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Abstract. We describe weak BCC-algebras (called also BZ-algebras) in which the
condition (xy)z = (xz)y is satisfied only in the case when elements x, y belong to
the same branch. We also characterize quasi-commutative weak BCC-algebras various
types.

1 Introduction BCK-algebras which are a generalization of the notion of algebra of sets
with the set subtraction as the only fundamental non-nullary operation, and on the other
hand, the notion of implication algebra (cf. [17]) were defined by Imai and Iséki in [15].
The class of all BCK-algebras does not form a variety. To prove this fact Y.Komori intro-
duced in [18] the new class of algebras called BCC-algebras. In view of strongly connections
with a BIK+-logic, BCC-algebras also are called BIK+-algebras (cf. [22] or [23]). Nowa-
days, the mathematicians especially from China, Japan and Korea, have been studying
various generalizations of BCC-algebras such as, for example, B-algebras, difference alge-
bras, implication algebras, GB-algebras, Hilbert algebras, d-algebras and many others. All
these algebras have one distinguished element and satisfy some common identities playing
a crucial role in these algebras.

One of very important identities is the identity (xy)z = (xz)y. It holds in BCK-algebras
and in some generalizations of BCK-algebras, but not in BCC-algebras. BCC-algebras
satisfying this identity are BCK-algebras (cf. [6] or [7]). Therefore, it makes sense to
consider such BCC-algebras and some their generalizations for which this identity is satisfied
only by elements belonging to some subsets. Such study has been initiated by W.A. Dudek
in [9].

On the other hand, many mathematicians investigate BCI-algebras in which some basic
properties are restricted to some subset called branches. For example, branchwise commu-
tative BCI-algebras were described in [2], branchwise implicative and branchwise positive
implicative BCI-algebras in [3] and [4]. But, as it was observed many years ago, results
obtained for BCI-algebras can not be transferred to weak BCC-algebras.

Below we begin the study of weak BCC-algebras in which the condition (xy)z = (xz)y
is satisfied only in the case when elements x, y belong to the same branch.

2 Basic definitions and facts The BCC-operation will be denoted by juxtaposition.
Dots will be used only to avoid repetitions of brackets. For example, the formula ((xy)(zy))(xz) =
0 will be written in the abbreviated form as (xy · zy) · xz = 0.

Definition 2.1. A weak BCC-algebra is a system (G; ·, 0) of type (2, 0) satisfying the
following axioms:

(i) (xy · zy) · xz = 0,

(ii) xx = 0,
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(iii) x0 = x,

(iv) xy = yx = 0 =⇒ x = y.

A weak BCC-algebra satisfying the identity

(v) 0x = 0

is called a BCC-algebra. A BCC-algebra with the condition

(vi) (x · xy)y = 0

is called a BCK-algebra.
One can prove (see [6]) that a BCC-algebra is a BCK-algebra if and only if it satisfies

the identity

(vii) xy · z = xz · y.

An algebra (G; ·, 0) of type (2, 0) satisfying the axioms (i), (ii), (iii), (iv) and (vi) is
called a BCI-algebra. A BCI-algebra satisfies also (vii). A weak BCC-algebra is a BCI-
algebra if and only if it satisfies (vii).

A BCC-algebra which is not BCK-algebra is called proper. Similarly, a weak BCC-
algebra which is not a BCC-algebra is called proper if it is not a BCI-algebra. A proper
BCC-algebra has at least four elements (see [7]). Direct computation shows that there exist
45 distinct proper BCC-algebras of order four. Each of these BCC-algebras is isomorphic
to one of eight proper BCC-algebras mentioned in [7]. One can prove (see [6]) that for
every natural n ⩾ 4 there exists at least one proper BCC-algebra containing n elements.
Proper weak BCC-algebras also have at least four elements (see [8]). But there are only
two non-isomorphic weak BCC-algebras of order four:

∗ 0 1 2 3
0 0 0 2 2
1 1 0 2 2
2 2 2 0 0
3 3 3 1 0

∗ 0 1 2 3
0 0 0 2 2
1 1 0 3 3
2 2 2 0 0
3 3 3 1 0

Table 2.1. Table 2.2.

They are proper, because in both cases (3 ∗ 2) ∗ 1 ̸= (3 ∗ 1) ∗ 2.
The methods of construction of weak BCC-algebras proposed in [8] show that for every

n ⩾ 4 there exist at least two non-isomorphic proper weak BCC-algebras of order n.
Any weak BCC-algebra can be considered as a partially ordered set. In any weak BCC-

algebra we can define a natural partial order ⩽ putting

x ⩽ y ⇐⇒ xy = 0. (1)

This means that a weak BCC-algebra can be considered as a partially ordered set with
some additional properties.

Proposition 2.2. An algebra (G; ·, 0) of type (2, 0) with a relation ⩽ defined by (1) is a
weak BCC-algebra if and only if for all x, y, z ∈ G the following conditions are satisfied:

(i′) xy · zy ⩽ xz,

(ii′) x ⩽ x,
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(iii′) x0 = x,

(iv′) x ⩽ y and y ⩽ x imply x = y. □

Since two non-isomorphic weak BCC-algebras may have the same partial order, they
cannot be investigated as partially ordered sets only. For example, weak BCC-algebras
defined by Tables 2.1 and 2.2 have the same partial order but they are not isomorphic.

¿From (i′) it follows that in weak BCC-algebras implications

x ⩽ y =⇒ xz ⩽ yz (2)

x ⩽ y =⇒ zy ⩽ zx (3)

are satisfied by all x, y, z ∈ G.
In the investigations of algebras connected with various types of logics an important role

plays the so-called Dudek’s map φ defined as φ(x) = 0x. The main properties of this map
in the case of weak BCC-algebras are collected in the following theorem proved in [12].

Theorem 2.3. Let G be a weak BCC-algebra. Then

(1) φ2(x) ⩽ x,

(2) x ⩽ y =⇒ φ(x) = φ(y),

(3) φ3(x) = φ(x),

(4) φ2(xy) = φ2(x)φ2(y),

(5) φ2(xy) = φ(yx),

(6) φ(x)(yx) = φ(y)

for all x, y ∈ G. □

The set
B(a) = {x ∈ G : a ⩽ x},

where a ∈ G is fixed, is called a branch of G initiated by a. A branch B(a) is proper if
B(b) = B(a) for every b ⩽ a. The set of initial elements of all proper branches of a weak
BCC-algebra G is denoted by I(G). Elements of I(G) are called initial. A branch containing
only initial element is called trivial.

