ON 3-VARIABLE EXTENSION FOR THE INTEGER MEAN

Jun Ichi Fujii, Masatoshi Fujii* and Akemi Matsumoto**

Received April 21, 2012

Abstract

Based on ideas of Lawson-Lim [4] and Jung-Lee-Yamazaki [2], an abstract mean on a metric space was introduced in [5]. In this paper, we discuss a typical example of such a mean on the nonnegative integers and estimate it by the usual mean.

1 Introduction. Since [1] was published, multi-variable geometric operator means have been discussed. Among them, Lawson-Lim [4] introduced abstract means on a metric space. On the other hand,computable geometric operator means was introduced in [2]. In [5], we combined these means and introduced N-means ν on a metric space, particularly as N variable extension $\nu=\mu^{(N)}$: Let μ is an abstract 2-mean in a metric space X. For a given N-tuple $\left(x_{1}, \cdots, x_{N}\right)$, let $a_{k}=a_{k}^{(0)}=x_{k}$ and

$$
a_{k}^{(n)}=\mu\left(a_{k}^{(n-1)}, a_{k+1}^{(n-1)}\right) \text { for } 1 \leqq k \leqq N-1 \quad \text { and } \quad a_{N}^{(n)}=\mu\left(a_{N}^{(n-1)}, a_{1}^{(n-1)}\right)
$$

If $\lim _{n \rightarrow \infty} a_{k}^{(n)}$ exists for all k and they coincide, say $a^{(\infty)}$, then we put $\nu\left(x_{1}, \cdots, x_{N}\right)=$ $a^{(\infty)}$, which is the N-variable extension $\mu^{(N)}$ of μ.

Here we give an example of the 3 -variable extension $\mu^{(3)}$ for the integer mean $\mu: \mathbb{N}_{0} \times$ $\mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$

$$
\mu(n, m)=\left\lfloor\frac{n+m}{2}\right\rfloor
$$

where \mathbb{N}_{0} is the nonnegative integers and \rfloor is the Gauss symbol and the metric is the usual one induced by the absolute value. Then, since the total distance

$$
d_{3}\left(a_{1}^{(n)}, a_{2}^{(n)}, a_{3}^{(n)}\right)=\max \left\{\left|a_{1}^{(n)}-a_{2}^{(n)}\right|,\left|a_{2}^{(n)}-a_{3}^{(n)}\right|,\left|a_{3}^{(n)}-a_{1}^{(n)}\right|\right\}
$$

is monotone decreasing for n, it has the 3 -variable extension $\mu^{(3)}$.
By the construction of $\mu^{(3)}$, it is clear that $\mu^{(3)}(a, b, c) \leqq \frac{a+b+c}{3}$. As we show later, the equality holds if and only if $a=b=c$. In this paper, we observe $\mu^{(3)}(a, b, c)$ in detail and estimate it by $\frac{a+b+c}{3}$.

2 Basic value of $\mu^{(3)}$. Let $f\left(n_{1}, n_{2}, n_{3}\right)=\mu^{(3)}\left(n_{1}, n_{2}, n_{3}\right)$. Then, f is a monotone nondecreasing function. Since this 3 -mean is symmetric, we may express $f\left(n_{1}, n_{2}, n_{3}\right)$ for the case $n_{1} \leqq n_{2} \leqq n_{3}$ and

$$
\begin{aligned}
f\left(n_{1}, n_{2}, n_{3}\right)=f\left(\left\lfloor\frac{n_{1}+n_{2}}{2}\right\rfloor,\left\lfloor\frac{n_{2}+n_{3}}{2}\right\rfloor\right. & \left.,\left\lfloor\frac{n_{3}+n_{1}}{2}\right\rfloor\right) \\
& =f\left(\left\lfloor\frac{n_{1}+n_{2}}{2}\right\rfloor,\left\lfloor\frac{n_{3}+n_{1}}{2}\right\rfloor,\left\lfloor\frac{n_{2}+n_{3}}{2}\right\rfloor\right) .
\end{aligned}
$$

Moreover the following simple lemma allows us that n_{1} can be assumed to be 0 :
2010 Mathematics Subject Classification. 26E60, 11H60, 30L99.
Key words and phrases. Mean, nonnegative integers, metric space.

Lemma 1. $f\left(n+n_{1}, n+n_{2}, n+n_{3}\right)=n+f\left(n_{1}, n_{2}, n_{3}\right)$.
Proof. The required formula follows from the fact that

$$
\mu\left(n+n_{k}, n+n_{j}\right)=\left\lfloor n+\frac{n_{k}+n_{j}}{2}\right\rfloor=n+\left\lfloor\frac{n_{k}+n_{j}}{2}\right\rfloor=n+\mu\left(n_{k}, n_{j}\right)
$$

where $j=k \bmod 3+1$.
First we show the case $f\left(n_{1}, n_{2}, n_{3}\right)=f\left(0,2^{m}, 2^{m}\right)$, which increases at a rate of about $2 / 3$. Here the operation // means the quotient for integers:

Lemma 2. $f\left(0,2^{2 k}, 2^{2 k}\right)=\frac{2^{2 k+1}-2}{3}$ and $f\left(0,2^{2 k+1}, 2^{2 k+1}\right)=\frac{2^{2 k+2}-1}{3}$ for $k \geqq 0$, or equivalently $f\left(0,2^{m}, 2^{m}\right)=\left(2^{m} \times 2\right) / / 3$ for all $m \geqq 0$.

