L(exp(r)) < (1 4+ a)L(r).

We will prove the theorem above in more general form in Section 4.
By (iv) in Theorem 2.1, L is bijective from (0, 00) to (—00, 00).

Definition 2.5. Let E : (—o0,00) — (0,00) be the inverse function of L.
Then by Theorem 2.1 we have the following:

Corollary 2.2. The function E is continuous and strictly increasing and has the following
properties:

(1) TEI_nOOE(r) =0, E0)=1, lim E(r)=occ.

T—00

(ii) The function E is convex on [0,00), differentiable on (—oo,00) and infinitely differ-
entiable except at 0. If a > 2, then E is conver on (—00,00).

i) nm SR gy, et
( ) 7_L_Oo Elr) 7.1_,00 E(T)
(iv) E(r) <exp(E(r)) < E((1+a)r) forr > L(exp(a)).

Proof. (i), (ii) and (
0 < L(s) < log"'(s

=0 for eachn € N.

—~

iv) follows from the theorem immediately. Since —L(s) = L(1/s) and
) for large s > 0,

n(_ L n(log™ !
o< tm CPNCT) 0L et )
r——00 E(r) 5—00 E(fL(s)) S$—00 S
and _
exp"(r) _ . exp"(L(s)) exp” (log™* (s))
0< lim = — 2 < lim ———= 7,
o E(r)  sew B(L(s) smox s

These show (iii). O
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3 Construction of L™ (r) To construct more slowly increasing function, we first give
a simple observation. By the relation (2.2) and the definition of ¢ we have

1
FrE=Y(g(u)) - FY((u)) FO(¢(u) E (u)

(F*(¢(w) =

That is,

s [ dt o
F¥(¢(u)) +/a FE=1(g(t)) - FY((t))FO(¢(£)) F ()

Then, as the limit of F*(¢(u)), we let

Similarly, we have

Fk (2) w)) = _ _ ,
) = @) PP W) PO (@) Few)Fw

and

2 (y)) = dt
i a+/ FE=1(g@) (1)) - FY(¢'2)(8)) FO(¢) (1)) F (1)) F (1)
So we define ¢{™ and L™ as the following:

Definition 3.1. For a > 1 and m € N, let

v dt

(3.1) o (u) = 6™ (u) = a + / eyl UL
o TI7%y F(o9) (1))

where ¢ (u) = u and F is as in (2.8).

Note that ¢{) is the same as ¢ defined by (2.9).
Definition 3.2. For ¢ > 1 and m € N, let
L (r) = L™ (r) = o™ (ar —a—/ (r>1),
| ¢<J (1))
and let
L™ (r)y = =L (1/r) = / (0<r<1),
[[iZe F(eY2(1))

where F and ¢{™ are as in (2.8) and (3.1), respectively.

Proposition 3.1. The function ¢\ coincides with ¢™, m € N, and there exists a positive
constant ¢ such that, for large r,

(3.2) LD (1) < LILY™ () < LM+ ().
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Proof. Using the relation (¢{™ (t)) = H;':()l Fl(gb(j)(t))’ we have
vt ERCLRI0)] e ds
(m+1) = =/ = dt = X
ST ML R ) e F) L7

This shows that ¢(™ = ¢™. Moreover, the equality ¢tV (u) = ¢(¢™ (u)) means
L+ (r) = L(1 + L™ (r)/a). By the increasingness and the concavity of L, we have
(3.2). O

By Proposition 3.1 and (v) in Theorem 2.1 we have the following:

Corollary 3.2. For each m € N, the function ¢‘™ is in F,, infinitely differentiable and
concave on [a,00). The function L™ is in L, differentiable on (0,00), infinitely differen-
tiable except at 1, and, concave on [1,00). Moreover, if a > an,, then L{™) s concave on
(0,00), where ap, is in [2,2 +\/2) and satisfies the equation

For each m,n € N,

L<m+1>(7") . L<m+1>(’f‘) 0

3.3 lim ——————
(3:3) r=0 log" L™ (1/r)  r—oo log™ L{m)(r)

We will prove the corollary above in Section 4.
Since L™ € £, L{™ is bijective from (0, 00) to (—o0,c0).