Theorem 2.4. I(G) = {a ∈ G : φ2(a) = a}. □

The proof of this theorem is given in [10]. Comparing this result with Theorem 2.3 (4)
we obtain

Corollary 2.5. I(G) is a subalgebra of G. □

Corollary 2.6. I(G) = φ(G) for any weak BCC-algebra G.

Proof. Indeed, if x ∈ φ(G), then x = φ(y) for some y ∈ G. Thus, by Theorem 2.3,
φ2(x) = φ3(y) = φ(y) = x. Hence φ2(x) = x, i.e., x ∈ I(G). So, φ(G) ⊂ I(G).

Conversely, for x ∈ I(G) we have x = φ2(x) = φ(φ(x)) = φ(y), where y = φ(x) ∈ G.
Thus I(G) ⊂ φ(G), which completes the proof.

Corollary 2.7. An element a of a weak BCC-algebra G is its initial element if and only if
there exists an element x ∈ G such that a = φ(x). □
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This means that the first row of the multiplication table determining a weak BCC-algebra
contains only initial elements.

According to Corollary 2.7 each element satisfying the condition φ(a) = a is initial, but
this condition is not characteristic for initial elements, i.e., there are initial elements for
which φ(a) ̸= a.

Example 2.8. By computer we can check that the following table defines a weak BCC-
algebra.

∗ 0 a b c d e

0 0 0 0 d c d
a a 0 a d c d
b b b 0 d c d
c c c c 0 d 0
d d d d c 0 c
e e c e a d 0

Table 2.3.
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Diagram 2.3.

This weak BCC-algebra has three initial elements: 0, c, d. But φ(c) ̸= c and φ(d) ̸= d.
□

Corollary 2.9. φ(a) = a if and only if φ(x) ⩽ x for every x ∈ B(a).

Proof. Let φ(a) = a for some a ∈ G. Then φ2(a) = a, so a ∈ I(G). Hence for every
x ∈ B(a) we have a ⩽ x. From this, applying Theorem 2.3, we obtain φ(x) = φ(a) = a ⩽ x.

Conversely, φ(x) ⩽ x for every x ∈ B(a) means that also φ(a) ⩽ a. Since a is a minimal
element in B(a), the last implies φ(a) = a.

The branch initiated by 0, i.e., the set

B(0) = {x ∈ G : 0 ⩽ x}

is called a BCC-part of a weak BCC-algebra G.
One can show (cf. [10]) that B(0) is the greatest BCC-algebra contained in a weak

BCC-algebra G.

3 Congruences and ideals In many algebras congruences are uniquely determined by
some subsets. For example, congruences of groups are determined by normal subgroups,
congruences of rings – by ideals.

In weak BCC-algebras the situation is more complicated. Indeed, as it was observed
many years ago (cf. for example [14] or [19]) the kernel

ρ(0) = {x ∈ G : xρ0}

of a congruence ρ on a BCK-algebra G has the following property: y ∈ ρ(0), xy ∈ ρ(0) imply
x ∈ ρ(0). Moreover, if A is an ideal of BCK-algebra G, then A determines some congruence
of G, but there are congruences which are not determined by such subsets (cf. [21]).

According to [14] and [17], we say that a subset A of a BCK-algebra G is an ideal of G
if

(1) 0 ∈ A,
(2) y ∈ A and xy ∈ A imply x ∈ A.
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Such defined ideal is an ideal in the sense of ordered sets. The relation

xθy ⇐⇒ xy, yx ∈ A (4)

is a congruence on a BCK-algebra G. Unfortunately it is not true for weak BCC-algebras
(cf. [11]). In connection with this fact, W. A. Dudek and X. H. Zhang introduced in [11]
the new concept of ideals. Now, in the literature these new ideals are called BCC-ideals,
old ideals are called ideals or BCK-ideals.

Definition 3.1. A non-empty subset A of a weak BCC-algebra G is called a BCC-ideal if
(1) 0 ∈ A,
(2) y ∈ A and xy · z ∈ A imply xz ∈ A.

By putting z = 0 we can see that a BCC-ideal is a BCK-ideal. In a BCK-algebra
any BCK-ideal is a BCC-ideal, but there are BCC-algebras with BCC-ideals which are not
BCK-ideals (cf. [11]).

Proposition 3.2. B(0) is a BCC-ideal of each weak BCC-algebra.

Proof. Obviously 0 ∈ B(0). Let xy · z, y ∈ B(0). Then 0 ⩽ xy · z and 0 ⩽ y. From the last
inequality, by (2) and (3) we obtain xy · z ⩽ xz, which implies 0 ⩽ xz and consequently
xz ∈ B(0).

Each BCC-ideal of a BCC-algebra G is a kernel of some congruence on G, and conversely,
each BCC-ideal of G determines some congruence on G. Similarly to BCK-algebras in
infinite BCC-algebras there are congruences which are not determined by BCC-ideals. In
finite BCC-algebras all congruences are determined by BCC-ideals (cf. [11]).

For a congruence θ an equivalence class containing an element x is denoted by Cθ
x. The

quotient algebra G/θ = {Cθ
x : x ∈ G} satisfies all axioms of a weak BCC-algebra except

(iv). This axiom is satisfied only in some cases.

Definition 3.3. The congruence θ defined on a weak BCC-algebra G is called regular if
and only if Cθ

x · Cθ
y = Cθ

y · Cθ
x = Cθ

0 implies Cθ
x = Cθ

y .

Regular congruences are characterized by BCC-ideals.

Proposition 3.4. A congruence of a weak BCC-algebra is regular if and only if it is defined
by some BCC-ideal.

Proof. The proof of this proposition is identical with the proof given in [11] for BCC-
algebras.

