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Abstract. It is well known that Boolean algebras can be defined using only
the implication and the constant 0. It is, then, natural to ask whether De
Morgan algebras can also be characterized using only a binary operation
(implication) → and a constant 0. In this paper, we give an affirmative an-
swer to this question by showing that the variety of De Morgan algebras is
term-equivalent to a variety of type {→, 0}. As a natural consequence, we
describe Kleene algebras also as a variety using only → and 0. (The afore-
mentioned result for Boolean algebras is also deduced.) As a second con-
sequence, we give a simplification of an axiom system of Bernstein (along
with a new proof for his system of axioms). We also describe De Morgan
algebras in terms of a NAND operation | and the constant 0. Motivated by
the the afore-mentioned results, we define, and initiate, the investigation
of a new variety I of algebras, called “Implication zroupoids” (I-zroupoids,
for short) and show that I satisfies the identity x′′′ → y ≈ x′ → y, where
x′ := x → 0. Furthermore, we introduce several important subvarieties
of I and establish some relationships among them; in particular, we give
several characterizations of the subvariety defined by x′′ = x. The paper
ends with some open problems for further research.

1. Introduction

It is well known that Boolean algebras can be defined using only the implication and the
constant 0. It is, then, natural to ask whether De Morgan algebras can also be characterized
using only a binary operation (implication) → and a constant 0. In this paper, we give
an affirmative answer to this question by showing that the variety of De Morgan algebras
is term-equivalent to a variety of type {→, 0}. As a natural consequence, we describe a
variety, using only an implication → and a constant 0, that is term-equivalent to the variety
of Kleene algebras. (The afore-mentioned result for Boolean algebras is also deduced.) As
a second consequence, we give a simplification of an axiom system of Bernstein (along
with a new proof for his system of axioms). We also describe De Morgan algebras and
Kleene algebras in terms of a NAND operation | and the constant 0. Motivated by the
the afore-mentioned results, we define, and initiate, the investigation of a new variety of
algebras, called “Implication zroupoids” (I-zroupoids, for short) and show that the variety
of I-zroupoids satisfies the identity: x′′′′ ≈ x′′, where x′ := x → 0. In fact, the stronger
identity: x′′′ → y ≈ x′ → y is shown to hold. Furthermore, we introduce several important
subvarieties of I and establish some relationships among them; in particular, we give several
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characterizations of the subvariety defined by x′′ = x. The paper ends with some open
problems for further research.

The results of this paper (except for sections 7 and 8) were obtained during the academic
year 2009-2010, while the author was on his sabbatical leave. The author would like to
express his appreciation to Professor Stanley Burris for a careful reading of an earlier version
of this paper.

2. Preliminaries

Definition 2.1. An algebra A = ⟨A,∨,∧,c , 0, 1⟩ is a De Morgan algebra if the

following conditions hold in A:

(1) ⟨A,∨,∧, 0, 1⟩ is a distributive lattice with 0, 1

(2) xcc ≈ x

(3) (x ∨ y)c ≈ xc ∧ yc

(4) (x ∧ y)c ≈ xc ∨ yc.

It is well known that ∨ and 1 can be defined in terms of ∧ and 0 in the above definition.
Thus we have the following equivalent definition.

Definition 2.2. An algebra A = ⟨A,∧,c , 0⟩ is a De Morgan algebra if A satisfies

the following conditions, where we define x ∨ y = (xc ∧ yc)c and 1 = 0c:

(d1) ⟨A,∨,∧, 0, 1⟩ is a distributive lattice with 0, 1

(d2) xcc ≈ x.

DM denotes the variety of De Morgan algebras.

The following definitions are also well known.

Definition 2.3. A De Morgan algebra A is a Kleene algebra if A satisfies:

(K) x ∧ xc ≤ y ∨ yc.

Let KL denote the variety of Kleene algebras.

Definition 2.4. A De Morgan algebra A is a Boolean algebra if A satisfies:

(B) x ∧ xc ≈ 0.

Let BA denote the variety of Boolean algebras.
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For n a positive integer, an n-base for a variety V is an independent set Σ of n identities
in the language of V such that Mod Σ = V.

3. De Morgan Algebras: From the usual perspective

In this section we present axiomatizations of De Morgan algebras which will be useful in
the next section. The following theorem simplifies Definition 2.2.

Theorem 3.1. Let A = ⟨A,∧,′ , 0⟩ be an algebra. Then the following are equivalent:

(1) A ∈ DM (in the sense of Definition 2.2).

(2) A satisfies the following five axioms, where we define x ∨ y = (x′ ∧ y′)′:

(a) x ∧ (x ∨ y) ≈ x

(b) x ∧ 0 ≈ 0

(c) x ∨ (y ∧ z) ≈ (x ∨ y) ∧ (x ∨ z)

(d) x′′ ≈ x

(e) x ∨ y ≈ y ∨ x.

We note here that the dual of the above theorem is also true. To prove this theorem it
suffices to prove that (2) implies (1), which will be accomplished using the following two
lemmas.

Lemma 3.2. Let A = ⟨A,∧,′ , 0⟩ be an algebra satisfying (a), (b) and (d) of condi-

tion (2) of Theorem 3.1, and let x, y ∈ A. Then A satisfies:

(i) (x ∨ y)′ = x′ ∧ y′

(ii) (x ∧ y)′ = x′ ∨ y′

(iii) x ∨ (x ∧ y) = x

(iv) x ∨ 0′ = 0′

(v) x ∧ 0′ = x

(vi) x ∨ 0 = x

(vii) x ∧ x = x

(viii) x ∨ x = x
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Proof. (i)-(iii) easily follow from the definition of ∨, and the hypothesis (d) and (a).

For (iv) use (d), (ii) and (b), while (v) follows from (iv) and (a), and (vi) is imme-

diate from (v) and (d). (vii) follows since x ∧ x = x ∧ (x ∨ 0) = x by (vi) and (a).

(viii) follows immediately from (d) and (vii). □

Lemma 3.3. Let A = ⟨A,∧,′ , 0⟩ be an algebra satisfying the condition (2) of The-

orem 3.1, and let x, y, z denote arbitrary elements of A. Then

(i) x ∧ y = y ∧ x

(ii) x ∨ (x ∨ y) = x ∨ y

(iii) (x ∨ y) ∨ z = (x ∨ y) ∨ (y ∨ z)

(iv) (x ∨ y) ∨ z = x ∨ (y ∨ z)

(v) (x ∧ y) ∧ z = x ∧ (y ∧ z).

