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CONSTRUCTION OF SLOWLY INCREASING FUNCTIONS
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Abstract. We construct a continuous and bijective function L : (0,∞) → (−∞,∞)
which is increasing slower than any nth iterate of logarithmic function. Further, we
construct a function which is increasing slower than any nth iterate of L. Using our
method, we can construct more and more slowly increasing functions.

1 Introduction In this paper we construct a very slowly increasing function, namely, we
construct a continuous and strictly increasing function L : (0,∞) → (−∞,∞) such that

lim
r→0

L(r) = −∞, L(1) = 0, lim
r→∞

L(r) = ∞,

and

lim
r→0

L(r)
logn(1/r)

= lim
r→∞

L(r)
logn r

= 0 for each n ∈ N = {1, 2, · · · },

where log0 r = r and logn r = log(logn−1 r), n ∈ N. While the logarithmic function has
the property log rn = n log r, the function L(r) has the following property: There exists a
positive constant c such that, for large r,

L(r) ≤ L(exp(r)) ≤ cL(r).

Further, letting L〈1〉(r) = L(r), we construct continuous and strictly increasing functions
L〈m〉 : (0,∞) → (−∞,∞), m ≥ 2, such that

lim
r→0

L〈m〉(r) = −∞, L〈m〉(1) = 0, lim
r→∞

L〈m〉(r) = ∞

and

lim
r→0

L〈m+1〉(r)
logn L〈m〉(1/r)

= lim
r→∞

L〈m+1〉(r)
logn L〈m〉(r)

= 0 for each m, n ∈ N.

Moreover, letting L〈0,m〉(r) = L〈m〉(r), m ∈ N, we can construct continuous and strictly
increasing functions L〈`,m〉 : (0,∞) → (−∞,∞), `,m ∈ N, such that

lim
r→0

L〈`,m〉(r) = −∞, L〈`,m〉(1) = 0, lim
r→∞

L〈`,m〉(r) = ∞,

lim
r→0

L〈`,1〉(r)
L〈`−1,m〉(1/r)

= lim
r→∞

L〈`,1〉(r)
L〈`−1,m〉(r)

= 0 for each `,m ∈ N,

and

lim
r→0

L〈`,m+1〉(r)
logn L〈`,m〉(1/r)

= lim
r→∞

L〈`,m+1〉(r)
logn L〈`,m〉(r)

= 0 for each `,m, n ∈ N.
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In particular, letting L0(r) = r and Lm(r) = L(Lm−1(r)), m ∈ N, we have

lim
r→0

L〈1,1〉(r)
Lm(1/r)

= lim
r→∞

L〈1,1〉(r)
Lm(r)

= 0 for each m ∈ N,

since the relation L〈m+1〉(r) ≤ L(L〈m〉(r)) ≤ cL〈m+1〉(r) holds for large r.
Using our method, we can construct more and more slowly increasing functions. More-

over, the inverse functions of them are rapidly increasing as r → ∞ and rapidly decreasing
to 0 as r → −∞. Let E be the inverse function of L. Then

lim
r→−∞

expn(−r)
1

E(r)

= lim
r→∞

expn(r)
E(r)

= 0 for each n ∈ N,

where exp0(r) = r and expn(r) = exp(expn−1(r)), n ∈ N.
Several functions are known as rapidly increasing functions, for example, the tetration,

the hyperoperation, Ackermann functions, etc., see [1, 5, 6]. The inverse functions of them
are slowly increasing. On our functions we can easily check their differentiability. All
of our slowly increasing functions are differentiable on (0,∞) and infinitely differentiable
except at 1, and the inverse functions of them are differentiable on (−∞,∞) and infinitely
differentiable except at 0.

In Sections 2 and 3 we state the definitions and properties of L and L〈m〉, m ∈ N,
respectively. Then, based on the idea in Sections 2 and 3, we give the method of construction
of slowly increasing functions in Section 4, In the last section we state the definitions and
properties of L〈`,m〉, `,m ∈ N, and more slowly increasing functions. Our idea comes from
the study of missing terms of Hardy-Sobolev inequalities [2, 3, 4].

2 Construction of L(r) First we define two sets of functions.

Definition 2.1. Let L be the set of all continuous, increasing and bijective functions f
from (0,∞) to (−∞,∞) satisfying

lim
r→0

f(r) = −∞, f(1) = 0, lim
r→∞

f(r) = ∞.

For example, the logarithmic function log r is in L.

Definition 2.2. For a > 1, let Fa be the set of all continuous, increasing and bijective
functions from [a,∞) to itself.