Example 3.5. The relation ∼ defined on a weak BCC-algebra G by

x ∼ y ⇐⇒ φ(x) = φ(y)

is an equivalence on G. Moreover, if x ∼ y and u ∼ v, then φ(x) = φ(y), φ(u) = φ(v).
Hence, by Theorem 2.3, we obtain

φ(ux) = φ2(xu) = φ2(x)φ2(u) = φ2(y)φ2(v) = φ2(yv) = φ(yv),

which implies ux ∼ vy. Thus ∼ is a congruence. It is clear that the corresponding quotient
algebra G/∼= {Cx : x ∈ G} satisfies the first three conditions of Definition 2.1. Moreover,
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if Cx ·Cy = Cy ·Cx = C0 for some Cx, Cy ∈ G/∼, then φ(xy) = φ(yx) = φ(0) = 0. This by
Theorem 2.3 implies

φ2(y)φ2(x) = φ2(yx) = φ(xy) = 0 = φ(yx) = φ2(xy) = φ2(x)φ2(y).

Therefore φ2(x) = φ2(y), and consequently φ(x) = φ3(x) = φ3(y) = φ(y). Thus, Cx = Cy.
Hence G/∼ is a weak BCC-algebra and ∼ is a regular congruence. □

Proposition 3.6. The congruence ∼ coincides with the congruence induced by B(0).

Proof. Indeed, if x ∼ y, then φ(x) = φ(y) and, by Theorem 2.3,

φ(xy) = φ2(yx) = φ2(y)φ2(x) = 0,

i.e., 0 ⩽ xy. Hence xy ∈ B(0). Similarly, yx ∈ B(0). Thus xθy, where θ is defined by (4)
with A = B(0).

Conversely, let xθy, where θ is defined by (4) with A = B(0). Then xy, yx ∈ B(0) and
consequently φ(xy) = φ(xy) = 0. Thus

0 = φ2(xy) = φ2(x)φ2(y).

Analogously, 0 = φ2(x)φ2(y). This implies φ2(x) = φ2(y). Therefore

φ(x) = φ3(x) = φ3(y) = φ(y),

which proves x ∼ y.

Proposition 3.7. The class Cx coincides with the branch containing x.

Proof. Let x ∈ G and y ∈ Cx. Then by Corollary 2.6 φ(y) = φ(x) = a ∈ I(G) and so by
Theorems 2.4 and 2.3, we obtain a = φ2(a) = φ2(y) ⩽ y, which implies y ∈ B(a). Thus
Cx ⊂ B(a).

Now let z ∈ B(a). Then a ⩽ z and, by Theorem 2.4, φ(a) = φ(z). Thus

φ(z) = φ(a) = φ3(a) = φ(φ2(a)) = φ(φ2(y)) = φ3(y) = φ(y)

for any y ∈ Cx. Hence z ∈ Cx, i.e., B(a) ⊂ Cx. Consequently, Cx = B(a) for a = φ(x).

Corollary 3.8. Branches of a weak BCC-algebra coincide with the equivalence classes of a
congruence induced by its BCC-part B(0), i.e., B(a) = Ca for any a ∈ I(G). □

Corollary 3.9. Let G be a weak BCC-algebra and a, b ∈ I(G). Then

B(a)B(b) = B(ab). □

As a simple consequence of the above results we obtain the following characterization of
elements belonging to the same branch. This characterization was firstly presented in [10]
with another proof.

Corollary 3.10. Elements x, y ∈ G are in the same branch if and only if xy ∈ B(0).

Proof. If x, y ∈ B(a), then x, y ∈ Ca, so xy, yx ∈ B(0). Conversely, if xy ∈ B(0), then, by
(i′), we have 0 = 0 · xy = yy · xy ⩽ yx, which means that yx ∈ B(0). Thus x, y ∈ Ca for
some a ∈ I(G). Corollary 3.8 completes the proof.

Corollary 3.11. Comparable elements are in the same branch. □
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Proposition 3.12. If x, y ∈ B(a), then also x · xy and y · yx are in B(a).

Proof. Let x, y ∈ B(a). Then xy, yx ∈ B(0). Thus 0 ⩽ xy and 0 ⩽ yx. From this, using
(3), we obtain x · xy ⩽ x and y · yx ⩽ y. Corollary 3.11 completes the proof.

Proposition 3.13. Let G be a weak BCC-algebra. The sum of all branches B(a) of G such
that a ∈ A ⊂ I(G) is a subalgebra of G if and only if A is a subalgebra of G.

Proof. Let S be the sum of all branches B(a) of G such that a ∈ A. Obviously a ∈ S.
If S is a subalgebra of G, then 0 ∈ B(a) for some a ∈ A. Since 0 ∈ B(a) only in the
case when a = 0, we obtain 0 ∈ A. Now let a, b ∈ A. Then a, b ∈ S, and consequently
ab ∈ S ∩ I(G) = A (Corollary 2.5). Hence A is a subalgebra of G.

Conversely, if A is a subalgebra of G, then 0 ∈ A ⊂ S. Moreover, for any x, y ∈ S there
are a, b ∈ A such that x ∈ B(a) and y ∈ B(b). Thus xy ∈ B(a)B(b) = B(ab). But ab ∈ A,
so B(ab) ⊂ S. Hence xy ∈ S.

4 Group-like weak BCC-algebras One of important classes of weak BCC-algebras is
the class of the so-called group-like weak BCC-algebras called also anti-grouped BZ-algebras
[24]. It is a subclass of group-like BCI-algebras described in [5] and [20].

Definition 4.1. A weak BCC-algebra is group-like if all its branches are trivial.

This means that a group-like weak BCC-algebra contains only incomparable elements.
From results proved in [5] it follows that such BCC-algebras are strongly connected with
groups (see also [24]). The connection between group-like weak BCC-algebras and groups
is given in the theorem presented below.

Theorem 4.2. A weak BCC-algebra (G; ·, 0) is group-like if and only if (G; ∗, e), where
e = 0 and x ∗ y = x · 0y, is a group. Moreover, in this case xy = x ∗ y−1. □

It is not difficult to see that if in the above theorem a group (G; ∗, e) is abelian then the
corresponding weak BCC-algebra is a BCI-algebra. Thus, a group-like weak BCC-algebra
is proper if and only if it is induced by a non-abelian group.