Proof. Note that $f(0,1,1)=0$. For $n=2^{2 k}$ for $k \geqq 1$,

$$
\begin{aligned}
f\left(0,2^{2 k}, 2^{2 k}\right)= & f\left(2^{2 k-1}, 2^{2 k}, 2^{2 k-1}\right)=2^{2 k-1}+f\left(0,2^{2 k-1}, 0\right)=2^{2 k-1}+f\left(0,0,2^{2 k-1}\right) \\
= & 2^{2 k-1}+f\left(0,2^{2 k-2}, 2^{2 k-2}\right) \\
& \cdots=2^{2 k-1}+\cdots+2+f(0,1,1)=2 \times \frac{2^{2 k}-1}{3}=\frac{2^{2 k+1}-2}{3} .
\end{aligned}
$$

Thus it also holds for $k=0$. Lastly for $n=2^{2 k+1}$ for $k \geqq 0$, by $f(0,2,2)=1$ we have

$$
\begin{aligned}
f\left(0,2^{2 k+1}, 2^{2 k+1}\right)= & f\left(2^{2 k}, 2^{2 k+1}, 2^{2 k}\right)=f\left(2^{2 k-1}+2^{2 k}, 2^{2 k-1}+2^{2 k}, 2^{2 k}\right) \\
= & 2^{2 k}+f\left(0,2^{2 k-1}, 2^{2 k-1}\right) \\
& \cdots=2^{2 k}+\cdots+4+f(0,2,2)=4 \times \frac{2^{2 k}-1}{3}+1=\frac{2^{2 k+2}-1}{3} .
\end{aligned}
$$

Moreover we have $f\left(0,2^{m}, 2^{m}\right)=\frac{2^{m+1}-2+(m \bmod 2)}{3}=\left(2^{m} \times 2\right) / / 3$.
By Lemma 2, $f\left(0,0,2^{m}\right)$ increases at about $1 / 3$ rate:
Corollary 3. For $k \geqq 0, f\left(0,0,2^{2 k}\right)=\frac{2^{2 k}-1}{3}$ and $f\left(0,0,2^{2 k+1}\right)=\frac{2^{2 k+1}-2}{3}$, or equivalently $f\left(0,0,2^{m}\right)=\frac{2^{m}-1-(m \bmod 2)}{3}=2^{m} / / 3$ for all $m \geqq 0$.

Proof. For $k \geqq 0$, we have $f\left(0,0,2^{2 k}\right)=f\left(0,2^{2 k-1}, 2^{2 k-1}\right)=\frac{2^{2 k}-1}{3}$ and $f\left(0,0,2^{2 k+1}\right)=$ $f\left(0,2^{2 k}, 2^{2 k}\right)=\frac{2^{2 k+1}-2}{3}$.

Next we observe the special case of the form $f(0, n, n)$. To see this, note that if all 3 variables are odd, then it does not increase in the next step:

Lemma 4. $f(2 J, 2 K, 2 N)=f(2 J, 2 K, 2 N+1)$.
Proof. Since we may assume $J=0$, we have

$$
f(0,2 K, 2 N+1)-f(0,2 K, 2 N)=f(K, K+N, N)-f(K, K+N, N)=0
$$

Now we observe $f(0, n, n)$:

Proposition 5. The function $f(0, n, n)$ strictly increases only at

$$
n=2^{2 \ell+1} k-\frac{4^{\ell}-1}{3}>0
$$

for $\ell \geqq 0, k>0$. Precisely,

$$
f(0, n, n)=\sum_{\ell=0}^{L}\left(n+\frac{4^{\ell}-1}{3}\right) / / 2^{2 \ell+1}=\sum_{\ell=0}^{L}\left(2 n+\frac{2\left(4^{\ell}-1\right)}{3}\right) / / 4^{\ell+1}
$$

where $L=L(n)=\left\lfloor\log _{4} \frac{3 n-1}{5}\right\rfloor$.
Proof. Put $n_{\ell}=2^{2 \ell+1} k-\frac{4^{\ell}-1}{3}$. At $n=n_{0}=2 k$, the function $f(0, n, n)$ is increasing by

$$
f(0,2 k, 2 k)=f(k, 2 k, k)=1+f(k-1,2 k-1, k-1)=1+f(0,2 k-1,2 k-1)
$$

Since n_{ℓ} is odd for $\ell>0$, we have

$$
2 n_{\ell-1}=2^{2 \ell} k-\frac{2\left(4^{\ell-1}-1\right)}{3}=\frac{2^{2 \ell+1} k-\frac{4\left(4^{\ell-1}-1\right)}{3}}{2}=\frac{2^{2 \ell+1} k-\frac{4^{\ell}-1}{3}+1}{2}=\frac{n_{\ell}+1}{2}
$$