Proof. It is clear that (i) follows from (e), (d), and Lemma 3.2(i). Using the hy-

pothesis (a), (e), (i), and Lemma 3.2(iii), we have

x ∨ (x ∨ y) = [x ∧ (x ∨ y)] ∨ (x ∨ y) = (x ∨ y) ∨ [(x ∨ y) ∧ x] = x ∨ y, proving (ii).

For (iii),

(x ∨ y) ∨ z

= (x ∨ y) ∨ [(y ∨ z) ∧ z] by (a), (i), and (e)

= [(x ∨ y) ∨ (y ∨ z)] ∧ [(x ∨ y) ∨ z] by (c)

= [(x ∨ y) ∨ (y ∨ z)] ∧ [(x ∨ y) ∨ {(x ∨ y) ∨ z} by (ii)

= (x ∨ y) ∨ [z ∨ {y ∧ (x ∨ y)}] by (c) and (e)

= (x ∨ y) ∨ (y ∨ z) by (a) and (e), proving (iii).

To prove (iv), we have

(x ∨ y) ∨ z

= (x ∨ y) ∨ (y ∨ z) by (iii)

= (z ∨ y) ∨ (y ∨ x) by (e)

= (z ∨ y) ∨ x by (iii)

= x ∨ (y ∨ z) by (e).

It is clear that (v) follows from (d), (iv), Lemma 3.2(ii), and definition of ∨. □
From the preceding lemmas we conclude (in view of of Definition 2.2) that A ∈ DM.

The other implication being trivial, the proof of Theorem 3.1 is now complete.
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Even the commutative axiom (e) in Theorem 3.1(2) can be made redundant by slightly
modifying the distributive law (c).

Theorem 3.4. The following axioms, in the language {∧,′ , 0}, form a base for the

variety of De Morgan algebras, where x ∨ y := (x′ ∧ y′)′:

(a) x ∧ (x ∨ y) ≈ x

(b) x ∧ 0 ≈ 0

(c′) x ∨ (y ∧ z) ≈ (x ∨ y) ∧ (z ∨ x)

(d) x′′ ≈ x.

Since (a), (b), (c’) and (d) of Theorem 3.4 clearly hold in the 4-element subdirectly
irreducible De Morgan algebra, they hold in every De Morgan algebra. So, we only need to
prove the converse. Thus, to complete the proof of Theorem 3.4, it suffices to show (c) and
(e) of Theorem 3.1 hold. The following lemma aids us in achieving this goal.

Lemma 3.5. Let A = ⟨A,∧,′ , 0⟩ be an algebra satisfying the axioms of Theorem

3.4. Let x, y, z denote arbitrary elements of A. Then

(i) (x ∧ y) ∨ (0′ ∧ x) = x

(ii) 0′ ∧ x = x

(iii) x ∨ y = y ∨ x.

Proof. First, observe that Lemma 3.2 holds in A.

For (i),

(x ∧ y) ∨ (0′ ∧ x)

= [(x ∧ y)′ ∧ (0′ ∧ x)′]′

= [(x′ ∨ y′) ∧ (0 ∨ x′)]′ by Lemma 3.2(ii) and (d)

= [x′ ∨ (y′ ∧ 0)]′ by (c′)

= (x′ ∨ 0)′ by (b)

= x′′ by Lemma 3.2(vi)

= x by (d).

Next, we prove (ii):

0′ ∧ x

= 0′ ∧ [x ∨ (x ∧ y)] by Lemma 3.2(iii)

= [(x ∧ y) ∨ 0′] ∧ [x ∨ (x ∧ y)] by Lemma 3.2(iv)
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= (x ∧ y) ∨ (0′ ∧ x) by (c’)

= x by (i).

Finally,

x ∨ y

= x ∨ (0′ ∧ y) by (ii)

= (x ∨ 0′) ∧ (y ∨ x) by (c’)

= 0′ ∧ (y ∨ x) by Lemma 3.2(iv)

= y ∨ x by (ii), proving (iii). □

Thus (e) holds in A. Since (c) is immediate from (c′) and (e), we conclude from Theorem
3.1 that A is a De Morgan algebra, which completes the proof of Theorem 3.4.

4. De Morgan Algebras: From a New Perspective

We shall now cast De Morgan algebras as a variety of type {→, 0}, where → is binary,
and 0 is a constant symbol. For this we need to make the following definition.

Definition 4.1. An algebra A = ⟨A,→, 0⟩ is a DM→-algebra if A satisfies the

following axioms, where x′ = x → 0:

(I) (x → y) → z ≈ [(z′ → x) → (y → z)′]′

(J) (x → y) → x ≈ x.

Let DM→ denote the variety of DM→-algebras.

The following theorem shows that the variety of De Morgan algebras can be characterized
in the language {→, 0}, as claimed in the Introduction.

Theorem 4.2. The variety DM is term-equivalent to the variety DM→. More

precisely,

(a) For A ∈ DM, let A→ be the algebra ⟨A,→, 0⟩ where → is defined by x →

y = (x ∧ yc)c. Then A→ ∈ DM→.

(b) For A ∈ DM→, let A∗ be the algebra ⟨A,∧,c , 0⟩ such that x∧y := (x → y′)′,

where x′ := x → 0, and xc := x′. Then A∗ ∈DM.

(c) If A ∈ DM, then (A→)∗ = A.

(d) If A ∈ DM→, then (A∗)→ = A.
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Proof. (a): Let A = ⟨A,∧,c , 0⟩ be a De Morgan algebra (in the sense of Definition

2.2), and let A→ be the algebra as in (a) of the above theorem. Let x, y, z denote

arbitrary elements of A→. First, note that x′ = x → 0 = (x∧0c)c = xc. Now, (x →

y) → z = [(x∧yc)c∧ zc]c = z∨ (x∧yc) = (z∨x)∧ (yc∨ z) = [(z′ → x) → (y → z)′]′,

which proves (I). Next, (x → y) → x = [(x ∧ yc)c ∧ xc]c = x ∨ (x ∧ yc) = x, which

prove (J). Thus A→ ∈ DM→, proving Theorem 4.2(a). □

The proof of Theorem 4.2(b) will be obtained from the following lemma.

Lemma 4.3. Let A ∈ DM→ and let A∗ be as in (b) (of the preceding theorem).

Let x, y, z ∈ A∗. Let x ∨ y = (xc ∧ yc)c. (Note xc = x′.) Then

(i) xcc = x

(ii) xc → y = yc → x

(iii) x ∧ (x ∨ y) = x

(iv) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

(v) x ∧ 0 = 0.

Proof. xcc = (x → 0) → 0

= [{(x → 0) → x} → {(0 → x) → 0}] → 0 by (J)

= (x → 0) → x by (I)

= x by (J), proving (i).