The conditions under which a weak BCC-algebra is group-like are found in [10]. These
conditions are presented below.

Theorem 4.3. A weak BCC-algebra G is group-like if and only if at least one of the
following conditions is satisfied:

(1) φ2(x) = x for all x ∈ G,

(2) φ(xy) = yx for all x, y ∈ G,

(3) xy · zy = xz for all x, y, z ∈ G,

(4) Kerφ = {0},

(5) xy = zy implies x = z for all x, y, z ∈ G,

(6) xy = 0 implies x = y for all x, y ∈ G. □

As a consequence of Theorems 2.4 and 4.3 we obtain

Corollary 4.4. A weak BCC-algebra G is group-like if and only if G = I(G), or equiva-
lently, if and only if G = φ(G). □
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Corollary 4.5. φ(G) is a maximal group-like subalgebra of each weak BCC-algebra G.

Proof. By Corollaries 2.5 and 2.6 φ(G) = I(G) is a subalgebra. By Corollary 4.4 it is
group-like. To prove it is maximal, let us consider an arbitrary group-like subalgebra A of
G. Then, by Theorem 4.3, for any x ∈ A we have x = φ2(x), i.e., x = φ(φ(x)) which means
that x ∈ φ(G). Thus A ⊂ φ(G) for any group-like subalgebra A of G. Hence φ(G) is a
maximal group-like subalgebra of G.

As a simple consequence of Theorem 4.2 we obtain

Corollary 4.6. ρ is a congruence of a group-like weak BCC-algebra if and only if it is a
congruence of the corresponding group. □

5 Solid weak BCC-algebras

Definition 5.1. A weak BCC-algebra (G; ·, 0) is called solid, if for all x and y belonging
to the same branch the identity

(vii) xy · z = xz · y

is satisfied. If this identity is satisfied also in the case when y, z are in the same branch,
then we say such a weak BCC-algebra is super solid.

All BCI-algebras and all BCK-algebras are solid weak BCC-algebras. A solid weak
BCC-algebra containing only one branch is a BCK-algebra. But there are solid weak BCC-
algebras which are not BCI-algebras. For example, a proper weak BCC-algebra defined by
Table 2.1 is solid but it is not super solid. A weak BCC-algebra defined by Table 2.2 is not
solid because in this algebra we have (3 ∗ 2) ∗ 3 ̸= (3 ∗ 3) ∗ 2.

Theorem 5.2. In solid weak BCC-algebras the map φ is a homomorphism.

Proof. Indeed,
φ(x)φ(y) = 0x · 0y = ((xy · xy)x) · 0y = ((xy · x) · xy) · 0y

= ((xx · y) · xy) · 0y = (0y · xy) · 0y = (0y · 0y) · xy
= 0 · xy = φ(xy)

for all x, y ∈ G.

Lemma 5.3. In any solid weak BCC-algebra

ax = ab

for all a, b ∈ I(G) and x ∈ B(b).

Proof. Let a, b ∈ I(G). Then for any x ∈ B(b) we have b ⩽ x, which, by (3), implies
ax ⩽ ab. Since I(G) is a subalgebra of G (Corollary 2.5), hence ab ∈ I(G). This means
that ab is a minimal element of G. Thus ax = ab.

Lemma 5.4. If in a solid weak BCC-algebra ax = ab holds for some a, x ∈ G and b ∈ I(G),
then x ∈ B(b).

Proof. If ax = ab holds for some a, x ∈ G and b ∈ I(G), then, according to (i), we have

0 = (ab · xb) · ax = (ab · ax) · xb = 0 · xb.

Thus 0 ⩽ xb. This, by Corollary 3.10, means that x and b are in the same branch.
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Corollary 5.5. Elements x, y of a solid weak BCC-algebra G are in the same branch if
and only if ax = ay for some a ∈ I(G).

Proof. If elements x, y belong to the branch B(b), where b ∈ I(G), then from Lemma 5.3
it follows ax = ab = ay for all a ∈ I(G).

Conversely, if ax = ay for some a ∈ I(G), then

0 = (ax · yx) · ay = (ax · ay) · yx = 0 · yx.

Thus yx ∈ B(0). Corollary 3.10 completes the proof.

Definition 5.6. For x, y ∈ G and non-negative integers n we define

xy0 = x, xyn+1 = (xyn)y.

Lemma 5.7. In solid weak BCC-algebras we have

0 · 0xn = 0 · (0x)n

for every x ∈ G and every natural n.

Proof. For n = 1 this identity is obvious. If it is valid for n = k, then for n = k + 1, using
Theorem 5.2, we obtain

0 · 0xk+1 = 0 · (0xk · x) = (0 · 0xk) · 0x = (0 · (0x)k) · 0x = 0 · (0x)k+1,

which completes the proof.

Lemma 5.8. ([9], Lemma 2). In a solid weak BCC-algebra

x(x · xy) = xy

for x, y belonging to the same branch. □

We present some generalizations of the above result.

Proposition 5.9. In a solid weak BCC-algebra

x(x · xy)2 = xy2

for x, y belonging to the same branch.

Proof. Indeed, using Lemma 5.8, we obtain
x(x · xy)2 = x(x · xy) · (x · xy) = xy · (x · xy) = x(x · xy) · y = xy · y = xy2.

Theorem 5.10. In a super solid weak BCC-algebra

x(x · xy)n = xyn

for all natural n and x, y belonging to the same branch.

Proof. For n = 1 this theorem coincides with Lemma 5.8, for n = 2 with Proposition 5.9.
For n ⩾ 3, by Lemma 5.8, we have
x(x · xy)n = x(x · xy) · (x · xy)n−1 = xy · (x · xy)n−1

= (xy · (x · xy)) · (x · xy)n−2 = (x(x · xy))y · (x · xy)n−2

= (xy · y) · (x · xy)n−2 = ((xy · y) · (x · xy)) · (x · xy)n−3.
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Since, by the assumption, x, y belong to the same branch B(a), then, by Proposition
3.12, also x · xy ∈ B(a). Thus

((xy · y) · (x · xy)) · (x · xy)n−3 = (xy · (x · xy))y · (x · xy)n−3

= (x(x · xy) · y)y · (x · xy)n−3

= (xy · y)y · (x · xy)n−3

= xy3 · (x · xy)n−3

. . . . . . . . . . . . . . . . . .