Definition 3.3. For m € N, let E{™ : (—o00,00) — (0, 00) be the inverse function of L{™.
Then by Proposition 3.1 and Corollary 3.2 we have the following:

Corollary 3.3. For each m € N, the function E\™ is continuous and strictly increasing
and has the following properties:
(i) lim E™(r)=0, E™(0)=1, lim EM™(r)=cc.
(ii) The function ES™ is convex on [0,00), differentiable on (—oo,00) and infinitely dif-
ferentiable except at 0. If a > ap,, then E{™ is convex on (—00,00).

E{m) n(_ Bim) n
(iii) lim B (exp™(=1)) = lim BT (exp™(r)) =0 for eachn € N.

r——00 Wm('r) r—00 E(m+1>(r)
(iv) There exists a positive constant ¢ such that, for large v, E™ (E(r)) < EM¥(r) <
E™ (E(cr)).

4 Method of construction of slowly increasing functions To construct the limit
function of L{"™ as m — oo, we extend Theorem 2.1 to general form. First, we set, for
ferF,

ar a/r
(4.1) Ly(r)= f(z) (r>1), Lf(r):f/ fCZ) (0<r<).
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Theorem 4.1. Fora > 1, let f and g be in F, and satisfy the relation

dt

(4.2) flu)=a+ /u oL

/

E
Assume that g is infinitely differentiable and that (;L) % is bounded for each k € {0}UN.
Let

[e%s) ku u
(4.3) h(u)zanw, <p(u)=a—|—/ At (u>a).

Then we have the following:

(i) The function h is in Fq, infinitely differentiable and has the following expression:

4.4 h(u) =exp(v(u)), v(u)=Iloga ' Oogl(fk(t”)dt.
@4 hw = explo(). o) ~loga+ | <;§H§_og(fj(u»

d\"n
Further, (d) " is bounded for each k € {0} UN.
u

(ii) The function ¢ is in F,, infinitely differentiable and concave on [a,o0).

(iii) For each m € N,

(4.5) Jim_ Jfl((“u)) =

(iv) The function Ly, is in L, differentiable on (0,00), infinitely differentiable except at 1,
and, concave on [1,00). Moreover, if uv'(u) < 2 (u > a), then Ly is concave on
(0, 00).

(v) Let gn(u) = H;L:_Ol 9(f7(u)), n € N. Then L, isin L for eachn € N and

. Lp(r) .
(4.6) lim = lim
r=0 L, (r)  r=o0 Ly, (r)

=0.

(vi) Let L;* be the inverse function of Ly. Then, forr > L;'(a),
(4.7) Li(r) < Lp(Ly'(r) < (14 a)Ly(r).

Proof of (i). We first prove that the infinite product in (4.3) converges and that h has the
expression (4.4). From the relation (4.2) it follows that

()

B = F (=N (F=1()) = M (W)
(fF () = (@) (" (w) 9(F1(w)

Then we have the relation

(4.8) (f(u) =
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Let

Then

vn —|—/v

loga+/ (Zlogg ) dt

k=0
[t
k=0 j Og fj( ))

where we use the relation (4.8). Since g(u) > a and 0 < ¢'(u)/g(u) < ¢4 for some positive

constant cg,
~ g > a)
,;)HJ og(fj( )~ gza’“ S

Then the sum converges uniformly and the limit function v(u) exists such that

v(u) = lim v,(u) =loga ! Oog/(fk(t))>d
(w) = Jim_vn(u) = log */a <,§Hf_og(ff(t)) t

This shows that v is continuous and strictly increasing and that the infinite product in (4.3)
converges to exp(v(u)). That is, h(u) = exp(v(u)) which is also continuous and strictly
increasing. Further, h is bijective from [a, 00) to itself, since

=loga+

xiwzﬂu)em as u — 0o.