Suppose it is increasing at $n=n_{\ell}$. Then

$$
\begin{gathered}
f\left(0, n_{\ell+1}, n_{\ell+1}\right)=f\left(\frac{n_{\ell+1}-1}{2}, n_{\ell+1}, \frac{n_{\ell+1}-1}{2}\right)=\frac{n_{\ell+1}-1}{2}+f\left(0,0, \frac{n_{\ell+1}+1}{2}\right) \\
=\frac{n_{\ell+1}-1}{2}+f\left(0,0,2 n_{\ell}\right)=\frac{n_{\ell+1}-1}{2}+f\left(0, n_{\ell}, n_{\ell}\right)=1+\frac{n_{\ell+1}-1}{2}+f\left(0, n_{\ell}-1, n_{\ell}-1\right) \\
=1+\frac{n_{\ell+1}-1}{2}+f\left(0,0,2 n_{\ell}-2\right)=1+\frac{n_{\ell+1}-1}{2}+f\left(0,0,2 n_{\ell}-1\right) \quad(\text { by Lemma } 4) \\
=1+\frac{n_{\ell+1}-1}{2}+f\left(0,0, \frac{n_{\ell+1}+1}{2}-1\right)=1+f\left(\frac{n_{\ell+1}-1}{2}, \frac{n_{\ell+1}-1}{2}, n_{\ell+1}-1\right) \\
=1+f\left(0, n_{\ell+1}-1, n_{\ell+1}-1\right)
\end{gathered}
$$

Thus $f(0, n, n)$ is increasing at all $n_{\ell}=2^{2 \ell+1} k-\frac{4^{\ell}-1}{3}$. To obtain the upper bound of ℓ, we have $n \geqq 2^{2 \ell+1} k-\frac{4^{\ell}-1}{3}$, so that

$$
3 n-1 \geqq 6 k \times 4^{\ell}-4^{\ell}=(6 k-1) 4^{\ell} \geqq 5 \times 4^{\ell}
$$

Therefore we have $\frac{3 n-1}{5} \geqq 4^{\ell}$, that is, $L(n)=\left\lfloor\log _{4} \frac{3 n-1}{5}\right\rfloor$. Since these n_{ℓ} satisfy that $n_{\ell}+\frac{4^{\ell}-1}{3}$ divides $2^{2 \ell+1}$, we have

$$
f(0, n, n) \geqq \sum_{\ell=0}^{L}\left(n+\frac{4^{\ell}-1}{3}\right) / / 2^{2 \ell+1}
$$

The equality holds since it always holds for $n=2^{m}$ by Lemma 2: In fact, for sufficiently large m, we have $L=\left(\log _{2} 2^{m}-1\right) / / 2=(m-1) / / 2$ and

$$
m-1-2 L=m-1-2((m-1) / / 2)=(m-1) \bmod 2=(m+1) \bmod 2
$$

Therefore

$$
\begin{aligned}
f\left(0,2^{m}, 2^{m}\right) & \geqq \sum_{\ell=0}^{L}\left(2^{m}+\frac{4^{\ell}-1}{3}\right) / / 2^{2 \ell+1}=\sum_{\ell=0}^{L} 2^{m-2 \ell-1}=2^{m-2 L-1} \sum_{\ell=0}^{L} 4^{\ell} \\
& =2^{m-2 L-1} \frac{4^{L+1}-1}{3}=\frac{2^{m+1}-2^{m-1-2 L}}{3}=\frac{2^{m+1}-2^{(m+1) \bmod 2}}{3}=2^{m+1} / / 3
\end{aligned}
$$

Thus the equality holds for 2^{m} for a sufficiently large m, that is, it always holds.
Since $f(0,0,2 n)=f(0, n, n)$ and $f(0,0,2 n-1)=f(0, n-1, n-1)=f(0,0,2 n-2)$, we have only to observe the former case:
Corollary 6. The function $f(0,0, n)$ increases only at $n=2\left(2^{2 \ell+1} k-\frac{4^{\ell}-1}{3}\right)>0$ for $\ell \geqq 0, k>0$. Precisely

$$
f(0,0, n)=\sum_{\ell=0}^{L}\left(n+\frac{2\left(4^{\ell}-1\right)}{3}\right) / / 4^{\ell+1}
$$

where $L=L(n)=\left\lfloor\log _{4} \frac{3 n-2}{10}\right\rfloor$.
Proof. It suffices to obtain $L(n)$. By $n \geqq 2\left(2^{2 \ell+1} k-\frac{4^{\ell}-1}{3}\right)$, we have

$$
\frac{3 n}{2} \geqq 6 k \times 4^{\ell}-4^{\ell}+1=(6 k-1) 4^{\ell}+1 \geqq 5 \times 4^{\ell}+1
$$

It follows from $\frac{3 n-2}{2} \geqq 5 \times 4^{\ell}$ that $L(n)=\left\lfloor\log _{4} \frac{3 n-2}{10}\right\rfloor$.
Remark 1. Here we consider a function

$$
T_{\ell}(n)=\left(n+\frac{2\left(4^{\ell}-1\right)}{3}\right) / / 4^{\ell+1}
$$