If f ∈ Fa, then f(a) = a and lim
u→∞

f(u) = ∞. For a function f ∈ Fa, let f0(u) = u and

fk(u) = f(fk−1(u)), k ∈ N. Then fk is also in Fa.
We define a function F ∈ Fa as

(2.1) F (u) = Fa(u) = a − log a + log u (u ≥ a).

Then the relation

(2.2) (F k(u))′ =
1

F k−1(u) · · ·F 1(u)F 0(u)

holds. That is,

(2.3) F k(u) = a +
∫ u

a

dt

F k−1(t) · · ·F 1(t)F 0(t)
.
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Let

`k(r) = F k(ar) − a =
∫ ar

a

dt

F k−1(t) · · ·F 1(t)F 0(t)
(r ≥ 1),(2.4)

and let

`k(r) = −`k(1/r) = −
∫ a/r

a

dt

F k−1(t) · · ·F 1(t)F 0(t)
(0 < r < 1).(2.5)

Then `k ∈ L and

(2.6) lim
r→0

`k(r)
logk(1/r)

= lim
r→∞

`k(r)
logk r

= 1 for each k ∈ N.

To construct the limit function of `k as k → ∞, we use the integral

(2.7)
∫ u

a

dt

F k−1(t) · · ·F 1(t)F 0(t)

with exchanging

F k−1(t) · · ·F 1(t)F 0(t) for
F k−1(t)

a
· · · F 1(t)

a

F 0(t)
a

.

Then we can show that the limit exists. This is our main idea.

Definition 2.3. For a > 1, let

(2.8) F̃ (u) = F̃a(u) = a
∞∏

k=0

F k(u)
a

(u ≥ a),

and let

(2.9) φ(u) = φa(u) = a +
∫ u

a

1
F̃ (t)

dt (u ≥ a).

The convergence of the infinite product in (2.8) will be proven later. Note that, if a = 1,
then the infinite product in (2.8) diverges, see Remark 4.1.

Definition 2.4. For a > 1, let

(2.10) L(r) = La(r) = φ(ar) − a =
∫ ar

a

1
F̃ (t)

dt (r ≥ 1),

and let

(2.11) L(r) = −L(1/r) = −
∫ a/r

a

1
F̃ (t)

dt (0 < r < 1),

where F̃ and φ are as in (2.8) and (2.9), respectively.

Then we have the following.

Theorem 2.1. Let a > 1.
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(i) The function F̃ is in Fa, infinitely differentiable and has the following expression:

(2.12) F̃ (u) = exp(V (u)), V (u) = log a +
∫ u

a

( ∞∑
k=0

1∏k
j=0 F j(t)

)
dt.

Further,
(

d

du

)k
F̃ ′

F̃
is bounded for each k ∈ {0} ∪ N.

(ii) The function φ is in Fa, infinitely differentiable and concave on [a,∞).

(iii) For each n ∈ N,

(2.13) lim
u→∞

φ(u)
Fn(u)

= 0.

(iv) The function L is in L, differentiable on (0,∞), infinitely differentiable except at 1,
and, concave on [1,∞), Moreover, if a ≥ 2, then L is concave on (0,∞).

(v) For each n ∈ N,

(2.14) lim
r→0

L(r)
logn(1/r)

= lim
r→∞

L(r)
logn r

= 0.

(vi) For r ≥ exp(a),
L(r) ≤ L(exp(r)) ≤ (1 + a)L(r).

We will prove the theorem above in more general form in Section 4.
By (iv) in Theorem 2.1, L is bijective from (0,∞) to (−∞,∞).

Definition 2.5. Let E : (−∞,∞) → (0,∞) be the inverse function of L.

Then by Theorem 2.1 we have the following:

Corollary 2.2. The function E is continuous and strictly increasing and has the following
properties:

(i) lim
r→−∞

E(r) = 0, E(0) = 1, lim
r→∞

E(r) = ∞.

(ii) The function E is convex on [0,∞), differentiable on (−∞,∞) and infinitely differ-
entiable except at 0. If a ≥ 2, then E is convex on (−∞,∞).

(iii) lim
r→−∞

expn(−r)
1

E(r)

= lim
r→∞

expn(r)
E(r)

= 0 for each n ∈ N.

(iv) E(r) ≤ exp(E(r)) ≤ E((1 + a)r) for r ≥ L(exp(a)).