Next, xc → y

= (xc → y)cc by (i)

= [(xc → y) → 0] → 0

= [(x′ → y) → {(0 → x) → 0}] → 0 by (J)

= (y → 0) → x by (I)

= yc → x, proving (ii).

(iii) is immediate from (i), (ii) and (J).

To prove (iv),

x ∨ (y ∧ z)

= x′ → (y → z′)′, in view of (i) and definitions of ∨, ∧ and c

= (y → z′) → x by (i) and (ii)
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= [(x′ → y) → (z′ → x)′]′ by (I)

= (x ∨ y) ∧ (z ∨ x) in view of (i) and definitions of ∨ and ∧.

Using (i), (ii) and (J), we have x ∧ 0 = (x → 0′)′ = (x′′ → 0′)′ = (0 → x′) → 0 = 0,

proving (v). □

In view of the above Lemma, A∗ satisfies the axioms of Theorem 3.4, from which we can
infer that A∗ ∈ DM, thus proving Theorem 4.2(b). The proofs of (c) and (d) of Theorem
4.2 are left to the reader.

Definition 4.4. A DM→-algebra A = ⟨A,→, 0⟩ is a KL→-algebra if A satisfies

the following axiom:

(K1) (x → x)′ → (y → y)′ ≈ x → x

or, equivalently,

(K2) (y → y) → (x → x) ≈ x → x.

Let KL→ denote the variety of KL→-algebras.

Corollary 4.5. The variety KL is term-equivalent to the variety KL→.

To prove Corollary 4.5, it is sufficient, in view of Theorem 4.2, to prove that (K) and
(K1) (or (K2)) are equivalent, which is left to the reader to verify.

Definition 4.6. A DM→-algebra A = ⟨A,→, 0⟩ is a BA→-algebra if A satisfies

the following axiom:

(B1) x → x ≈ 0′.

Let BA→ denote the variety of BA→-algebras.

The following corollary is also immediate from Theorem 4.2.

Corollary 4.7. The variety BA is term-equivalent to the variety BA→.

We denote by DM the category whose objects are De Morgan algebras and whose
morphisms are {∧,′ , 0}-homomorphisms. We also let DM→ denote the category, whose
objects are DM→-algebras and whose morphisms are {→, 0}-homomorphisms. The cate-
gories KL, KL→, BA and BA→ are similarly defined. The following remark is now pretty
clear.

Remark 4.8. The category DM (respectively, KL, BA) is equivalent to the category

DM→ (respectively, KL→, BA→).
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There is a large number of varieties of algebras arising from nonclassical logics, such as
 Lukasiewicz algebras, Nelson algebras and so on, which have De Morgan algebras or Kleene
algebras as reducts. We wish to note here that Theorem 4.2 and its consequences can be
applied to give new axiomatizations for those varieties by suitably expanding the lanuage
{ →, 0}.

5. A Simplified version of Bernstein’s axiom system for Boolean

algebras

In this section we give a slightly different axiomatization for De Morgan algebras, still
in the language {→, 0}, and use it to give a simplification of Bernstein’s axiom system
(see [3]) for Boolean algebras.

Theorem 5.1. The following axioms, in the language {→, 0}, form a 2-base for

the variety of De Morgan algebras, where x′ = x → 0:

(I): (x → y) → z ≈ [(z′ → x) → (y → z)′]′

(L): (0 → x) → y ≈ y.

In light of Theorem 3.4(b), it suffices to show that (J) and (L) are equivalent in the
presence of (I). So, first suppose (I) and (J) hold in A. Then
(0 → x) → y
= [(y′ → 0) → (x → y)′]′ by (I)
= [(x → y) → y′]′ by Lemma 4.3(ii) and (i)
= [(y′ → x′) → y′]′ by Lemma 4.3(ii) and (i)
= y′′ by (J)
= y by Lemma 4.3(i).
Thus (L) holds in A, proving the first half of the theorem. For the other half, we need the
following lemma.

Lemma 5.2. let A = ⟨A,→, 0⟩ be an algebra satisfying (I) and (L). Let x, y, z be

arbitrary elements of A. Then

(i) x′′′ = x′

(ii) x′ → y = y′ → x

(iii) x′′ = x

(iv) [x → (x′ → y)′]′ = [y → (0 → z)] → x

(v) (x → y) → x = x.

Proof. To prove (i),

x′ = (0′ → x) → 0 by (L)
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= [(0′ → 0′) → (x → 0)′]′ by (I)

= (0′ → x′′)′ by (L)

= x′′′ by (L).

Next,

y′ → x

= [(x′ → y) → (0 → x)′]′ by (I)

= [{(x → 0) → y} → 0]′ by (L)

= [(x → 0) → y]′′

= [(y′ → x) → (0 → y)′]′′′ by (I)

= x′ → y by (i) and (I), proving (ii).

(iii) is immediate from (ii) and (L), and (iv) follows from (ii), (iii), (L) and (I).

Finally,

(x → y) → x

= [(x → y) → x]′′ by (iii)

= [x′ → (x′′ → y)′]′′ by (ii) and (iii)

= [{y → (0 → z)} → x′]′ by (iv)

= [{(0 → z)′ → y′} → x′]′ by (ii) and (iii)

= [{0 → (y → 0)] → x′]′ by (L)

= x by (L) and (iii). □

Thus (J) holds in A and the proof of Theorem 5.1 is now complete.
Next we present a base for Boolean algebras, which is a simplification of a well known

axiom system due to Bernstein( [3]).

Theorem 5.3. The following axioms form a 2-base for the variety of Boolean al-

gebras, where x′ := x → 0:

(J) (x → y) → x ≈ x

(M) (y → y) → ((x → y) → z) ≈ [(z′ → x) → (y → z)′]′.

Since (J) and (M) hold in the 2-element Boolean algebra, they hold in every Boolean
algebra. To prove the converse, we let B = ⟨B,∧,′ , 0⟩ be an algebra satisfying (J) and
(M). We need to show that (B1) and (I) hold in B, which will be accomplished in the
following lemma.

Lemma 5.4. Let x, y, z ∈ B. Then
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(i) [x → (y → x)′]′ = (y → y) → x

(ii) (x → x)′ = 0

(iii) x′′ = x

(iv) 0 → 0 = x → x. Hence (B1) holds in B

(v) (0 → 0) → x = x

(vi) (x → y) → z = [(z′ → x) → (y → z)′]′. Hence, (I) holds in B.

Proof. We have

(y → y) → x

= (y → y) → [(x → y) → x] by (J)

= [(x′ → x) → (y → x)′]′ by (M)

= [x → (y → x)′]′ by (J), proving (i).

Next, for (ii),

(x → x) → 0

= [0 → (x → 0)′] → 0 by (i)

= 0 by (J).