Hence h € F,.
Moreover, we have

W) o0 e~ g
h<(u>)”(“)z( gzak:%ﬁ

k=0 Hg 09 (f I(
J g/ d k+1
Similarly, from the boundedness of =, 0 < j <k, we see that | — v is
du g du

bounded. Therefore, h is infinitely differentiable and all derivatives of h’/h is bounded. O

Proof of (ii). Since h is in F, and infinitely differentiable, ¢ is strictly increasing and in-
finitely differentiable. To prove ¢ € F, we show that ¢(u) — oo as u — oo. Choose
Up € [a,00) such that f™(u,) = 2a. Then

ﬁ g(f’“éun)) _ 9" wa)) | g () g(f" 2 ()

Q
s
s
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which is independent of n, and, for ¢t € [a, Up),

- g(f’“(t)) = g(f’“(un))
Hk (;3 4 (1)) % C,

Hence, by the relation (4.8),

Un dt a’— 1 anfl N - a”
o) —a= [ 3052 G [ e = e~ = &

2

for each n > 1. Combining this and the strictly increasingness of ¢, we have
lim (u) = co.
u—0o0
From the expression (4.4) it follows that

o/ (u) = % — exp(—v(u) > 0, ¢ (u) = —v'(u) exp(—v(w)) < 0.

)
Hence ¢ is concave.
Proof of (iii). For t € [a, c0),
h(t) —a H g(f (t)) > aH g(f (t)) _ ain Hg(fk(t)),
k=0

k=0 k=0

and

plu) —a= o [ s = U - ),
a h(t) [0 9( f’“( )
That is, 0 < @(u)/f" 1 (u) < 2a™ for large u. From the relation (4.2) it follows that
O<M=g+l/ i—>0 as u — 00.
U u o uf, g(t)
Hence f"*1(u)/f™(u) — 0 as u — oo. Therefore, we have (4.5).

O

Proof of (iv). Since Ly(r) = ¢(ar) — a (r > 1), the result in (ii) implies L, € L, the
concavity of Lj, on [1,00), and infinitely differentiability on (0,1) U (1, 00). Moreover, from

. / _ . ! _
im Ly (r) = TEIII}FO Ly(r) =1,

it follows that Ly is differentiable on (0, c0).
If wv'(u) <2 (u > a), then, for 0 <r < 1,

(La(r)) = (=Ln(1/r)) = (—p(a/r) + a) = W/S/T) _ anp(;;(a/r)) S0,
and /
(Ln(r)" — aexp(—v(a/r) LTI 22

Therefore, L), is decreasing on (0, 00). That is, Ly, is concave on (0, 00).

_ (aexp(—v <.

' (a/r))>'
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Proof of (v). From the relation (4.8) it follows that L, (r) = f"(ar) —a (r > 1) and
Ly, (r)=—=f"(a/r)+a (0 <r <1). Hence Ly (r) is in £ for each n € N. The property
(4.6) is a direct consequence of (4.5). O

ar dt ardt
Lg(r):/ ﬁﬁ/ EST

it follows that r < L_'(r) (r > 1). Hence the first inequality holds.
Next we show the second inequality. Since L4(t) = f(at) —a < f(at) (t > 1), for
Lg (t) 2 a,

Proof of (vi). From

o(an)h(Ly(1)) < g(at)h(f(at)) = o(f*(at))a [ L)

k=0

= ah(at).

Observing L' (r) > 1 for r > 0, we have, for r > L (a),

Ln(L, ' (r)) < Lu(L, *(ar))

aL;l(a'r) 1
—dt
/a h(t)
aL;l(a) 1 aL;l(ar) 1
—dt + / —dt
/a h(t) aLgz'(a) h(t)
aL;l(a) 1 L;l(ar) a
= —dt + / dt
/a h(t) Lyl Nlat)

ar 4 Lg_l(ar) a2
?lhm“*ﬂﬁ@gWW%wﬂt
:(1+a)/ %dt:(lﬁ-a)Lh(T).