= xyn−1 · (x · xy)
= . . . = xyn.

This completes the proof.

Theorem 5.11. Any (solid) weak BCC-algebra can be extended to a (solid) weak BCC-
algebra containing one element more.

Proof. Let (G; ·, 0) be a (solid) weak BCC-algebra and let θ ̸∈ G. Then the set G ′ = G∪{θ}
with the operation

x ⋆ y =


xy for x, y ∈ G,
x for x ∈ G, y = θ,
0y for x = θ, y ∈ G− {0},
θ for x = θ, y = 0,
0 for x = y = θ

is a (solid) weak BCC-algebra.

The axioms (ii) − (iv) are obvious. Since by the assumption the axiom (i) is satisfied
for all x, y, z ∈ G, we must verify it only in the case when at least one of x, y, z is equal to
θ. But this is a routine calculation. Also it is not difficult to verify that (G ′; ⋆, 0) is solid
if (G; ·, 0) is solid.

It can be noticed that the above construction saves the number of branches. Indeed,
θ ∈ B(0) since 0 < θ < y for every y ∈ B(0). So, (G; ·, 0) and (G ′; ⋆, 0) have the same initial
elements and the same branches determined by non-zero initial elements. The branch B(0)
has in (G ′; ⋆, 0) one element more than in (G; ·, 0).

Theorem 5.12. Any BCK-algebra can be embedded into a solid weak BCC-algebra as its
B(0) branch.

Proof. Let (G; ·, 0) be a BCK-algebra and let θ ̸∈ G be a fixed element. Then, as it is not
difficult to see, (G ′; ⋆, 0) with the operation

x ⋆ y =


xy for x, y ∈ G,
θ for x ∈ G, y = θ,
θ for x = θ, y ∈ G,
0 for x = y = θ

is a solid weak BCC-algebra containing (G; ·, 0) as its subalgebra. This weak BCC-algebra
contains two branches: B(0) = G and B(θ) = {θ}.

Proposition 5.13. Any BCK-algebra can be embedded into a solid weak BCC-algebra with-
out trivial branches.
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Proof. Let (G; ·, 0) be a BCK-algebra and (H; ∗, 0) a solid weak BCC-algebra without trivial
branches such that G ∩H = {0}. On G ∪H we define a common operation ⋆ by putting

x ⋆ y =


xy if x, y ∈ G,
x ∗ y if x, y ∈ H,
0 ∗ y if x ∈ G, y ∈ H − {0},
x if x ∈ H, y ∈ G.

Then long but simple calculations show that (G∪H; ⋆, 0) is a solid weak BCC-algebra. The
natural order of (G ∪H; ⋆, 0) coincides on G with the natural order of (G; ·, 0), and on H
with the natural order of (H; ∗, 0). Each element of G is smaller than each non-zero element
of the branch B(0) of a weak BCC-algebra (H; ∗, 0). Elements of G and elements of other
branches of H are incomparable.

Corollary 5.14. Any BCC-algebra can be embedded into a weak BCC-algebra without trivial
branches.

Proof. We can use the same construction. Obtained weak BCC-algebra will be solid only
in the case when the starting BCC-algebra will be a BCK-algebra.

The idea of the above construction is based on gluing graphs presented in the following
example.

Example 5.15. Consider a BCK-algebra (G; ·, 0):

· 0 1 2 3

0 0 0 0 0
1 1 0 1 0
2 2 2 0 0
3 3 3 3 0

Table 5.1. 0

uJJJ
J









u u







J
J

JJ
u

1 2

3

Diagram 5.1.

and a solid weak BCC-algebra (H; ∗, 0):

∗ 0 a b c d

0 0 0 b b b
a a 0 b b b
b b b 0 0 0
c c b a 0 a
d d b a a 0

Table 5.2.
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ud

Diagram 5.2.

The above construction gives the following solid weak BCC-algebra:
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⋆ 0 1 2 3 a b c d

0 0 0 0 0 0 b b b
1 1 0 1 0 0 b b b
2 2 2 0 0 0 b b b
3 3 3 3 0 0 b b b
a a a a a 0 b b b
b b b b b b 0 0 0
c c c c c b a 0 a
d d d d d b a a 0

Table 5.3.
0
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Diagram 5.3. □

Theorem 5.16. Any weak BCC-algebra can be embedded into a BCC-algebra.

Proof. Let (G; ·, 0) be a weak BCC-algebra and let G ′ = G ∪ {θ}, where θ ̸∈ G. Then, as
it is not difficult to see, (G ′; ⋆, θ) with the operation

x ⋆ y =


xy if xy ̸= 0,
θ if xy = 0,
θ if x = θ, y ∈ G′,
x if x ∈ G′, y = θ

is a BCC-algebra.

Example 5.17. Using the last construction we can extend the weak BCC-algebra defined
by Table 2.1.2 (Example 5.15) into the following BCC-algebra:

∗ 0 a b c d θ
0 θ θ b b b 0
a a θ b b b a
b b b θ θ θ b
c c b a θ a c
d d b a a θ d
θ θ θ θ θ θ θ

Table 5.4.
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Diagram 5.4. □

Corollary 5.18. Any BCI-algebra can be embedded into a BCK-algebra.

Proof. According to the definition, any BCI-algebra is a solid weak BCC-algebra. So,
starting from a BCI-algebra (G; ·, 0) and using the construction proposed in the proof of
Theorem 5.16 we obtain a BCC-algebra (G ′; ⋆, 0) which is a BCK-algebra. Indeed, (G ′; ⋆, 0)
is a BCC-algebra and, by the assumption, the condition (x ⋆ y) ⋆ z = (x ⋆ z) ⋆ y is satisfied
by all x, y, z ∈ G. It is not difficult to verify that it is also satisfied in the case when at
least one element of x, y, z is equal to θ. Thus, it is satisfied for all x, y, z ∈ G ′. Therefore,
(G ′; ⋆, 0) is a BCK-algebra.
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Corollary 5.19. Any group-like weak BCC-algebra can be embedded into a BCK-algebra
containing only atoms.