Next,

x′′

= (x → 0)′

= [x → (x → x)′]′ by (ii)

= (x → x) → x by (i)

= x by (J), proving (iii).

For (iv),

0 → 0

= (x → x)′ → 0 by (ii)

= x → x by (iii).

To prove (v), (0 → 0) → x = (x → x) → x = x, using (iv) and (J).

Finally,

[(z′ → x) → (y → z)′]′

= (x → x) → [(x → y) → z] by (M)
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= (0 → 0) → [(x → y) → z] by (iv)

= (x → y) → z by (v), proving (vi). □

Thus, (I) and (B1) hold in B by the preceding lemma, whence Theorem 5.3 is proved,
in view of Theorem 4.7.

In 1934, Bernstein( [3]) gave an axiom system using only implication; but it was not
equational since one of the axioms was existential. It is clear from his proof that the
existential statement can be eliminated if we expand the language to include a constant 0,
which leads us to the following

Corollary 5.5 (Bernstein [3] modified). The following (equational) axioms form a

2-base for the variety of Boolean algebras in the language {→, 0}, where x′ = x → 0:

(B2) (u → u) → ((x → y) → z) ≈ [(z′ → x) → (y → z)′]′

(J) (x → y) → x ≈ x.

Proof. Let B ba an algebra satisfying (B2) and (J). Since (M) (see Theorem 5.3),

a special case of (B2), holds in B, it follows from Theorem 5.3 that B is a Boolean

algebra. The converse holds since (B2) and (J) are true in the 2-element Boolean

algebra. □

Perhaps, it may be remarked that the base given in Theorem 5.3 contains 3 variables,
whereas Bernstein’s base (Corollary 5.5) has 4 variables.

We conclude this section by mentioning yet another axiomatization for Boolean algebras
(without giving the proof here).

Theorem 5.6. The following axioms form a base for the variety of Boolean algebras,

where x′ = x → 0:

(I) (x → y) → z ≈ [(z′ → x) → (y → z)′]′

(P) (x → x) → y ≈ y.

6. De Morgan Algebras: From Yet Another Perspective

It is also well known that Boolean algebras can be defined in terms of the NAND oper-
ation. In this section we investigate a similar question for De Morgan algebras.

Definition 6.1. An algebra A = ⟨A, |, 0⟩ is a NAND-algebra if A satisfies the

following axioms, where we set xc := x|x:
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(N1) 0|x ≈ 0c

(N2) xc|(x|y) ≈ x

(N3) [x|(yc|zc)]c ≈ (y|x)|(x|z).

Let NAND denote the variety of NAND-algebras.

We now give a characterization of De Morgan algebras using the operation | and the
constant 0.

Theorem 6.2. The variety DM→ is term-equivalent to the variety NAND. More

precisely,

(a) For A ∈ DM→, let A∗ be the algebra ⟨A, |, 0⟩ where | is defined by x|y :=

x → y′. Then A∗ ∈ NAND such that xc = x′.

(b) For A ∈ NAND, let A+ be the algebra ⟨A,→, 0⟩ where → is defined by

x → y := x|yc. Then A+ ∈ DM→ such that x′ = xc.

(c) If A ∈ DM→, then (A∗)+ = A.

(d) If A ∈ NAND, then (A+)∗ = A.

To prove (a), we need the following lemma.

Lemma 6.3. Let A ∈ DM→ and A∗ be as in (a) (of the above theorem). Let

x, y, z be elements of A.

(i) 0|x = 0′

(ii) x′|(x|y) = x

(iii) [x → (y → x)′]′ = x

(iv) (0 → x) → y = y

(v) [(x → y) → z]′ = 0′ → [(z′ → x) → (y → z)′]

(vi) [x|(y′|z′)]′ = (y|x)|(x|z)

(vii) x′ = x|x.

Proof. First, we note that lemma 4.3 holds in A. Using Lemma 4.3(i) and (J), we

have 0|x = 0 → x′ = [(0 → x′) → 0] → 0 = 0 → 0 = 0′, proving (i). Observe that

(ii) follows from (i) and (ii) of Lemma 4.3 and (J). For (iii), we have, using (J) and

(I), that x = (x → y) → x = [(x′ → x) → (y → x)′]′ = [x → (y → x)′]′. The proof

of (iv) already occurs in the first half of the proof of Theorem 5.1.
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To prove (v),

[(x → y) → z] → 0

= [(x → y) → z]′′ → 0 by Lemma 4.3(i)

= 0′ → [(x → y) → z]′ by Lemma 4.3(ii)

= 0′ → [(z′ → x) → (y → z)′]′′ by Axiom (I)

= 0′ → [(z′ → x) → (y → z)′] by Lemma 4.3(i).

For (vi), we have

[x|(y′|z′)]′

= [x → (y′ → z′′)′]′

= [x → (y′ → z)′]′ by Lemma 4.3(i)

= [(z′ → y) → x′]′ by (i) and (ii) of Lemma 4.3

= 0′ → [(x′′ → z′) → (y → x′)′] by (v)

= (x → z′) → (y → x′)′ by (iv) and Lemma 4.3(i)

= (y → x′) → (x → z′)′ by (i) and (ii) of Lemma 4.3

= (y|x)|(x|z).

Finally, using (J), Lemma 4.3(i) we have x′ = (x′ → 0) → x′ = x′′ → x′ = x → x′ =

x|x, proving (vii).

□

The proof of Theorem 6.2(a) is now complete in view of Lemma 6.3. To prove Theorem
6.2(b) we need the following lemma.

Lemma 6.4. Let A ∈ NAND. Let A+ be as in (b)(of the above theorem). Let

x, y, z ∈ A+. Then

(i) xcc = x

(ii) (x|y)|(y|x) = (y|x)c

(iii) x|y = y|x

(iv) [x|(yc|zc)]c = (x|y)|(x|z)

(v) [(x|y)|(y|z)]c = y|(xc|zc)

(vi) xc = x → 0

(vii) (x → y) → z = [(z′ → x) → (y → z)′]′

(viii) (x → y) → x = x.
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Proof. (i) is immediate from (N2). Next,

(x|y)|(y|x)

= [y|(xc|xc)]c by Axiom (N3)

= (y|xcc)c

= (y|x)c by (i), proving (ii).

To prove (iii),

x|y

= (x|y)cc by (i)

= [(x|y)|(y|x)]|[(y|x)|(x|y)] by (ii)

= (y|x)c|[(y|x)|(x|y)] by (ii)

= y|x by Axiom (N2).

Next,

[x|(yc|zc)]c

= (y|x)|(x|z) by Axiom (N3)

= (x|y)|(x|z) by (iii), proving (iv).