It plays a central role for various formulae for f. We easily have a formula: $T_{\ell+1}(4 n-2)=$ $T_{\ell}(n)$. Moreover, since $\frac{2\left(4^{\ell}-1\right)}{3} \bmod 4=2$ for $\ell>0$, we have

$$
T_{\ell}(4 m+2)=T_{\ell}(4 m+3)=T_{\ell}(4 m+4)=T_{\ell}(4 m+5)
$$

and

$$
T_{\ell}(4 m+1)=T_{\ell}(4 m)=T_{\ell}(4 m-1)=T_{\ell}(4 m-2)
$$

for $\ell>0$.
Next we observe $f(0, k, n)$ for small k :
Lemma 7. $\quad f(0,1, n)=f(0,0, n)$.
Proof. Note that

$$
\begin{aligned}
f(0,1,4 m) & =f(0,1,4 m+1)=m+f(0,0, m)=f(0,0,4 m+1)=f(0,0,4 m) \\
f(0,1,4 m+2) & =m+f(0,0, m+1)=f(0,0,4 m+2) \\
f(0,1,4 m+3) & =m+f(0,1, m+1), \quad m+f(0,0, m+1)=f(0,0,4 m+3)
\end{aligned}
$$

So we have only to verify the case $f(0,1,4 m+3)=f(0,0,4 m+3)$, which is reduced to the equality $f(0,1, n+1)=f(0,0, n+1)$. By the above observation, we have only to verify the case $n+1=4 m+3$.

Therefore by this reduction, it suffices to show $f(0,1, k)=f(0,0, k)$ for $k=0,1,2,3$. Since $f(0,1,3)=0$, we have $f(0,1,2)=f(0,0,3)=f(0,0,2)=f(0,1,1)=f(0,0,1)=$ $f(0,0,0)=0$, so that the required equality yields.

Direct computation shows the following table for $f(0, k, n)$ where $n=4 m-j$:

k	$4 m-3$	$4 m-2$	$4 m-1$	$4 m$
2	$m-1+f(0,0, m-1)$	$m+f(0,0, m-1)$	$m+f(0,0, m-1)$	$m+f(0,0, m)$
3	$m-1+f(0,0, m)$	$m+f(0,0, m-1)$	$m+f(0,0, m)$	$m+f(0,0, m)$

Therefore we have the formulae for $f(0, k, n)$ for $k=2,3$:
In the below, the upper bounds L_{ℓ} of ℓ are slightly varied, but they are easily obtained as in the above. So we omit the upper bounds for ℓ for the sake of convenience:

Lemma 8.

$$
\begin{aligned}
& f(0,2, n)=(n+2) / / 4+\sum_{\ell \geqq 0} T_{\ell}(n / / 4) \\
& f(0,3, n)=(n+2) / / 4+\sum_{\ell \geqq 1}\left(T_{\ell}(n+1)+T_{\ell}(n-1)-T_{\ell}(n)\right)
\end{aligned}
$$

In fact, in case $n=4 m-3$, then $n-1=4(m-1)$, and hence $m-1=(n-1) / 4=$ $(n-1) / / 4=n / / 4=(n+2) / / 4$. Thereby
$f(0,2, n)=m-1+f(0,0, m-1)=(n+2) / / 4+f(0,0, n / / 4)=(n+2) / / 4+\sum_{\ell \geqq 0} T_{\ell}(n / / 4)$.
By the above remark, we have

$$
\begin{aligned}
f(0,3, n)=m-1+f(0,0, m)=(n+2) / / 4+\sum_{\ell \geqq 0} T_{\ell}((n-1) / / 4) & \\
& =(n+2) / / 4+\sum_{\ell \geqq 1} T_{\ell}(n+1) .
\end{aligned}
$$

Since $T_{\ell}(n+1)=T_{\ell}(4 m-2)$ and $T_{\ell}(n)=T_{\ell}(4 m-3)=T_{\ell}(4 m-4)=T_{\ell}(n-1)$ also by the remark, we have

$$
\begin{aligned}
& f(0,3, n)=(n+2) / / 4+\sum_{\ell \geqq 1}\left(T_{\ell}(n+1)+0\right) \\
&=(n+2) / / 4+\sum_{\ell \geqq 1}\left(T_{\ell}(n+1)+T_{\ell}(n-1)-T_{\ell}(n)\right) .
\end{aligned}
$$

3 General formulae for $\mu^{(3)}$. Under modulo 4, the values of $f(0, k, n)$ are classified as the following table:

$k \backslash n$	$4 N$	$4 N+1$	$4 N+2$	$4 N+3$
$4 K$	$K+N+f(0, K, N)$	$K+N+f(0, K, N)$	$K+N+f(0, K, N+1)$	$K+N+f(0, K, N+1)$
$4 K+1$	$K+N+f(0, K, N)$	$K+N+f(0, K, N)$	$K+N+f(0, K, N+1)$	$K+N+f(0, K+1, N+1)$
$4 K+2$	$K+N+f(0, K+1, N)$	$K+N+f(0, K+1, N)$	$K+N+1+f(0, K, N)$	$K+N+1+f(0, K, N)$
$4 K+3$	$K+N+f(0, K+1, N)$	$K+N+f(0, K+1, N+1)$	$K+N+1+f(0, K, N)$	$K+N+1+f(0, K+1, N+1)$