Proof. Let G be a group-like weak BCC-algebra. Using the construction from the proof of
Theorem 5.16 we obtain a BCC-algebra G ′ in which elements of G are comparable only
with θ since in this construction we have θ ⋆ x = θ for all x ∈ G ′. Also x ⋆ θ = x. Thus
the condition (x ⋆ y) ⋆ z = (x ⋆ z) ⋆ y is satisfied if at least one of x, y, z is equal to θ.
Let x, y, z ∈ G. Then by definition of ⋆ , θ ⩽ y and so by (3), x ⋆ y ⩽ x ⋆ θ. Since x is
comparable only with θ and x, then we have x ⋆ y = θ or x ⋆ y = x. In the first case x = y
and (x⋆x)⋆z = θ⋆z = θ = (x⋆z)⋆x. In the second (x⋆y)⋆z = x⋆z = x = x⋆z = (x⋆z)⋆y.
This proves that this BCC-algebra is a BCK-algebra.

6 Quasi-commutative weak BCC-algebras As it is widely known (cf. for example
[19]), commutative BCC-algebras, i.e., BCC-algebras satisfying the identity x · xy = y · yx,
form a variety, but the class of all BCC-algebras is not a variety (cf. [18]). Also the class of
all weak BCC-algebras is not a variety. Similarly, the class of all BCI-algebras. However,
the so-called quasi-commutative BCI-algebras form a variety (cf. [13]). In this section we
prove that analogous result is valid for quasi-commutative weak BCC-algebras.

In a weak BCC-algebraG for non-negative integersm,n we define a polynomialQm,n(x, y)
by putting:

Qm,n(x, y) = (x · xy)(xy)m · (yx)n.

Definition 6.1. A weak BCC-algebra G is called quasi-commutative of type (m,n; i, j) if
there exist two pairs of non-negative integers i, j and m,n such that

Qm,n(x, y) = Qi,j(y, x),

or equivalently
(x · xy)(xy)m · (yx)n = (y · yx)(yx)i · (xy)j ,

holds for all x, y ∈ G. If the above identity holds only for all x, y belonging to the same
branch, then we say that this weak BCC-algebra is branchwise quasi-commutative (shortly:
b-quasi-commutative).

Exchanging x and y in Qm,n(x, y) = Qi,j(y, x), we see that a weak BCC-algebra is quasi-
commutative of type (i, j;m,n) if and only if it is quasi-commutative of type (m,n; i, j).

Example 6.2.
(1) A group-like weak BCC-algebra is b-quasi-commutative of any type since each its
branch has only one element.
(2) A medial weak BCC-algebra is quasi-commutative of type (0, 1; 0, 0) because it satisfies
the identity x · xy = y.
(3) A weak BCC-algebra is branchwise commutative (commutative) if and only if it b-
quasi-commutative (quasi-commutative) of type (0, 0; 0, 0). □

Proposition 6.3. A b-quasi-commutative solid weak BCC-algebra G of type (0, k; 0, 0) is
branchwise commutative.

Proof. Let G be a weak BCC-algebra satisfying the assumption. Then

Q0,k(x, y) = (x · xy)(yx)k = y · yx = Q0,0(y, x)

for x, y belonging to the same branch. For k = 0 it is obviously branchwise commutative.
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Let k > 0. Then yx ∈ B(0). Hence 0 ⩽ yx, and consequently (x · xy)(yx) ⩽ x · xy, by
(3). Thus

y · yx = (x · xy)(yx)k ⩽ (x · xy)(yx)k−1 ⩽ . . . ⩽ (x · xy)(yx) ⩽ x · xy,

i.e., y · yx ⩽ x · xy.
Interchanging x and y we get x · xy = y · yx.

Proposition 6.4. In solid weak BCC-algebras the following inequalities

(1) Qn−1,n(x, y) ⩾ Qn,n(x, y) ⩾ Qn,n+1(x, y) ⩾ Qn+1,n+1(x, y),

(2) Qn−1,n(x, y) ⩾ Qn,n(y, x) ⩾ Qn,n+1(x, y) ⩾ Qn+1,n+1(y, x)

are valid for all natural n and x, y belonging to the same branch.

Proof. (1) Observe that x ·xy ∈ B(a) and (x ·xy)(xy)k ∈ B(a) for every k and x, y ∈ B(a).
The first is a consequence of Proposition 3.12, the second follows from the fact that 0 ⩽ xy
implies a · xy ⩽ a, i.e., a · xy = a because a ∈ I(G). Therefore a = a · (xy)k ⩽ (x · xy)(xy)k.
Thus using (i′) and (2) we obtain

Qn,n(x, y) ·Qn−1,n(x, y) = ((x · xy)(xy)n · (yx)n) · ((x · xy)(xy)n−1 · (yx)n)

⩽ ((x · xy)(xy)n · (yx)n−1)·((x · xy)(xy)n−1 · (yx)n−1)

⩽ ((x · xy)(xy)n · (yx)n−2)·((x · xy)(xy)n−1 · (yx)n−2)

⩽ . . . ⩽ (x · xy)(xy) · (x · xy)

= (x · xy)(x · xy) · xy = 0 · xy = 0.

Thus

Qn,n(x, y) ·Qn−1,n(x, y) = 0,

which proves

Qn,n(x, y) ⩽ Qn−1,n(x, y).

Similarly,

Qn,n+1(x, y) ·Qn,n(x, y) = ((x · xy)(xy)n · (yx)n+1) · ((x · xy)(xy)n · (yx)n)

⩽ ((x · xy)(xy)n · (yx)n) · ((x · xy)(xy)n · (yx)n−1)

⩽ . . . ⩽ ((x · xy)(xy)n · yx) · (x · xy)(xy)n

= ((x · xy)(xy)n · (x · xy)(xy)n) · yx = 0 · yx = 0.

Hence

Qn,n+1(x, y) ⩽ Qn,n(x, y).

The last inequality of (1) is a consequence of the first.