To prove (v),

y|(xc|zc)

= {y|(xc|zc)}c|[{y|(xc|zc)}|{y|(xc|zc)}] by (N2)

= [(x|y)|(y|z)]|[{y|(xc|zc)}|{y|(xc|zc)}] by (N3)

= [(x|y)|(y|z)]|[(y|x)|(y|z)] by (iv)

= [(x|y)|(y|z)]c by (iii).

Next,

x → 0

= x|0c

= x|(0|xc) by Axiom (N1)

= xcc|(xc|0) by (i) and (iii)

= xc by Axiom (N2), proving (vi).

Next,

[(z′ → x) → (y → z)′]′

= [(zc|xc)|(y|zc)cc]c by (vi) and definition of →



154 HANAMANTAGOUDA P. SANKAPPANAVAR

= [(zc|xc)|(y|zc)]c by (i)

= [(xc|zc)|(zc|y)]c by (iii)

= zc|(xcc|yc) by (v)

= (x|yc)|zc by (iii) and (i)

= (x → y) → z by definition of →, proving (vii).

To prove (viii),

(x → y) → x

= (x|yc)|xc

= xc|(x|yc) by (iii)

= x by Axiom (N2).

□
The proof of Theorem 6.2(b) is complete in view of (vi), (vii), and (viii) of Lemma 6.4.

It, then, follows from Theorem 4.2 that the variety NAND is also term-equivalent to the
variety of De Morgan algebras.

As consequences of Theorem 6.2, we can now define Kleene algebras (and Boolean alge-
bras) using | and 0.

Definition 6.5. A NAND-algebra A = ⟨A, |, 0⟩ is a KAND-algebra if A satisfies

the following axiom, where xc = x|x:

(Q) (x|xc)c|(y|yc) ≈ x|xc.

Let KAND denote the variety of KAND-algebras.

The following theorem is immediate from Theorem 6.2.

Theorem 6.6. The variety KL→ is term-equivalent to the variety KAND.

Definition 6.7. A NAND-algebra A = ⟨A, |, 0⟩ is a BAND-algebra if A satisfies

the following axiom:

(R) x|xc ≈ 0c.

Let BAND denote the variety of BAND-algebras.

The following theorem is also immediate from Theorem 6.2.

Theorem 6.8. The variety BA→ is term-equivalent to the variety BAND.

We conclude that the varieties KAND and BAND are term-equivalent to Kleene
algebras and Boolean algebras respectively.
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7. Implication Zroupoids

The observation that the axiom (I) has played a significant role in the earlier sections
has led us to investigate it in its own right. In this section we define, and initiate the
investigation of, a new equational class of algebras, called “implication zroupoids”, which
generalize De Morgan algebras.

Definition 7.1. A groupoid with zero (zroupoid, for short) is an algebra A =

⟨A,→, 0, ⟩, where → is a binary operation and 0 is a constant. A zroupoid A =

⟨A,→, 0, ⟩ is an implication zroupoid (I-zroupoid, for short) if the following identities

hold in A, where x′ := x → 0:

(I) (x → y) → z ≈ [(z′ → x) → (y → z)′]′

(Z) 0′′ ≈ 0.

The variety of I-zroupoids is denoted by I.

It follows from earlier sections that the varieties BA→(of Boolean algebras), KL→ (of
Kleene algebras) and DM→ (of De Morgan algebras) are important examples (up to term-
equivalence) of subvarieties of I. Examples of I-zroupoids also arise from an entirely different
and unexpected source: right distributive groupoids. Recall that a groupoid G = ⟨G, ·⟩ is
right distributive (r-distributive, for short) if G |= (x · y) · z ≈ (x · z) · (y · z).

Definition 7.2. Let A be an I-zroupoid. We say that A is strong right distributive

if the following condition holds in A:

(SRD) (x → y) → z ≈ (z → x) → (y → z).

A is right distributive if A satisfies:

(RD) (x → y) → z ≈ (x → z) → (y → z).

A is commutative if the following condition holds in A:

(C) x → y ≈ y → x.

A is an I-zroupoid with right identity if A satisfies: x → 0 ≈ x (that is, x′ ≈ x).

A is an I-zroupoid with left identity if A satisfies: 0 → x ≈ x.

A is an I-zroupoid with identity if A satisfies: x → 0 ≈ x and 0 → x ≈ x.

A has trivial multiplication if A |= x → y ≈ 0, and such a zroupoid is called a

zero zroupoid. Let SRD and RD denote the subvarieties of I consisting of strong

right distributive, right distributive I-zroupoids respectively. SLD and LD are

defined dually. Also, we let C, Z, I1,0, Ilid and Iid denote the subvarieties of I

consisiting respectively of commutative zroupoids, zero zroupoids, I-zroupoids with
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right identity, I-zroupoids with left identity and I-zroupoids with identity. A is

strong distributive if A ∈ SLD ∩ SRD and is distributive if A ∈ LD ∩RD. We let

D and SD denote the varieties of distributive, and strong distributive I-zroupoids

respectively.

One can also define a groupoid to be strong right distributive, strong left distributive,
or strong distributive if it satisfies (SRD), or (SLD) or both, respectively. (These concepts
for groupoids seem to be new).

There are exactly 3 two-element I-zroupoids as shown in Figure 1. It immediately follows
that these are simple and the varieties they generate are atoms in the lattice of subvarieties
of I. Observe that 2 ∈ BA→, 2z ∈ Z and 2id ∈ Iid ∩C.

2 :

→ 0 1

0 1 1

1 0 1

2id :2z :

→ 0 1

0 0 0

1 0 0

→ 0 1

0 0 1

1 1 1

Figure 1

Another class of examples of I-zroupoids is obtained as follows: For a set X, let Su(X)
denote the set of all subsets of X. Then ⟨Su(X),∪,∅⟩ is a commutative I-zroupoid with
identity, if we interpret the → as ∪ and the constant 0 as ∅. This class of examples is
further generalized in [14].

Remark 7.3. If A be an I-zroupoid with right identity, then A is strong right dis-

tributive.

Let A = ⟨A,→⟩ be a strong right distributive groupoid. Let us define an expansion of
A to be the the algebra Ae = ⟨Ae,→, 0⟩, where Ae = A ∪ {0}, with 0 not in A, where
→ is extended to Ae by setting x → 0 = x, for x ∈ Ae. Then it is clear that Ae is an
I-zroupoid with right identity.

The following lemmas will be used in proving our main result of this section that the
identity x′′′ → y ≈ x′ → y holds in every I-zroupoid.