This is the second inequality. O

Proof of Theorem 2.1. In Theorem 4.1, if f(u) = a —loga + logu and g(u) = u, then we
have Theorem 2.1 immediately. Only for the concavity of L on (0,00), we need to check
that uV’(u) < 2, where V is as in (2.12). Actually,

oo

1 1 1
e . SIS
im0 [j—o 7 (u) Y=Y =

since F(u) =u and F7(u) > a, j € N. O

(4.9) uV'(u) = u x

Remark 4.1. In (2.1) if we take a = 1, then F(u) = Fi(u) = 1 + logu. In this case
limy o0 FF(u) = 1 for all u > 1, since the graph of y = 1 + logz is concave and touches
the line y = z at the point (1,1) in the plane. However, the infinite product [[;=, FF(u)
diverges for all u > 1. Actually, letting

Viu(u) = log (H Ff(U)) = log Ff (w),
k=0 k=0
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we have

Valw) = [ Viwar= [ (o rtw) ar= [ (anlm)) "
1 L k=0 ! =071

k=0

If there exists u > 1 such that the product H?:o FJ(u) converges to some constant ¢, > 1,
then it also converges to some constant ¢; € [1,¢,] for ¢t € [1,u]. This implies that the sum
in the integral sign diverges for ¢t € [1,u] and that V,(u) diverges, which contradicts the
convergence of the product.

Proof of Corollary 3.2. By Proposition 3.1 we have ¢{(™ = ¢™. So the properties of ¢{™
and L{™ follow from the property of ¢ € F, except for the concavity of L{™ on (0, 00).
To check the concavity, we note that
m—1 ~
(¢™)"(u) _ T F'(¢* ()

@YW~ T P ()
and
F'(u) , > 1 11 1
4.10 = =Vi(u) = _— < = — <
(4.10) F(u) “ ,;Hf:on(U)_“;;)aj_afl

Then we can show

= F(6F(w) a® 1
() “ kZ:O [T F(¢(w) =la-1p (1 am)'

Actually, using (4.9), (4.10) and F(u) = u x [[52, % > u, we have
1

F'(¢* (u))

) T F u) F(p(w) — F(u) = F(o () [T;2) F(#7(u))
<uV/(w) + V/(6(w) + 30 V(6 () 1y
k=2
a 1 =1 a? 1
Sa—1+a—1+ a—lak—l_(a—1)2<1_am>

and

pe gy = (AT

a(¢™)'(a/r) (’” F'(¢"(a/r)) _2>
0

rd = =0 F(¢(a/r))
a(¢m2;(a/7“) ((a i o (1 B C;n) 3 2) <

IN
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if @ > a,,. This shows the concavity on (0,1), and hence the concavity on (0, 00) because
of the differentiability at 1 and the concavity on (0,1) U (1,00). Finally, the relation (3.3)
follows from (2.14) and (3.2). O

5 Construction of L™ (r) In this section, by using Theorem 4.1, we construct more
slowly increasing functions.

Definition 5.1. For a > 1, let

(1) P —a [T T (45 0),
m=0

and let

(5.2) ¢“Wm=¢9%w=a+/uﬁf@ (u>a),

where F and ¢ are as in (2.8) and (2.9), respectively.

Definition 5.2. For a > 1, let

ar dt
LD () = LD (r) = ¢85 (ar —a—/ = r>1),
()= L8N =) —a= [ 2l 2
and let
L“Wﬂ——UUNUﬂ——/WT~ﬁ 0<r<1)
o F) ’

where F(%) and ¢! are as in (5.1) and (5.2), respectively.
Then we have the following:
Theorem 5.1. Leta > 1.

(i) The function FY s in F,, infinitely differentiable, and has the following expression:

w [} ik
) (u) = exp(V<m (u)), A (u) =loga +/ (Z r%) dt
@ \k=0 llj=0

k ~ .
d F(u) /
) ( ) is bounded for each k € {0} UN.