Proof. (i), (ii) and (iv) follows from the theorem immediately. Since −L(s) = L(1/s) and
0 ≤ L(s) ≤ logn+1(s) for large s > 0,

0 ≤ lim
r→−∞

expn(−r)
1

E(r)

= lim
s→∞

expn(L(s))
1

E(−L(s))

≤ lim
s→∞

expn(logn+1(s))
s

= 0,

and

0 ≤ lim
r→∞

expn(r)
E(r)

= lim
s→∞

expn(L(s))
E(L(s))

≤ lim
s→∞

expn(logn+1(s))
s

= 0.

These show (iii).
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3 Construction of L〈m〉(r) To construct more slowly increasing function, we first give
a simple observation. By the relation (2.2) and the definition of φ we have

(F k(φ(u)))′ =
1

F k−1(φ(u)) · · ·F 1(φ(u))F 0(φ(u))F̃ (u)
.

That is,

F k(φ(u)) = a +
∫ u

a

dt

F k−1(φ(t)) · · ·F 1(φ(t))F 0(φ(t))F̃ (t)
.

Then, as the limit of F k(φ(u)), we let

φ〈2〉(u) = a +
∫ u

a

dt

F̃ (φ(t))F̃ (t)
(u ≥ a).

Similarly, we have

(F k(φ〈2〉(u)))′ =
1

F k−1(φ〈2〉(u)) · · ·F 1(φ〈2〉(u))F 0(φ〈2〉(u))F̃ (φ(u))F̃ (u)
,

and

F k(φ〈2〉(u)) = a +
∫ u

a

dt

F k−1(φ〈2〉(t)) · · ·F 1(φ〈2〉(t))F 0(φ〈2〉(t))F̃ (φ(t))F̃ (t)
.

So we define φ〈m〉 and L〈m〉 as the following:

Definition 3.1. For a > 1 and m ∈ N, let

(3.1) φ〈m〉(u) = φ〈m〉
a (u) = a +

∫ u

a

dt∏m−1
j=0 F̃ (φ〈j〉(t))

(u ≥ a),

where φ〈0〉(u) = u and F̃ is as in (2.8).

Note that φ〈1〉 is the same as φ defined by (2.9).

Definition 3.2. For a > 1 and m ∈ N, let

L〈m〉(r) = L〈m〉
a (r) = φ〈m〉(ar) − a =

∫ ar

a

dt∏m−1
j=0 F̃ (φ〈j〉(t))

(r ≥ 1),

and let

L〈m〉(r) = −L〈m〉(1/r) = −
∫ a/r

a

dt∏m−1
j=0 F̃ (φ〈j〉(t))

(0 < r < 1),

where F̃ and φ〈m〉 are as in (2.8) and (3.1), respectively.

Proposition 3.1. The function φ〈m〉 coincides with φm, m ∈ N, and there exists a positive
constant c such that, for large r,

(3.2) L〈m+1〉(r) ≤ L(L〈m〉(r)) ≤ cL〈m+1〉(r).
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Proof. Using the relation (φ〈m〉(t))′ =
1∏m−1

j=0 F̃ (φ〈j〉(t))
, we have

φ〈m+1〉(u) − a =
∫ u

a

dt∏m
j=0 F̃ (φ〈j〉(t))

=
∫ u

a

(φ〈m〉(t))′

F̃ (φ〈m〉(t))
dt =

∫ φ〈m〉(u)

a

ds

F̃ (s)

= φ(φ〈m〉(u)) − a.

This shows that φ〈m〉 = φm. Moreover, the equality φ〈m+1〉(u) = φ(φ〈m〉(u)) means
L〈m+1〉(r) = L(1 + L〈m〉(r)/a). By the increasingness and the concavity of L, we have
(3.2).

By Proposition 3.1 and (v) in Theorem 2.1 we have the following:

Corollary 3.2. For each m ∈ N, the function φ〈m〉 is in Fa, infinitely differentiable and
concave on [a,∞). The function L〈m〉 is in L, differentiable on (0,∞), infinitely differen-
tiable except at 1, and, concave on [1,∞). Moreover, if a ≥ am, then L〈m〉 is concave on
(0,∞), where am is in [2, 2 +

√
2) and satisfies the equation

am
2

(am − 1)2

(
1 − 1

am
m

)
= 2.

For each m,n ∈ N,

(3.3) lim
r→0

L〈m+1〉(r)
logn L〈m〉(1/r)

= lim
r→∞

L〈m+1〉(r)
logn L〈m〉(r)

= 0.

We will prove the corollary above in Section 4.
Since L〈m〉 ∈ L, L〈m〉 is bijective from (0,∞) to (−∞,∞).