Lemma 7.4. Let A ∈ I and let x, y, z ∈ A. Then

(1) [(0′ → x) → y′′]′ = (x → y)′

(2) (0′ → x)′′ = x′′

(3) [x′′ → {y → (0′ → x)}′]′ = (0 → y) → (0′ → x)
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(4) [x → (0′ → y)]′ = (x → y)′

(5) (0 → x) → (0′ → y) = (0 → x) → y.

Proof. (1) is immediate from (I), and (2) follows easily from (I) and (Z). For (3),

we have, using (I) and (2), that (0 → y) → (0′ → x) = [(0′ → x)′′ → {y → (0′ →

x)}′]′ = [x′′ → {y → (0′ → x)}′]′. Next, [x → (0′ → y)]′ = [(0′ → x) → (0′ →

y)′′]′ = (0′ → x) → y′′ = (x → y)′, in view of (I), (2) and (1), which proves (4).

Using (I), (4) and (3), (0 → x) → y = [y′′ → (x → y)′]′ = [y′′ → {x → (0′ →

y)}′]′ = (0 → x) → (0′ → y), which proves (5). □

Lemma 7.5. Let x, y, z ∈ A ∈ I. Then

(a) [(0′ → x) → y]′ = (x → y)′

(b) (x → y′′)′ = (x → y)′

(c) (x → y) → z = [x → (0′ → y)] → z

(d) (x → y) → z = [(0′ → x) → y] → z

(e) (x → y)′ = [(0′ → x) → y]′

(f) [x → (0′ → y)′]′ = (x → y′)′.

Proof. [(0′ → x) → y]′ = [{(0 → 0) → (0′ → x)} → y′′]′ = [{(0 → 0) → x} → y′′]′ =

(x → y)′, in view of (I), and (5) and (1) of the preceding lemma, thus proving (a).

For (b), (x → y′′)′ = [(0′ → x) → y′′]′ = (x → y)′ by (a) and Lemma 7.4(1). (c)

follows from (I) and (a). Next, using (I) and (c), we have [(0′ → x) → y] → z =

[{z′ → (0′ → x)} → (y → z)′]′ = [(z′ → x) → (y → z)′]′ = (x → y) → z, proving

(d), which, together with (I), implies (e), as is easily seen. (f) can be proved using

(I), Lemma 7.4(2) and (b). □

Theorem 7.6. Let x, y ∈ A ∈ I. Then x′′′ → y = x′ → y.

Proof. x′ → y = (0′ → x)′ → y = (0′ → x′′)′ → y = x′′′ → y in view of (d), (b) of

the preceding Lemma. □
The following corollary is now immediate.
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Corollary 7.7. Let A be an I-zroupoid. Then x′′′′ = x′′.

8. Subvarieties of I

In this section we wish to introduce several important subvarieties of I and establish
some relationships among them.

In view of Corollary 7.7, one is naturally led to ask if the identity x′′′ ≈ x′ also holds
in I. The answer, however, turns to be negative, since the identity x′′′ = x′ fails in the
3-element I-zroupoid whose →-table is given in Figure 2.

→ 0 a 1

0 0 0 0

a 1 0 0

1 0 0 0

Figure 2

Definition 8.1. Let I3,1, I2,0 and I1,0 denote, respectively, the subvarieties of I

satisfying x′′′ ≈ x′, x′′ ≈ x, and x′ ≈ x.

Let TII denote the subvariety of I satisfying the identity:

(TII) 0′ → (x → y) ≈ x → y. (TII is abbreviated from: “ Truth Implies

Implication”.)

Our first goal in this section is to show that TII ⊂ I3,1. To that end we need the
following lemma.

Lemma 8.2. Let A ∈ TII. Let x, y, z ∈ A. Then

(a) (0′ → x)′ = x′′′

(b) [(x → y) → z]′′ = (x → y) → z

(c) 0′ → x = x′′.

Proof. (a) follows immediately from Lemma 7.5(b) and (TII). To prove (b),

[(x → y) → z]′′

= [(z′ → x) → (y → z)′]′′′ by (I)

= 0′ → [(z′ → x) → (y → z)]′ by (a)
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= [(z′ → x) → (y → z)]′ by (TII)

= (x → y) → z by (I).

Finally, using (b), (a), and Corollary 7.7, we have 0′ → x = (0′ → x)′′ = x′′′′ = x′′,

proving (c). □

Theorem 8.3. TII ⊂ I3,1.

Proof. Let x ∈ A ∈ TII. Then x′ = 0′ → x′ by (TII), from which we get x′ = x′′′

by (c) of the preceding lemma, implying A ⊆ I3,1. The example in Figure 3 (with

0 as the constant) shows that the inclusion is proper, since 0′ → (a → a) = 0 and

a → a = 1. □

→ 0 a 1

0 0 0 0

a 0 1 0

1 0 0 0

Figure 3

Definition 8.4. Let A ∈ I. A is strong contrapositive if A satisfies the identity:

(SCP) x → y ≈ y′ → x′.

A is contrapositive if A satisfies the identity:

(CP) x → y′ ≈ y → x′.

A is weak contrapositive if A satisfies the identity:

(WCP) x′ → y ≈ y′ → x.

Let SCP, CP and WCP denote the subvarieties of I consisting of strong contra-

positive, contrapositive and weak contrapositive I-zroupoids respectively.

It is clear that DM→ ⊂ SCP in view of (i) and (ii) of Lemma 4.3. Next, we wish to
show that SCP ⊂ CP ⊂ WCP.

Lemma 8.5. SCP ⊂ CP.
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Proof. Let x, y ∈ A ∈ SCP. Using (SCP) and (Z), we have,

y → x′ = x′′ → (0′ → y′) = x′′ → y′′′ = y′′ → x′ = x → y′. The example in Figure

3 shows that the inclusion is proper, since a′ → a′ = 0, while a → a = 1. □

Lemma 8.6. Let x, y, z ∈ A ∈ CP. Then,

(i) (x′′ → y) → z = (x → y) → z

(ii) (x → y) → z′ = [(z → x) → (z → y′)′]′

(iii) (x → y) → z′′ = (x → y) → z.

Proof. To prove (i), we have

(x′′ → y) → z

= [(y → z) → (z′ → x′′)′]′ by (I) and (CP)

= [(y → z) → (z′ → x)′]′ by Lemma 7.5 (b)

= [(z′ → x) → (y → z)′]′ by (CP)

= (x → y) → z by (I).

For (ii), we have

(x → y) → z′

= [(z′′ → x) → (y → z′)′]′ by (I)

= [(z′′ → x) → (z → y′)′]′ by (CP)

= [(z → x) → (z → y′)′]′ by (i).