Further, (du )

(ii) The function ¢VV is in F,, infinitely differentiable and concave on [a, 00).

(iii) For each n € N,
(1,1)
im &
u—oo " (u)
(iv) The function L“Y is in L, differentiable on (0,00), infinitely differentiable except
at 1, and, concave on [1,00). Moreover, if a > 2 + /2, then LMY is concave on
(0, 00).
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(v) For eachn € N,

LoNG) L)
(5:3) W T ) A T

(vi) Forr > E(a),
LV () < LEY(E(r)) < (14 a) L5V (r).

219

Proof. By the definition (2.9) and Theorem 2.1 the assumptions in Theorem 4.1 hold with

h = F and ¢ = ¢'"1) . Therefore, we have the conclusion except for the concavity of L{%:

n (0,00). Using the inequality (4.11), we have

[e'e] =00k 9
u(V @y =ux Y Oy
X%HL@W@)(%@

ifa>2+ 2. Therefore, we have also the concavity.

Next, observing

(P00 ()’ = :

PR30 (w)) - FL (000 () FO(H10) () F 9 (1)

9

we let
1

(1,2) () — ‘
¢ (u)—a+/a F(¢<171>(t))13<ii>(t)dt'

In general, for m > 2, let

Lm) () = 0™ (4) = a ’ i
P (u) = ¢g™ (u) +/a (I F(oa(e))) B e)

Here, in the same way as Proposition 3.1, we have ¢‘1" 41 (u) = ¢(¢5™) (u)). That is,

— j ni—[ Fpi! ¢<11 ni—[ 11> (1))

Jj=1 J=1 Jj=0
Then, we let

¢V (w) = oY (u) = a + /u Flii) (

(u>a).

dt
S () F0) (1)

Further, in general, we have
(54) oUmH (u) = p(¢1" (w), £,m €N,
in the same way as Proposition 3.1. So we give the following definition.
Definition 5.3. For a > 1 and £ € N, let
dt

6 (u) = 9 (u _“+/'H£1F"(JU@» (u> a),

where %1 (u) = u. For m € N with m > 2,

¢! (u) = 9™ (u)

“ dt
:a+ll( TR @) (T Foonm)

=0

1)
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Definition 5.4. For a > 1 and /,m € N, let
L™ () = LE™ (r) = ™ (ar) —a  (r > 1),

and let
LEM (py = —LE™ (1 /1) (0 <7 < 1).

Moreover, in the same way as Proposition 3.1 again, we have
(5.5) o (@ () = ¢!V (), LeN.

By this property and (5.4) we see that ¢“™ € F, and L{“™ € L for each ¢,m € N, and
that there exists a positive constant ¢ such that, for large r,

L<Z+1,1>(T) < L(l,l)(LM,l)(r)) < CL<£+1’1>(7”),
LEMT () < LLE™ (1)) < LG (1),

Combining these inequalities and the relations (2.14) and (5.3), we have the following.

Corollary 5.2. For each ¢,m € N,

, L&D () . LEN(p)
Ly LETm) (1)) R Ay ) 0,
and, for each £,m,n € N
L(E,m+l> L(Z,m+1>
) gy B0

lim ———~~2 —
o log" L&) (1/r)  r—oc log™ L&) (1)

Let 1(u) = ¢ (u). Then {61 (u) = ¢*(u) by (5.5). Using this relation, we give the
following definition.

Definition 5.5. For a > 1, let

P ) = [T T ()
m=0

and let J
“ t
(L11) () = (1D (g :a+/ _d s
S ) = V) =at [l

~—

Definition 5.6. For a > 1, let

ar dt
LAY () — LD () — gL (g 7a:/ _ r>1),
()= L) = 600 an) —a= [ i 02 )
and let
LA (p) = —LOLD (1) = —/W A <.
o P (g)

In this way, we can construct more and more slowly increasing functions such that
L(k,@,m>’ L<1:171;1>, L(j,k,é,m>7 and so on.
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