Summing up, we obtain the reducing formulae for $f(0, k, n)$:
Lemma 9. $f(0, k, n)=k / / 4+n / / 4+((k \bmod 4) / / 2+(n \bmod 4) / / 2) / / 2$

$$
\begin{array}{r}
+f(0, k / / 4+((k \bmod 4) / / 2+((n+2) \bmod 4) / / 2) / / 2+(k \bmod 2+n \bmod 4) / / 4 \\
n / / 4+((n \bmod 4) / / 2+((k+2) \bmod 4) / / 2) / / 2+(n \bmod 2+k \bmod 4) / / 4)
\end{array}
$$

Combining Lemmas 7-9, we can obtain any value of $f(a, b, c)$ formally. For example, we have the following values:

Example 1.

$$
\begin{aligned}
& f\left(0,2^{2 j}, n\right)=f\left(0,4^{j}, n\right)=\frac{4^{j}-1}{3}+\sum_{\ell \geqq 0} T(n, \ell) \\
& f\left(0,2^{2 j+1}, n\right)=\frac{4^{j+1}-1}{3}+\sum_{\ell \geqq 0} T\left(n-2 \times 4^{j}, \ell\right) \\
& f\left(0,3 \times 4^{j}, n\right)=4^{j}-1+T_{\ell}\left(n+2 \times 4^{j}, j\right)+\sum_{\ell=0}^{j-1} T_{\ell}(n)+\sum_{\ell \geqq j+1}\left[T_{\ell}\left(n+4^{j}\right)+T_{\ell}\left(n-4^{j}\right)-T_{\ell}(n)\right] \\
& f\left(0,3 \times 2^{2 j+1}, n\right)=2 \times 4^{j}+\sum_{\ell=0}^{j} T_{\ell}(n)+\sum_{\ell \geqq j+1}\left[T_{\ell}\left(n-4^{j+1}\right)+T_{\ell}\left(n-2 \times 4^{j+1}\right)-T_{\ell}\left(n-6 \times 4^{j}\right)\right] \\
& f\left(0,2^{2 j+1}+1, n\right)=\sum_{m=0}^{j} 4^{m}+\sum_{\ell \geqq 0} T_{\ell}\left(n-2^{2 j+1}\right)+\sum_{\ell \geqq j+1}\left[T_{\ell}\left(n-\sum_{m=0}^{j} 4^{m}\right)\right. \\
& \left.-T_{\ell}\left(n-1-\sum_{m=0}^{j} 4^{m}\right)+T_{\ell}\left(n-\sum_{m=0}^{j} 4^{m}+2^{2 j+1}\right)-T_{\ell}\left(n-1-\sum_{m=0}^{j} 4^{m}+2^{2 j+1}\right)\right] \\
& f\left(0,4^{j}+1, n\right)=\sum_{m=0}^{j-1} 4^{m}+\left(n+\sum_{m=0}^{j} 4^{m}\right) / / 4^{j+1}-\left(n-1+\sum_{m=0}^{j} 4^{m}\right) / / 4^{j+1} \\
& +\left(n+\sum_{m=0}^{j} 4^{m}+4^{j}\right) / / 4^{j+1}-\left(n-1+\sum_{m=0}^{j} 4^{m}+4^{j}\right) / / 4^{j+1}+\sum_{\ell \geqq 0} T_{\ell}(n) \\
& +\sum_{\ell \geqq j+1}\left[T_{\ell}\left(n-1-\sum_{m=0}^{j-1} 4^{m}\right)-T_{\ell}\left(n-\sum_{m=0}^{j-1} 4^{m}\right)+T_{\ell}\left(n-1-\sum_{m=0}^{j} 4^{m}\right)-T_{\ell}\left(n-\sum_{m=0}^{j} 4^{m}\right)\right] \\
& f\left(0,2^{2 j+1}-1, n\right)=\sum_{m=1}^{j} 4^{m}+\sum_{\ell \geqq 0} T_{\ell}\left(n+1-2^{2 j+1}\right) \\
& +\sum_{\ell \geqq j}\left[T_{\ell}\left(n-\sum_{m=1}^{j} 4^{m}\right)-T_{\ell}\left(n-1-\sum_{m=1}^{j} 4^{m}\right)\right] \\
& f\left(0,4^{j}-1, n\right)=\sum_{m=1}^{j-1} 4^{m}+\left(n+1+\sum_{m=0}^{j-1} 4^{m}\right) / / 4^{j}-\left(n+\sum_{m=0}^{j-1} 4^{m}\right) / / 4^{j} \\
& +\sum_{\ell \geqq 0} T_{\ell}(n+1)+\sum_{\ell \geqq j}\left[T_{\ell}\left(n-\sum_{m=0}^{j-1} 4^{m}\right)-T_{\ell}\left(n+1-\sum_{m=0}^{j-1} 4^{m}\right)\right] \\
& f\left(0,2^{2 j+1}-2, n\right)=\sum_{m=1}^{j} 4^{m}+\sum_{\ell \geqq 0} T_{\ell}\left(n-2^{2 j+1}\right) \\
& +\sum_{\ell \geqq j}\left[T_{\ell}\left(n-\sum_{m=1}^{j} 4^{m}\right)-T_{\ell}\left(n-2-\sum_{m=1}^{j} 4^{m}\right)\right] \\
& f\left(0,4^{j}-2, n\right)=\sum_{m=1}^{j-1} 4^{m}+\left(n+1+\sum_{m=0}^{j-1} 4^{m}\right) / / 4^{j}-\left(n-1+\sum_{m=0}^{j-1} 4^{m}\right) / / 4^{j} \\
& +\sum_{\ell \geqq 0} T_{\ell}(n)+\sum_{\ell \geqq j}\left[T_{\ell}\left(n-1-\sum_{m=0}^{j-1} 4^{m}\right)-T_{\ell}\left(n+1-\sum_{m=0}^{j-1} 4^{m}\right)\right] .
\end{aligned}
$$