Definition 3.3. For m ∈ N, let E〈m〉 : (−∞,∞) → (0,∞) be the inverse function of L〈m〉.

Then by Proposition 3.1 and Corollary 3.2 we have the following:

Corollary 3.3. For each m ∈ N, the function E〈m〉 is continuous and strictly increasing
and has the following properties:

(i) lim
r→−∞

E〈m〉(r) = 0, E〈m〉(0) = 1, lim
r→∞

E〈m〉(r) = ∞.

(ii) The function E〈m〉 is convex on [0,∞), differentiable on (−∞,∞) and infinitely dif-
ferentiable except at 0. If a ≥ am, then E〈m〉 is convex on (−∞,∞).

(iii) lim
r→−∞

E〈m〉(expn(−r))
1

E〈m+1〉(r)

= lim
r→∞

E〈m〉(expn(r))
E〈m+1〉(r)

= 0 for each n ∈ N.

(iv) There exists a positive constant c such that, for large r, E〈m〉(E(r)) ≤ E〈m+1〉(r) ≤
E〈m〉(E(cr)).

4 Method of construction of slowly increasing functions To construct the limit
function of L〈m〉 as m → ∞, we extend Theorem 2.1 to general form. First, we set, for
f ∈ Fa,

(4.1) Lf (r) =
∫ ar

a

dt

f(t)
(r ≥ 1), Lf (r) = −

∫ a/r

a

dt

f(t)
(0 < r < 1).
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Theorem 4.1. For a > 1, let f and g be in Fa and satisfy the relation

(4.2) f(u) = a +
∫ u

a

dt

g(t)
.

Assume that g is infinitely differentiable and that
(

d

du

)k
g′

g
is bounded for each k ∈ {0}∪N.

Let

(4.3) h(u) = a
∞∏

k=0

g(fk(u))
a

, ϕ(u) = a +
∫ u

a

dt

h(t)
(u ≥ a).

Then we have the following:

(i) The function h is in Fa, infinitely differentiable and has the following expression:

(4.4) h(u) = exp(v(u)), v(u) = log a +
∫ u

a

( ∞∑
k=0

g′(fk(t))∏k
j=0 g(f j(u))

)
dt.

Further,
(

d

du

)k
h′

h
is bounded for each k ∈ {0} ∪ N.

(ii) The function ϕ is in Fa, infinitely differentiable and concave on [a,∞).

(iii) For each n ∈ N,

(4.5) lim
u→∞

ϕ(u)
fn(u)

= 0.

(iv) The function Lh is in L, differentiable on (0,∞), infinitely differentiable except at 1,
and, concave on [1,∞). Moreover, if uv′(u) ≤ 2 (u ≥ a), then Lh is concave on
(0,∞).

(v) Let gn(u) =
∏n−1

j=0 g(f j(u)), n ∈ N. Then Lgn is in L for each n ∈ N and

(4.6) lim
r→0

Lh(r)
Lgn(r)

= lim
r→∞

Lh(r)
Lgn(r)

= 0.

(vi) Let L−1
g be the inverse function of Lg. Then, for r ≥ L−1

g (a),

(4.7) Lh(r) ≤ Lh(L−1
g (r)) ≤ (1 + a)Lh(r).

Proof of (i). We first prove that the infinite product in (4.3) converges and that h has the
expression (4.4). From the relation (4.2) it follows that

(fk(u))′ = f ′(fk−1(u))(fk−1(u))′ =
(fk−1(u))′

g(fk−1(u))
.

Then we have the relation

(4.8) (fk(u))′ =
1∏k−1

j=0 g(f j(u))
(u ≥ a), k ∈ N.
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Let

vn(u) = log

(
a

n∏
k=0

g(fk(u))
a

)
= log a +

n∑
k=0

log
g(fk(u))

a
.

Then

vn(u) = vn(a) +
∫ u

a

v′
n(t) dt

= log a +
∫ u

a

(
n∑

k=0

log
g(fk(t))

a

)′

dt

= log a +
∫ u

a

(
n∑

k=0

g′(fk(t))∏k
j=0 g(f j(t))

)
dt,

where we use the relation (4.8). Since g(u) ≥ a and 0 ≤ g′(u)/g(u) ≤ cg for some positive
constant cg,

n∑
k=0

g′(fk(t))∏k
j=0 g(f j(t))

≤ cg

n∑
k=0

1
ak

(t ≥ a).