To prove (iii),

(x → y) → z

= [(z′ → x) → (y → z)′]′ by (I)

= [(z′ → x) → (y → z′′)′]′ by Lemma 7.5 (b)

= [(z′ → x) → (z′ → y′)′]′ by (CP)

= (x → y) → z′′ by (ii). □

Theorem 8.7. SCP ⊂ CP ⊂ WCP.

Proof. First half is already proved in Lemma 8.5. By (iii) of the preceding Lemma

and (CP), we get
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y′ → x = y′ → x′′ = x′ → y′′ = x′ → y. That the inclusion in the second half is

proper is shown by the example in Figure 2 (with x = 0 and y = a); thus proving

the second half. □
It may be noted here that the algebra given in Figure 2 is also in WCP, hence it follows

that WCP ⊈ I3,1. Next, we will show that SCP is also a (proper) subvariety of TII, for
which we need the following

Lemma 8.8. Let x, y, z ∈ A ∈ SCP. Then

0′ → {(x → y) → z} = (x → y) → z.

Proof. Using (I) and (SCP) we have (x → y) → z = [(z′ → x) → (y → z)′]′ = 0′ →

[(z′ → x) → (y → z)′]′ = 0′ → [(x → y) → z]. □

Theorem 8.9. SCP ⊂ TII.

Proof. Let x, y ∈ A ∈ SCP. Then, using the preceding lemma and (SCP), we have

x → y = x′′ → y′′ = (x′ → 0) → y′′ = 0′ → (x′′ → y′′) = 0′ → (x → y), implying

that A ∈ TII. The algebra in Figure 4 (with x = a and y = a) is an example to

show that the inclusion is proper. □
We would like to note here that the algebra given in Figure 3 is in CP also, hence

CP ⊈ TII. However, we have the following

Theorem 8.10. CP ⊂ I3,1.

Proof. Using (Z), (CP), and Lemma 8.6(iv), we have x′ = x → 0′′ = 0′ → x′ = 0′ →

x′′′ = x′′ → 0′′ = x′′′. The algebra given in Figure 4 (with x = a and y = 1) shows

that the inclusion is proper. □

→ 0 a 1

0 0 a 1

a 1 a 1

1 a a 1

Figure 4

Observe, however, that WCP ⊈ I3,1, which can be verified using the algebra given in
Figure 4.
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Lemma 8.11. Let A ∈ I2,0. Let a, b, c ∈ A. Then

(a) a′′′ = a′

(b) (a → b) → c′′ = (a → b) → c.

Proof. (a) is immediate from Lemma 7.5(b). To prove (b), we have

(a → b) → c′′

= [(c′′′ → a) → (b → c′′)′]′ by (I)

= [(c′ → a) → (b → c)′ by Lemma 7.5(b) and (a)

= (a → b) → c. □

Lemma 8.12. Let A ∈ I. Then T.F.A.E.:

(a) A |= 0′ → x ≈ x.

(b) A ∈ I2,0.

Proof. Suppose (a) holds; then, from (a) of the preceding lemma, we have x′′ =

0′ → x′′ = 0′ → x = x, proving (b). It is clear from Lemma 7.4(2) that (b) implies

(a); thus (a) and (b) are equivalent. □
It is now clear that I2,0 ⊂ TII, as the algebra 2z is in TII but not in I2,0 .

Lemma 8.13. Let A ∈ I2,0. Let x, y, z ∈ A. Then

(a) (y → z) → x′ = [(x → y) → (z → x′)′]′

(b) (0 → y) → x = [x → (y → x)′]′

(c) x → 0′ = (0 → x) → 0′

(d) 0 → 0′ = 0′

(e) x′ → 0′ = 0 → x

(f) 0 → x′ = x → 0′.

Proof. (y → z) → x′ = [(x′′ → y) → (z → x′)′]′ = [(x → y) → (z → x′)′]′, (b) is

immediate from (I) and the identity 0′ → x ≈ x, in view of the preceding lemma.

Now, using (a), the identity 0′ → x ≈ x, and the hypothesis, we get x → 0′ = (x →

0′)′′ = [0′ → (x → 0′)′]′ = (0 → x) → 0′, proving (c). 0 → 0′ = (0 → 0) → 0′ = 0′

by (c) and the identity 0′ → x ≈ x, proving (d). x′ → 0′ = [(0 → x) → (0 →

0′)′]′ = [(0 → x) → 0′′]′ = [(0 → x) → 0]′ = (0 → x)′′ = 0 → x, by (a), (d), and the

hypothesis, proving (e), from which (f) is immediate. □
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Lemma 8.14. Let A be an I-zroupoid such that A |= x′ → x ≈ x. Let x, y, z ∈ A.

Then

(i) (x → y) → (0′ → z)′ = (x → y) → z′

(ii) (0′ → x)′ = x′

(iii) (x → y) → (0′ → z) = (x → y) → z

(iv) 0′ → x = x.

Proof.

(x → y) → (0′ → z)′ = [{(0′ → z)′′ → x} → {y → (0′ → z)′}′]′ by (I)

= [(z′′ → x) → {y → (0′ → z)′}′]′ by Lemma 7.4(2)

= [(z′′ → x) → (y → z′)′]′ by Lemma 7.5(f)

= (x → y) → z′ by (I),

proving (i).

(0′ → x)′ = (0′ → x)′′ → (0′ → x)′ by hypothesis

= x′′ → (0′ → x)′ by Lemma 7.4(2)

= x′′ → x by (i)

= x by hypothesis,

proving (ii). To prove (iii), we have

(x → y) → (0′ → z) = [{(0′ → z)′ → x}′ → {y → (0′ → z)}′]′ by (I)

= [(z′ → x)′ → (y → z)′]′ by (ii) and Lemma 7.4(4)

= (x → y) → z by (I),

Finally,

0′ → x = (0′ → x)′ → (0′ → x) by hypothesis

= x′ → (0′ → x) by (ii)

= x′ → x by (iii)

= x by hypothesis,

which proves (iv). □
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The following theorem gives several characterizations of the variety I2,0.

Theorem 8.15. Let A be a I-zroupoid. Then T.F.A.E.:

(a) A |= 0′ → x ≈ x

(b) A ∈ I2,0

(c) A |= (x → x′)′ ≈ x

(d) A |= x′ → x ≈ x.

Proof. The equivalence of (a) and (b) is already proved in Lemma 8.12. Let x ∈ A.