(2) If x, y ∈ B(a), then xy, yx ∈ B(0) and x · xy, y · yx ∈ B(a) by Corollary 3.10
and Proposition 3.12. From this, analogously as in the proof of (1), we can deduce that
(x · xy)(xy)n−1 and (x · xy)(xy)n−1 · (yx)n are in B(a) for every natural n. Therefore
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Qn,n(y, x) ·Qn−1,n(x, y) = ((y · yx)(yx)n · (xy)n) · ((x · xy)(xy)n−1 · (yx)n)

= ((y · yx)(yx)n · ((x · xy)(xy)n−1 · (yx)n)) · (xy)n

⩽ ((y · yx) · (x · xy)(xy)n−1) · (xy)n

= (y · yx)(xy)n · (x · xy)(xy)n−1

⩽ (y · yx)(xy) · (x · xy) ⩽ (y · yx)x = 0.
Hence

Qn,n(y, x) ⩽ Qn−1,n(x, y).

Analogously,
Qn,n+1(x, y) ·Qn,n(y, x) = ((x · xy)(xy)n · (yx)n+1) · ((y · yx)(yx)n · (xy)n)

= ((x · xy)(xy)n · ((y · yx)(yx)n · (xy)n)) · (yx)n+1

⩽ ((x · xy) · (y · yx)(yx)n) · (yx)n+1

= (x · xy)(yx)n+1 · (y · yx)(yx)n

⩽ (x · xy)(yx) · (y · yx) ⩽ (x · xy)y = 0.
This proves that

Qn,n+1(x, y) ⩽ Qn,n(y, x).

The last inequality of (2) is a consequence of the first.

Theorem 6.5. Every solid weak BCC-algebra which is decomposed into a finite number of
finite branches is b-quasi-commutative of some type of the form (m,m;m,m+ 1).

Proof. Each branch B(a) of G is finite, hence for each pair of elements x, y ∈ B(a) the
sequence (2) from Proposition 6.4 is finite. This means that for all x, y ∈ B(a) there exists
natural n′ = n(x, y) such that Qn,n(x, y) = Qn,n+1(y, x) for all n ⩾ n′. Since I(G) is finite
for every

m ⩾ max{n(x, y) : x, y ∈ B(a), a ∈ I(G)}
and x, y belonging to the same branch we have Qm,m(x, y) = Qm,m+1(y, x), which shows
that G is quasi-commutative of type (m,m;m,m+ 1).

Corollary 6.6. Any finite solid weak BCC-algebra is b-quasi-commutative of some type
(m,m;m,m+ 1). □
Theorem 6.7. If a proper weak BCC-algebra is quasi-commutative of type (i, j;m,n), then
i− j +m− n+ 1 ̸= ±1.

Proof. Since, by the assumption, a weak BCC-algebra G is proper, it has at least two
branches, i.e., there exists a ∈ I(G) such that a ̸= 0. For this a we have Qi,j(0, a) ·
Qm,n(a, 0) = 0 because G is quasi-commutative of type (i, j;m,n).

By Corollary 2.5 I(G) is a subalgebra of G. By Theorems 2.4 and 4.3 it is a group-like
subalgebra. Hence (Theorem 4.2) there exists a group (I(G); ∗, 0) such that xy = x ∗ y−1

for x, y ∈ I(G). Thus,
0 = Qi,j(0, a) ·Qm,n(a, 0) = ((0 · 0a)(0a)i · (a0)j) · ((a · a0)(a0)m · (0a)n)

= ((a · (0a)i) · aj) · ((0 · am) · (0a)n)

= (a1+i ∗ a−j) ∗ (a−m ∗ an)−1

= a1+i−j+m−n.
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For i−j+m−n+1 = ±1, from the above we obtain a±1 = 0, which implies a = 0. But
this contradicts to our assumption on a. Therefore, it must be i− j +m−n+1 ̸= ±1.

Theorem 6.8. For i − j + m − n + 1 ̸= ±1 there exists a group-like quasi-commutative
weak BCC-algebra of type (i, j;m,n).

Proof. Let k = |i− j +m− n+ 1|. By Theorem 6.7 we have k ̸= 1. Consider a group-like
weak BCC-algebra (G; ·, 0) induced by an abelian group (G; ∗, 0). Then, as it is not difficult
to verify,

Qi,j(x, y) ·Qm,n(y, x) = (x−1 ∗ y)i−j+m−n+1 = (x−1 ∗ y)±k.

This means that for k = 0 each group-like weak BCC-algebra induced by an abelian group is
quasi-commutative of type (i, j;m,n). For k > 1 such weak BCC-algebra should be induced
by a cyclic group of order k.

Theorem 6.9. An algebra (G; ·, 0) of type (2, 0) is a quasi-commutative weak BCC-algebra
of type (i, j;m,n) if and only if it satisfies the following three identities:

(a) (xy · zy) · xz = 0,

(b) x0 = x,

(c) Qi,j(x, y) = Qm,n(y, x).

Proof. The necessity is obvious. To show the sufficiency, we only need to verify two axioms
from the definition of weak BCC-algebras: (ii) and (iv), because (i) coincides with (a), (iii)
with (b).

Using (a) and (b) we obtain xx = xx · 0 = (x0 · x0) · 00 = 0, which proves (ii). If xy =
yx = 0, then Qi,j(x, y) = (x ·xy)(xy)i ·(yx)j = x and Qm,n(y, x) = (y ·yx)(yx)m ·(xy)n = y.
This, by (c), implies x = y and completes the proof.

Corollary 6.10. The class of quasi-commutative weak BCC-algebras of a fixed type is a
variety. □

The class of quasi-commutative weak BCC-algebras of a fixed type can also be defined
by two identities.

Theorem 6.11. An algebra (G; ·, 0) of type (2, 0) is a quasi-commutative weak BCC-algebra
of type (i, j;m,n) if and only if it satisfies the following identities:

(α) u · ((xy · zy) · xz) = u,

(β) Qi,j(x, y) = Qm,n(y, x) · 0.

Proof. The necessity is obvious. To prove sufficiency we will show that any algebra (G; ·, 0)
satisfying the conditions (α), (β), also satisfies the conditions (a), (b), (c) from the previous
theorem.

Let θ = (00 · 00) · 00. Then, by (α), we have

θθ = θ · ((00 · 00) · 00) = θ.