4 Estimation. Since [1] was published, multi-variable geometric operator means have been discussed. In general $f(a, b, c) \leqq \frac{a+b+c}{3}$ holds. The equality holds if and only if the variables are equal:

Theorem 10. The equality $\mu^{(3)}(a, b, c) \equiv f(a, b, c)=\frac{a+b+c}{3}$ holds if and only if $a=b=c$.
Proof. It is clear that the equation holds for $a=b=c$. Conversely suppose the equation holds. Then $f(a, b, c)$ must be equal to $f((a+b) / 2,(b+c) / 2,(c+a) / 2)$, the parities for variables are equal. Since we may assume a is 0 , then $\frac{b+c}{3}=f(0, b, c)=f(b / 2,(b+c) / 2, c / 2)$. Thereby $b / 2$ and $c / 2$ must be even. Such procedure shows that $b / 2^{k}$ and $c / 2^{k}$ are even for all $k \in \mathbb{N}$. If $x=b$ or $x=c$ is 2^{ℓ}, then $x / 2^{\ell}=1$, which is odd. Thus b and c must be 0 , so that $a=b=c$.

Next we consider the other cases. The following result is the invariant case that the sum of variables is a constant:

Theorem 11. For $m, n \in \mathbb{N}$,

$$
f\left(0,2^{m}, 2^{n}\right)=f\left(0,0,2^{m}+2^{n}\right)
$$

Proof. Since we may assume $2 \leqq m<n$ by Lemma 2 , the reduction formula shows

$$
\begin{aligned}
f\left(0,2^{m}, 2^{n}\right) & =2^{m-2}+2^{n-2}+f\left(0,2^{m-2}, 2^{n-2}\right) \\
=\cdots= & 2^{m \bmod 2} \frac{4^{m / / 2}-1}{3}+2^{n-2}+\cdots+2^{n-2(m / / 2-1)}+f\left(0,2^{m \bmod 2}, 2^{n-2(m / / 2-1)}\right) \\
& =\cdots=2^{m \bmod 2} \frac{4^{m / / 2}-1}{3}+2^{n \bmod 2} \frac{4^{n / / 2}-1}{3}+f\left(0,0,2^{n \bmod 2}\right) \\
& =\frac{2^{m}-2^{m \bmod 2}+2^{n}-2^{n \bmod 2}}{3}+0=\frac{2^{m}+2^{n}-2^{m \bmod 2}-2^{n \bmod 2}}{3} .
\end{aligned}
$$

Similar procedure as $f\left(0,0,2^{m}+2^{n}\right)=2^{m-2}+2^{n-2}+f\left(0,0,2^{m-2}+2^{n-2}\right)$ shows that it is equal to the above.

Contrastively to Lemma 4, the following formula is a non-constant case:
Theorem 12. For $m, n \geqq k+3+(k \bmod 2)$ and $k \geqq 0$,

$$
f\left(0,2^{m}, 2^{n}\right)=f\left(0,2^{m}-2^{k}, 2^{n}+2^{k}\right)+1
$$

Proof. We may assume $m<n$. For $k=0$, we have

$$
\begin{aligned}
& f\left(0,2^{m}, 2^{n}\right)-f\left(0,2^{m}-1,2^{n}+1\right) \\
& \quad=f\left(2^{m-1}, 2^{m-1}+2^{n-1}, 2^{n-1}\right)-f\left(2^{m-1}-1,2^{m-1}+2^{n-1}, 2^{n-1}\right) \\
& \quad=1+f\left(0,2^{n-1}-2^{m-1}, 2^{n-1}\right)-f\left(0,2^{n-1}-2^{m-1}+1,2^{n-1}+1\right) \\
& \quad=1+f\left(2^{n-2}-2^{m-2}, 2^{n-1}-2^{m-2}, 2^{n-2}\right)-f\left(2^{n-2}-2^{m-2}, 2^{n-1}-2^{m-2}+1,2^{n-2}\right) \\
& \quad=1+f\left(0,2^{m-2}, 2^{n-2}\right)-f\left(0,2^{m-2}, 2^{n-2}+1\right) \\
& \quad=1+f\left(0,2^{m-2}, 2^{n-2}\right)-f\left(0,2^{m-2}, 2^{n-2}\right)=1
\end{aligned}
$$