Then the sum converges uniformly and the limit function v(u) exists such that

v(u) = lim
n→∞

vn(u) = log a +
∫ u

a

( ∞∑
k=0

g′(fk(t))∏k
j=0 g(f j(t))

)
dt.

This shows that v is continuous and strictly increasing and that the infinite product in (4.3)
converges to exp(v(u)). That is, h(u) = exp(v(u)) which is also continuous and strictly
increasing. Further, h is bijective from [a,∞) to itself, since

h(u) = g(u) ×
∞∑

k=1

g(fk(u))
a

≥ g(u) → ∞ as u → ∞.

Hence h ∈ Fa.
Moreover, we have

h′(u)
h(u)

= v′(u) =
∞∑

k=0

g′(fk(u))∏k
j=0 g(f j(u))

≤ cg

∞∑
k=0

1
ak

= cg
a

a − 1
.

Similarly, from the boundedness of
(

d

du

)j
g′

g
, 0 ≤ j ≤ k, we see that

(
d

du

)k+1

v is

bounded. Therefore, h is infinitely differentiable and all derivatives of h′/h is bounded.

Proof of (ii). Since h is in Fa and infinitely differentiable, ϕ is strictly increasing and in-
finitely differentiable. To prove ϕ ∈ Fa we show that ϕ(u) → ∞ as u → ∞. Choose
un ∈ [a,∞) such that fn(un) = 2a. Then

∞∏
k=n

g(fk(un))
a

=
g(fn(un))

a
× g(fn+1(un))

a
× g(fn+2(un))

a
× · · ·

=
g(2a)

a
× g(f(2a))

a
× g(f2(2a))

a
× · · ·

=
h(2a)

a
= Ca,
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which is independent of n, and, for t ∈ [a, un],

h(t) = a
n−1∏
k=0

g(fk(t))
a

∞∏
k=n

g(fk(t))
a

≤ a

n−1∏
k=0

g(fk(t))
a

∞∏
k=n

g(fk(un))
a

=
∏n−1

k=0 g(fk(t))
an−1

× Ca.

Hence, by the relation (4.8),

ϕ(un) − a =
∫ un

a

dt

h(t)
≥ an−1

Ca

∫ un

a

dt∏n−1
k=0 g(fk(t))

=
an−1

Ca
(fn(un) − a) =

an

Ca
.

for each n ≥ 1. Combining this and the strictly increasingness of ϕ, we have

lim
u→∞

ϕ(u) = ∞.

From the expression (4.4) it follows that

ϕ′(u) =
1

h(u)
= exp(−v(u)) > 0, ϕ′′(u) = −v′(u) exp(−v(u)) < 0.

Hence ϕ is concave.

Proof of (iii). For t ∈ [a,∞),

h(t) = a

∞∏
k=0

g(fk(t))
a

≥ a

n∏
k=0

g(fk(t))
a

=
1
an

n∏
k=0

g(fk(t)),

and
ϕ(u) − a =

∫ u

a

dt

h(t)
≤ an

∫ u

a

dt∏n
k=0 g(fk(t))

= an(fn+1(u) − a).

That is, 0 < ϕ(u)/fn+1(u) ≤ 2an for large u. From the relation (4.2) it follows that

0 <
f(u)

u
=

a

u
+

1
u

∫ u

a

dt

g(t)
→ 0 as u → ∞.

Hence fn+1(u)/fn(u) → 0 as u → ∞. Therefore, we have (4.5).

Proof of (iv). Since Lh(r) = ϕ(ar) − a (r ≥ 1), the result in (ii) implies Lh ∈ L, the
concavity of Lh on [1,∞), and infinitely differentiability on (0, 1) ∪ (1,∞). Moreover, from

lim
r→1−0

L′
h(r) = lim

r→1+0
L′

h(r) = 1,

it follows that Lh is differentiable on (0,∞).
If uv′(u) ≤ 2 (u ≥ a), then, for 0 < r < 1,

(Lh(r))′ = (−Lh(1/r))′ = (−ϕ(a/r) + a)′ =
aϕ′(a/r)

r2
=

a exp(−v(a/r))
r2

> 0,

and

(Lh(r))′′ =
(

a exp(−v(a/r))
r2

)′

= a exp(−v(a/r))
(a/r)v′(a/r) − 2

r3
≤ 0.

Therefore, L′
h is decreasing on (0,∞). That is, Lh is concave on (0,∞).
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Proof of (v). From the relation (4.8) it follows that Lgn
(r) = fn(ar) − a (r ≥ 1) and

Lgn(r) = −fn(a/r) + a (0 < r < 1). Hence Lgn(r) is in L for each n ∈ N. The property
(4.6) is a direct consequence of (4.5).