Assume (b) holds. Then, by Lemma 8.12, 0′ → x = x. So, using (b), and Lemma

8.13(d), we have (x → x′)′ = (x′′ → x′)′ = [(x′ → 0) → (0′ → x)′]′ = (0 → 0′) →

x = 0′ → x = x, thus proving (b) implies (c). Next, suppose (c) holds. Then

x = (x → x′)′ = [(0′ → x) → x′′′]′ = (x′′ → x′′′)′ = x′′ by (I) and Lemma 8.2,

proving (b); thus (b) and (c) are equivalent. Finally, we show that (a) and (d) are

equivalent. We note that (d) implies (a) by (iv) of the preceding lemma. If (a)

holds in A then (b) and (c) also hold in A (as proved earlier), from which it is easy

to prove (d), thus completing the proof. □

We now introduce another important subvariety of I.

Definition 8.16. An I-zroupoid A ∈ I is called a left associative 3-potent if A

satisfies the identity:

(LAP) (x → x) → x ≈ x.

Let LAP be the (equational) class of all left associative 3-potent I-zroupoids.

Our next goal is to show that LAP is, in fact, a (proper) subvariety of I2,0.

Lemma 8.17. Let x, y, z ∈ A ∈ I. Then

(i) [x → (0′ → y)]′ = (x → y)′

(ii) (0 → x) → (0′ → y) = (0 → x) → y

(iii) 0′ → (0′ → x) = 0′ → x

(iv) [(0′ → x) → y]′ = (x → y)′

(v) [x → (0′ → y)] → z = (x → y) → z

(vi) [(0′ → x) → y] → z = (x → y) → z
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(vii) [x → {y → (0′ → z)}]′ → z = [x → (y → z)]′

(viii) (x → y) → [z → (0′ → u)] = (x → y) → (z → u).

Proof. (i) is proved using (I) and Lemma 7.4(2). To prove (ii), use (I), Lemma

7.4(2) and (i). (iii) is a particular case of (ii), and (iv) can be proved using (ii), (I)

and (iii). (v) follows from (I) and (iv), and (vi) from (I) and (v). For (vii), use (I)

and (i). To prove (viii),

(x → y) → (z → u) = [{(z → u)′ → x} → {y → (z → u)}′]′ by (I)

= [{(z → u)′ → x} → {y → (z → (0′ → u)}′]′ by (vii)

= [{(x → (0′ → y))′ → z] → {u → (x → (0′ → y))}′]′ by (i)

= (x → y) → [z → (0′ → u)] by (I).

□
We now turn to the variety LAP.

Lemma 8.18. Let x, y, z ∈ A ∈ LAP. Then x → (0′ → y) = x → y.

Proof. By (LAP) and Lemma 8.17(v) we obtain that x → (0′ → y) = [{x → (0′ →

y)} → {x → (0′ → y)}] → {x → (0′ → y)} = [(x → y) → {x → (0′ → y)}] → {x →

(0′ → y)}. Hence, by Lemma 8.17(viii) and Lemma 8.17(viii) and (LAI), we have

x → (0′ → y) = [(x → y) → (x → y)] → {x → (0′ → y)} = [(x → y) → (x → y)] →

(x → y) = x → y. □
We are ready to prove the theorem that we had set out to prove.

Theorem 8.19. LAP ⊂ I2,0.

Proof.

0′ → x = [(0′ → x) → (0′ → x)] → (0′ → x) by (LAP)

= [x → (0′ → x)] → (0′ → x) by Lemma 8.17(vi)

= (x → x) → (0′ → x) by Lemma 8.17(v)

= (x → x) → x by the preceding lemma

= x by (LAP),
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thus proving that LAP ⊆ I2,0. The example in Figure 5 shows that the inclusion

is proper (take x = a). □

→ 0 a b 1

0 0 a b 1

a 1 b b 1

b b b b b

1 a a b b

Figure 5

Definition 8.20. An I-zroupoid A ∈ I is called idempotent if A satisfies the iden-

tity:

(IDMP) x → x ≈ x.

Let IDMP denote the subvariety of I consisting of idempotent I-zroupoids.

We now hope to show that I1,0 ⊂ IDMP ⊂ LAP. But, first we need the following

Lemma 8.21. Let x, y, z ∈ A ∈ I1,0. Then

(i) (x → y) → (z → x) = (y → z) → x

(ii) (0 → x) → y = x → y

(iii) x → (y → x) = y → x

(iv) (x → y) → (0 → x) = y → x

(v) 0 → x = x

(vi) (x → y) → x = y → x

(vii) (x → y) → x = x → (y → x).

Proof. (i) is immediate from (I) and the hypothesis. For (ii), using the hypothesis

and (i), we get (0 → x) → y = (0 → x) → y′ = (x → y)′ = x → y. Use the

hypothesis, (i) and (ii) to get x → (y → x) = x′ → (y → x) = (0 → y) → x =

y → x, proving (iii), while (iv) is immediate from (i) and the hypothesis. Using the

hypothesis and (ii), we have 0 → x = (0 → x)′ = x′ = x, thus proving (v). For (vi),

(x → y) → x = (x → y) → (0 → x) = y → x, using (vi) and (iv), while (vii) is

immediate from (iii) and (vi). □
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Theorem 8.22. I1,0 ⊂ IDMP ⊂ LAP.

Proof. Let x ∈ A ∈ I1,0. Now, using (v) and (iii) of the preceding lemma, we have

x → x = x → (0 → x) = 0 → x = x, thus I1,0 ⊆ IDMP; furthermore, this

inclusion is proper as the example in Figure 4 shows. The proof of the the second

half is trivial, since the Boolean algebra 2 is in LAP but not in IDMP. □
The following corollary summarizes the relationships among the subvarieties of I intro-

duced so far.

Corollary 8.23. We have

(a) BA→ ⊂ KA→ ⊂ DM→ ⊂ LAP ⊂ I2,0 ⊂ TII ⊂ I3,1 ⊂ I

(b) I1,0 ⊂ IDMP ⊂ LAP

(c) BA→ ⊂ KA→ ⊂ DM→ ⊂ SCP ⊂ CP ⊂ WCP ⊂ I

(d) Z ⊂ C.

These investigations on (the lattice of) subvarieties of I and other related algebras are
continued in [14] and [15]. It is shown, among other things, in [14] that SRD ⊂ RD and
C ⊂ CP ∩ SD.

9. Concluding Remarks

We will conclude this paper with some open problems to stimulate further research.

PROBLEM 1: Find a 1-base for De Morgan algebras in the language {→, 0}.
PROBLEM 2: Find a 1-base for De Morgan algebras in the language {|, 0}
PROBLEM 3: Is their a characterization of Stone algebras in the language {→, 0}?
PROBLEM 4: Is their a characterization of Stone algebras in the language {|, 0}.
PROBLEM 5: Is the lattice of subvarieties of I-zroupoids distributive?
PROBLEM 6: Investigate the lattice of subvarieties of I.
PROBLEM 7: Investigate the strong distributive groupoids.
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