For $k>0$, putting $K=k-(k \bmod 2)$, we have

$$
\begin{aligned}
& f\left(0,2^{m}, 2^{n}\right)-f\left(0,2^{m}-2^{k}, 2^{n}+2^{k}\right) \\
& =f\left(2^{m-1}, 2^{m-1}+2^{n-1}, 2^{n-1}\right)-f\left(2^{m-1}-2^{k-1}, 2^{m-1}+2^{n-1}, 2^{n-1}+2^{k-1}\right) \\
& =f\left(2^{m-2}+2^{n-2}, 2^{m-1}+2^{n-2}, 2^{m-2}+2^{n-1}\right) \\
& \quad-f\left(2^{m-2}+2^{n-2}, 2^{m-1}+2^{n-2}-2^{k-2}, 2^{m-2}+2^{n-1}+2^{k-2}\right) \\
& =f\left(0,2^{m-2}, 2^{n-2}\right)-f\left(0,2^{m-2}-2^{k-2}, 2^{n-2}+2^{k-2}\right) \\
& =\cdots=f\left(0,2^{m-K}, 2^{n-K}\right)-f\left(0,2^{m-K}-2^{k \bmod 2}, 2^{n-K}+2^{k \bmod 2}\right)
\end{aligned}
$$

Thus it suffices to show that

$$
f\left(0,2^{m}, 2^{n}\right)-f\left(0,2^{m}-1,2^{n}+1\right)=f\left(0,2^{m}, 2^{n}\right)-f\left(0,2^{m}-2,2^{n}+2\right)=1
$$

In fact, $f\left(0,2^{m}, 2^{n}\right)-f\left(0,2^{m}-1,2^{n}+1\right)=1$ has been already shown in the above. Also

$$
\begin{aligned}
& f\left(0,2^{m}, 2^{n}\right)-f\left(0,2^{m}-2,2^{n}+2\right) \\
& =f\left(2^{m-1}, 2^{m-1}+2^{n-1}, 2^{n-1}\right)-f\left(2^{m-1}-1,2^{m-1}+2^{n-1}, 2^{n-1}+1\right) \\
& =f\left(0,2^{n-1}-2^{m-1}, 2^{n-1}\right)+1-f\left(0,2^{n-1}-2^{m-1}+2,2^{n-1}+1\right) \\
& =f\left(2^{n-2}-2^{m-2}, 2^{n-1}-2^{m-2}, 2^{n-2}\right)+1 \\
& -f\left(2^{n-2}-2^{m-2}+1,2^{n-1}-2^{m-2}+1,2^{n-2}\right) \\
& =f\left(0,2^{m-2}, 2^{n-2}\right)+1-f\left(1,2^{m-2}, 2^{n-2}+1\right) \\
& =f\left(2^{m-3}, 2^{m-3}+2^{n-3}, 2^{n-3}\right)+1-f\left(2^{m-3}, 2^{m-3}+2^{n-3}, 2^{n-3}+1\right) \\
& =f\left(2^{m-3}, 2^{m-3}+2^{n-3}, 2^{n-3}\right)+1-f\left(2^{m-3}, 2^{m-3}+2^{n-3}, 2^{n-3}\right) \quad(\text { by Lemma } 4) \\
& =1 \text {. }
\end{aligned}
$$

Remark 2. Let $k=0$. In case $(m, n)=(0,0),(3,2),(1, x),(x, 1)$ for $x \neq 1$, we have

$$
f\left(0,2^{m}, 2^{n}\right)-f\left(0,2^{m}-1,2^{n}+1\right)=0
$$

Other cases, we also have the above difference is 1 .
So we try to estimate $f(a, b, c)$ by $(a+b+c) / 3$:
Lemma 13. For $k \in \mathbb{N}$, let $0 \leqq x, y \leqq 4^{k}-1$. Then

$$
f\left(0,4^{k} K+x, 4^{k} N+y\right) \geqq \frac{4^{k}-1}{4^{k}} \cdot \frac{4^{k}(K+N)}{3}-\frac{2}{3} \cdot \frac{\left(4^{k}-1\right)^{2}}{4^{k}}+f(0, K, N)
$$

for $K, N \in \mathbb{N}$.
Proof. Since $\frac{x+y}{3} \leqq \frac{2\left(4^{k}-1\right)}{3}$, we have

$$
\begin{aligned}
f\left(0,4^{k} K+x, 4^{k} N+y\right) & \geqq f\left(0,4^{k} K, 4^{k} N\right)=4^{k-1}(K+N)+f\left(0,4^{k-1} K, 4^{k-1} N\right) \\
& =\cdots=\left(4^{k-1}+\cdots+1\right)(K+N)+f(0, K, N) \\
& =\frac{4^{k}-1}{3}(K+N)+f(0, K, N) \\
& =\frac{4^{k}-1}{4^{k}} \cdot \frac{4^{k}(K+N)+x+y}{3}-\frac{\left(4^{k}-1\right)(x+y)}{3 \times 4^{k}}+f(0, K, N) \\
& \geqq \frac{4^{k}-1}{4^{k}} \cdot \frac{4^{k}(K+N)+x+y}{3}-\frac{2}{3} \cdot \frac{\left(4^{k}-1\right)^{2}}{4^{k}}+f(0, K, N)
\end{aligned}
$$