Proof of (vi). From

Lg(r) =
∫ ar

a

dt

g(t)
≤

∫ ar

a

dt

a
≤ r

it follows that r ≤ L−1
g (r) (r ≥ 1). Hence the first inequality holds.

Next we show the second inequality. Since Lg(t) = f(at) − a ≤ f(at) (t ≥ 1), for
Lg(t) ≥ a,

g(at)h(Lg(t)) ≤ g(at)h(f(at)) = g(f0(at))a
∞∏

k=0

g(fk(f(at)))
a

= ah(at).

Observing L−1
g (r) > 1 for r > 0, we have, for r ≥ L−1

g (a),

Lh(L−1
g (r)) ≤ Lh(L−1

g (ar))

=
∫ aL−1

g (ar)

a

1
h(t)

dt

=
∫ aL−1

g (a)

a

1
h(t)

dt +
∫ aL−1

g (ar)

aL−1
g (a)

1
h(t)

dt

=
∫ aL−1

g (a)

a

1
h(t)

dt +
∫ L−1

g (ar)

L−1
g (a)

a

h(at)
dt

≤
∫ ar

a

1
h(t)

dt +
∫ L−1

g (ar)

L−1
g (a)

a2

g(at)h(Lg(t))
dt

= (1 + a)
∫ ar

a

1
h(t)

dt = (1 + a)Lh(r).

This is the second inequality.

Proof of Theorem 2.1. In Theorem 4.1, if f(u) = a − log a + log u and g(u) = u, then we
have Theorem 2.1 immediately. Only for the concavity of L on (0,∞), we need to check
that uV ′(u) ≤ 2, where V is as in (2.12). Actually,

(4.9) uV ′(u) = u ×
∞∑

k=0

1∏k
j=0 F j(u)

≤ u × 1
u

∞∑
k=0

1
ak

=
a

a − 1
≤ 2, if a ≥ 2,

since F 0(u) = u and F j(u) ≥ a, j ∈ N.

Remark 4.1. In (2.1) if we take a = 1, then F (u) = F1(u) = 1 + log u. In this case
limk→∞ F k

1 (u) = 1 for all u ≥ 1, since the graph of y = 1 + log x is concave and touches
the line y = x at the point (1, 1) in the plane. However, the infinite product

∏∞
k=0 F k

1 (u)
diverges for all u > 1. Actually, letting

Vn(u) = log

(
n∏

k=0

F k
1 (u)

)
=

n∑
k=0

log F k
1 (u),
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we have

Vn(u) =
∫ u

1

V ′
n(t) dt =

∫ u

1

n∑
k=0

(
log F k

1 (t)
)′

dt =
∫ u

1

(
n∑

k=0

1∏k
j=0 F j

1 (t)

)
dt.

If there exists u > 1 such that the product
∏k

j=0 F j
1 (u) converges to some constant cu ≥ 1,

then it also converges to some constant ct ∈ [1, cu] for t ∈ [1, u]. This implies that the sum
in the integral sign diverges for t ∈ [1, u] and that Vn(u) diverges, which contradicts the
convergence of the product.

Proof of Corollary 3.2. By Proposition 3.1 we have φ〈m〉 = φm. So the properties of φ〈m〉

and L〈m〉 follow from the property of φ ∈ Fa except for the concavity of L〈m〉 on (0,∞).
To check the concavity, we note that

(φm)′′(u)
(φm)′(u)

= −
m−1∑
k=0

F̃ ′(φk(u))∏k
j=0 F̃ (φj(u))

,

and

(4.10)
F̃ ′(u)
F̃ (u)

= V ′(u) =
∞∑

k=0

1∏k
j=0 F j(u)

≤ 1
u

∞∑
k=0

1
aj

≤ 1
a − 1

.

Then we can show

(4.11) u ×
m−1∑
k=0

F̃ ′(φk(u))∏k
j=0 F̃ (φj(u))

≤ a2

(a − 1)2

(
1 − 1

am

)
.

Actually, using (4.9), (4.10) and F̃ (u) = u ×
∏∞

k=1
F k(u)

a ≥ u, we have

u ×
m−1∑
k=0

F̃ ′(φk(u))∏k
j=0 F̃ (φj(u))

=
uF̃ ′(u)
F̃ (u)

+
u

F̃ (u)
F̃ ′(φ(u))
F̃ (φ(u))

+
u

F̃ (u)

m−1∑
k=2

F̃ ′(φk(u))

F̃ (φk(u))
∏k−1

j=1 F̃ (φj(u))

≤ uV ′(u) + V ′(φ(u)) +
m−1∑
k=2

V ′(φk(u))
1

ak−1

≤ a

a − 1
+

1
a − 1

+
m−1∑
k=2

1
a − 1

1
ak−1

=
a2

(a − 1)2

(
1 − 1

am

)
.