Using (α) once again, for every u ∈ G we obtain

u · ((θθ · θθ) · θθ) = u,
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which, in view of θθ = θ, gives uθ = u. Now, putting y = z = θ in (α) and applying just
proved identity uθ = u we get u · xx = u for all x, u ∈ G. This means that

u · (xx)k = u (5)

for any natural k. In particular 0 · (00)k = 0. Hence

Qi,j(0, 0) = (0 · 00)(00)i · (00)j = 0 · (00)j = 0.

Similarly, Qm,n(0, 0) = 0. This, by (β), implies 00 = 0. Consequently, u0 = u · 00 = u for
every u ∈ G. So, the condition (b) from Theorem 6.9 is satisfied. Combining (b) and (β)
we obtain the condition (c).

Observe that (5) for u = xx implies (xx)k+1 = xx for any natural k. ¿From (5) we also
obtain 0 · (xx)k = 0 for any natural k. Hence

Qi,j(xx, 0) = (xx · (xx · 0))(xx · 0)i · (0 · xx)j

= (xx · xx)(xx)i · 0j = (xx)i+2 = xx

and

Qm,n(0, xx) = (0 · (0 · xx))(0 · xx)m · (xx · 0)n

= (00 · 0m) · (xx)n = 0 · (xx)n = 0,

which together with just proved (c) gives xx = 0 for every x ∈ G. Now, putting u =
(xy · zy) · xz in (α) we have

u = u · (xy · zy) · xz = uu = 0.

This means that (xy · zy) · xz = 0, so any algebra (G; ·, 0) satisfying (α), (β) satisfies also
(c), and consequently it is a quasi-commutative weak BCC-algebra of type (i, j;m,n).

Theorem 6.12. If a solid weak BCC-algebra G is quasi-commutative of type (i, j;m,n),
then its branch B(0) is a quasi-commutative BCK-algebra of one of the following three types:
(i, i; i, i), (j, j; j, j) and (n, j; j, n).

The proof of this theorem is based on the following lemma.

Lemma 6.13. In a quasi-commutative solid weak BCC-algebra of type (i, j;m,n) we have

(1) xyi+1 = xyn+1,

(2) xyj+1 = xym+1

for x, y ∈ B(0).

Proof. According to [10] B(0) is the greatest BCC-algebra contained in G. Since G is solid,
for all x, y, z ∈ B(0) we have xy · z = xz · y. Thus, B(0) is a BCK-algebra.

Observe first that

x(x · xy)k = xyk

for x, y ∈ B(0) and any natural k.
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Indeed, for k = 1 it is valid by Lemma 5.8. If it is valid for some k, then for k + 1 we
have

x(x · xy)k+1 = x(x · xy)k · (x · xy)

= xyk · (x · xy) by the assumption on k

= (xyk−1 · (x · xy)) · y

= (xyk−2 · (x · xy)) · y2

= . . . = (x · (x · xy)) · yk = xy · yk by Lemma 5.8

= xyk+1.

Then it is valid for every natural k.
Hence

Qi,j(x, xy) = (x · (x · xy))(x · xy)i · (xy · x)j

= x(x · xy)i+1 · 0j because xy · x = 0

= x(x · xy)i+1 = xyi+1.

Likewise,
Qm,n(xy, x) = (xy · (xy · x))(xy · x)m · (x · xy)n

= xy · (x · xy)n = x(x · xy)n · y = xyn+1.

Further, since G is quasi-commutative of type (i, j;m,n), we have

Qi,j(x, xy) = Qm,n(xy, x).

Thus, xyi+1 = xyn+1. This proves the first identity.
The second follows from the fact that any quasi-commutative weak BCC-algebra of type

(i, j;m,n) is also quasi-commutative of type (m,n; i, j).

Proof of Theorem 6.12. Let a solid weak BCC-algebra G be quasi-commutative of type
(i, j;m,n). Then, in particular,

(x · xy)(xy)i · (yx)j = (y · yx)(yx)m · (xy)n

for x, y ∈ B(0). Since yx ∈ B(0), the second identity of Lemma 6.13 shows that

(y · yx)(yx)m = y · (yx)m+1 = y · (yx)j+1 = (y · yx)(yx)j .

Thus

(x · xy)(xy)i · (yx)j = (y · yx)(yx)j · (xy)n

for all x, y ∈ B(0). Hence Qi,j(x, y) = Qj,n(y, x) for x, y ∈ B(0). So, B(0) is quasi-
commutative of type (i, j; j, n). Obviously, it also is quasi-commutative of type (j, n; i, j).
Repeating the above procedure we can show thatB(0) is quasi-commutative of type (j, n;n, j).
This implies that it is quasi-commutative of type (n, j; j, n). For j = n it is quasi-
commutative of type (j, j; j, j). Thus in a solid weak BCC-algebra quasi-commutative of
type (i, j;m, j) the branch B(0) is quasi-commutative of type (j, j; j, j).



Quasi-commutative weak BCC-algebras 115

Finally let us consider the case i = j, i.e., the quasi-commutativity of type (i, i;m,n).
From the first part of this proof it follows that in this case B(0) is quasi-commutative of
type (i, i; i, n). Thus for x, y ∈ B(0) and i = j we have

(x · xy)(xy)i · (yx)i = (y · yx)(yx)i · (xy)n.

Since
(y · yx)(yx)i · (xy)n ⩽ (y · yx)(yx)i · (xy)i

for i ⩽ n and x, y ∈ B(0), the above implies

(x · xy)(xy)i · (yx)i ⩽ (y · yx)(yx)i · (xy)i.

Exchanging x and y we obtain

(y · yx)(yx)i · (xy)i ⩽ (x · xy)(xy)i · (xy)i,

which together with the previous inequality gives

(x · xy)(xy)i · (yx)i = (y · yx)(yx)i · (xy)i.

Therefore in this case B(0) is quasi-commutative of type (i, i; i, i). □

Corollary 6.14. Suppose that G is a quasi-commutative BCK-algebra of type (i, j;m,n).
Then its type of quasi-commutativity can be reduced to one of the following types: (i, i; i, i),
(j, j; j, j) and (n, j; j, n). □
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