Remark 3. If $x=y=0$ in the above theorem, then

$$
f\left(0,4^{k} K, 4^{k} N\right)=\frac{4^{k}-1}{4^{k}} \cdot \frac{4^{k}(K+N)}{3}+f(0, K, N)
$$

Corollary 14. $f(0, k, n) \geqq \frac{4^{k}-1}{4^{k}} \cdot \frac{k+n}{3}-\frac{2}{3} \cdot \frac{\left(4^{k}-1\right)^{2}}{4^{k}}$.
Theorem 15. For nonnegative integers a, b, c and k,

$$
\begin{aligned}
f(a, b, c) & \geqq \frac{4^{k}-1}{4^{k}} \cdot \frac{a+b+c}{3}+\frac{\min \{a, b, c\}}{4^{k}}-\frac{2}{3} \cdot \frac{\left(4^{k}-1\right)^{2}}{4^{k}} \\
& \geqq \frac{4^{k}-1}{4^{k}} \cdot \frac{a+b+c}{3}-\frac{2}{3} \cdot \frac{\left(4^{k}-1\right)^{2}}{4^{k}} .
\end{aligned}
$$

In addition, if $a, b, c \geqq \frac{2\left(4^{k}-1\right)^{2}}{3}$, then

$$
f(a, b, c) \geqq \frac{4^{k}-1}{4^{k}} \cdot \frac{a+b+c}{3}
$$

Proof. Since we may assume $a \leqq b, c$, the above corollary implies

$$
\begin{aligned}
f(a, b, c) & =a+f(0, b-a, c-a) \geqq a+\frac{4^{k}-1}{4^{k}} \cdot \frac{b+c-2 a}{3}-\frac{2}{3} \cdot \frac{\left(4^{k}-1\right)^{2}}{4^{k}} \\
& =\frac{4^{k}-1}{4^{k}} \cdot \frac{a+b+c}{3}+\frac{a}{4^{k}}-\frac{2}{3} \cdot \frac{\left(4^{k}-1\right)^{2}}{4^{k}} \\
& \geqq \frac{4^{k}-1}{4^{k}} \cdot \frac{a+b+c}{3}-\frac{2}{3} \cdot \frac{\left(4^{k}-1\right)^{2}}{4^{k}} .
\end{aligned}
$$

If $b, c \geqq a \geqq \frac{2\left(4^{k}-1\right)^{2}}{3}$, then

$$
\frac{a}{4^{k}} \geqq \frac{2\left(4^{k}-1\right)^{2}}{3 \times 4^{k}}
$$

so that we have the last inequality.
Remark 4. By Remark 3, if $b-a$ and $c-a$ are the multiples of 4^{k} for $b, c \geqq a$, then

$$
f(a, b, c)=\frac{4^{k}-1}{4^{k}} \cdot \frac{a+b+c}{3}+\frac{a}{4^{k}}+f(0, b-a, c-a) .
$$

Remark 5. If $a, b, c \geqq \frac{2\left(4^{k}-1\right)^{2}}{3}$, then

$$
f(a, b, c) \geqq \frac{4^{k}-1}{4^{k}} \cdot \frac{a+b+c}{3}
$$

We also pose the case for $k=1$:

Corollary 16.

$$
\begin{aligned}
f(a, b, c) & \geqq \frac{3}{4} \cdot \frac{a+b+c}{3}+\frac{\min \{a, b, c\}}{4}-\frac{3}{2} \\
& \geqq \frac{3}{4} \cdot \frac{a+b+c}{3}-\frac{3}{2} .
\end{aligned}
$$

In addition, if $a, b, c \geqq 12$, then

$$
f(a, b, c) \geqq \frac{3}{4} \cdot \frac{a+b+c}{3}
$$

Acknowledgement. The first author is partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research (C), 23540200, 2011.

References

[1] T.Ando, C.-K.Li and R.Mathias, Geometric means, Linear Alg. Appl., 385(2004), 305-334.
[2] C.Jung, H.Lee and T.Yamazaki, On a new construction of geometric mean of n-operators, Linear Alg. Appl., 431(2009), 1477-1488.
[3] F.Kubo and T.Ando, Means of positive linear operators, Math. Ann., 246(1980), 205-224.
[4] J.D.Lawson and Y.Lim, A general framework for extending means to higher orders, Colloq. Math., 113 (2008), 191-221.
[5] Y.Seo, J.I.Fujii and A.Matsumoto, n-means on a metric space, RIMS Kôkyûroku, 1753(2011), 119-126.
communicated by Masatoshi Fujii.
Department of Art and Sciences (Information Science), Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka 582-8582, Japan.

E-mail address: fujii@cc.osaka-kyoiku.ac.jp

* Department of Mathematics, Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka 582-8582, Japan.
** Nose Highschool, Nose, Toyono-Gun, Osaka 563-0122, Japan.