Then, for 0 < r < 1,

(L〈m〉(r))′ = (−L〈m〉(1/r))′ =
a(φm)′(a/r)

r2
> 0,

and

(L〈m〉(r))′′ =
(

a(φm)′(a/r)
r2

)′

=
a(φm)′(a/r)

r3

(
a

r

m−1∑
k=0

F̃ ′(φk(a/r))∏k
j=0 F̃ (φj(a/r))

− 2

)

≤ a(φm)′(a/r)
r3

(
a2

(a − 1)2

(
1 − 1

am

)
− 2

)
≤ 0,
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if a ≥ am. This shows the concavity on (0, 1), and hence the concavity on (0,∞) because
of the differentiability at 1 and the concavity on (0, 1) ∪ (1,∞). Finally, the relation (3.3)
follows from (2.14) and (3.2).

5 Construction of L〈`,m〉(r) In this section, by using Theorem 4.1, we construct more
slowly increasing functions.

Definition 5.1. For a > 1, let

(5.1) F̃ 〈ii〉(u) = a

∞∏
m=0

F̃ (φm(u))
a

(u ≥ a),

and let

(5.2) φ〈1,1〉(u) = φ〈1,1〉
a (u) = a +

∫ u

a

dt

F̃ 〈ii〉(t)
(u ≥ a),

where F̃ and φ are as in (2.8) and (2.9), respectively.

Definition 5.2. For a > 1, let

L〈1,1〉(r) = L〈1,1〉
a (r) = φ〈1,1〉(ar) − a =

∫ ar

a

dt

F̃ 〈ii〉(t)
(r ≥ 1),

and let

L〈1,1〉(r) = −L〈1,1〉(1/r) = −
∫ a/r

a

dt

F̃ 〈ii〉(t)
(0 < r < 1),

where F̃ 〈ii〉 and φ〈1,1〉 are as in (5.1) and (5.2), respectively.

Then we have the following:

Theorem 5.1. Let a > 1.

(i) The function F̃ 〈ii〉 is in Fa, infinitely differentiable, and has the following expression:

F̃ 〈ii〉(u) = exp(V 〈ii〉(u)), V 〈ii〉(u) = log a +
∫ u

a

( ∞∑
k=0

F̃ ′(φk(t))∏k
j=0 F̃ (φj(t))

)
dt.

Further,
(

d

du

)k (F̃ 〈ii〉)′

F̃ 〈ii〉
is bounded for each k ∈ {0} ∪ N.

(ii) The function φ〈1,1〉 is in Fa, infinitely differentiable and concave on [a,∞).

(iii) For each n ∈ N,

lim
u→∞

φ〈1,1〉(u)
φn(u)

= 0.

(iv) The function L〈1,1〉 is in L, differentiable on (0,∞), infinitely differentiable except
at 1, and, concave on [1,∞). Moreover, if a ≥ 2 +

√
2, then L〈1,1〉 is concave on

(0,∞).
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(v) For each n ∈ N,

(5.3) lim
r→0

L〈1,1〉(r)
L〈n〉(r)

= lim
r→∞

L〈1,1〉(r)
L〈n〉(r)

= 0.

(vi) For r ≥ E(a),
L〈1,1〉(r) ≤ L〈1,1〉(E(r)) ≤ (1 + a)L〈1,1〉(r).

Proof. By the definition (2.9) and Theorem 2.1 the assumptions in Theorem 4.1 hold with
h = F̃ and ϕ = φ〈1,1〉. Therefore, we have the conclusion except for the concavity of L〈1,1〉

on (0,∞). Using the inequality (4.11), we have

u(V 〈ii〉(u))′ = u ×
∞∑

k=0

F̃ ′(φk(u))∏k
j=0 F̃ (φj(u))

≤ a2

(a − 1)2
≤ 2,

if a ≥ 2 +
√

2. Therefore, we have also the concavity.

Next, observing

(F k(φ〈1,1〉(u)))′ =
1

F k−1(φ〈1,1〉(u)) · · ·F 1(φ〈1,1〉(u))F 0(φ〈1,1〉(u))F̃ 〈ii〉(u)
,

we let
φ〈1,2〉(u) = a +

∫ u

a

1
F̃ (φ〈1,1〉(t))F̃ 〈ii〉(t)

dt.

In general, for m ≥ 2, let

φ〈1,m〉(u) = φ〈1,m〉
a (u) = a +

∫ u

a

dt(∏m−1
j=1 F̃ (φ〈1,j〉(t))

)
F̃ 〈ii〉(t)

(u ≥ a).

Here, in the same way as Proposition 3.1, we have φ〈1,m+1〉(u) = φ(φ〈1,m〉(u)). That is,
m−1∏
j=1

F̃ (φ〈1,j〉(t)) =
m−1∏
j=1

F̃ (φj−1(φ〈1,1〉(t))) =
m−2∏
j=0

F̃ (φj(φ〈1,1〉(t))).

Then, we let

φ〈2,1〉(u) = φ〈2,1〉
a (u) = a +

∫ u

a

dt

F̃ 〈ii〉(φ〈1,1〉(t))F̃ 〈ii〉(t)
(u ≥ a).

Further, in general, we have

(5.4) φ〈`,m+1〉(u) = φ(φ〈`,m〉(u)), `,m ∈ N,

in the same way as Proposition 3.1. So we give the following definition.

Definition 5.3. For a > 1 and ` ∈ N, let

φ〈`,1〉(u) = φ〈`,1〉
a (u) = a +

∫ u

a

dt∏`−1
j=0 F̃ 〈ii〉(φ〈j,1〉(t))

(u ≥ a),

where φ〈0,1〉(u) = u. For m ∈ N with m ≥ 2,

φ〈`,m〉(u) = φ〈`,m〉
a (u)

= a +
∫ u

a

dt(∏m−1
k=1 F̃ (φ〈`,k〉(t))

)(∏`−1
j=0 F̃ 〈ii〉(φ〈j,1〉(t))

) (u ≥ a).
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Definition 5.4. For a > 1 and `, m ∈ N, let

L〈`,m〉(r) = L〈`,m〉
a (r) = φ〈`,m〉(ar) − a (r ≥ 1),

and let
L〈`,m〉(r) = −L〈`,m〉(1/r) (0 < r < 1).

Moreover, in the same way as Proposition 3.1 again, we have

(5.5) φ〈1,1〉(φ〈`,1〉(u)) = φ〈`+1,1〉(u), ` ∈ N.

By this property and (5.4) we see that φ〈`,m〉 ∈ Fa and L〈`,m〉 ∈ L for each `,m ∈ N, and
that there exists a positive constant c such that, for large r,

L〈`+1,1〉(r) ≤ L〈1,1〉(L〈`,1〉(r)) ≤ cL〈`+1,1〉(r),

L〈`,m+1〉(r) ≤ L(L〈`,m〉(r)) ≤ cL〈`,m+1〉(r).

Combining these inequalities and the relations (2.14) and (5.3), we have the following.

Corollary 5.2. For each `,m ∈ N,

lim
r→0

L〈`,1〉(r)
L〈`−1,m〉(1/r)

= lim
r→∞

L〈`,1〉(r)
L〈`−1,m〉(r)

= 0,

and, for each `,m, n ∈ N

lim
r→0

L〈`,m+1〉(r)
logn L〈`,m〉(1/r)

= lim
r→∞

L〈`,m+1〉(r)
logn L〈`,m〉(r)

= 0.

Let ψ(u) = φ〈1,1〉(u). Then φ〈`,1〉(u) = ψ`(u) by (5.5). Using this relation, we give the
following definition.

Definition 5.5. For a > 1, let

F̃ 〈iii〉(u) = a
∞∏

m=0

F̃ 〈ii〉(ψm(u))
a

(u ≥ a),

and let

φ〈1,1,1〉(u) = φ〈1,1,1〉
a (u) = a +

∫ u

a

dt

F̃ 〈iii〉(t)
(u ≥ a).

Definition 5.6. For a > 1, let

L〈1,1,1〉(r) = L〈1,1,1〉
a (r) = φ〈1,1,1〉(ar) − a =

∫ ar

a

dt

F̃ 〈iii〉(t)
(r ≥ 1),

and let

L〈1,1,1〉(r) = −L〈1,1,1〉(1/r) = −
∫ a/r

a

dt

F̃ 〈iii〉(t)
(0 < r < 1).

In this way, we can construct more and more slowly increasing functions such that
L〈k,`,m〉, L〈1,1,1,1〉, L〈j,k,`,m〉, and so on.
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