QUASI-COMMUTATIVE WEAK BCC-ALGEBRAS

Bushra Karamdin* and Janus Thomys**

Received February 2, 2012; revised February 9, 2012

Abstract

We describe weak BCC-algebras (called also BZ-algebras) in which the condition $(x y) z=(x z) y$ is satisfied only in the case when elements x, y belong to the same branch. We also characterize quasi-commutative weak BCC-algebras various types.

1 Introduction BCK-algebras which are a generalization of the notion of algebra of sets with the set subtraction as the only fundamental non-nullary operation, and on the other hand, the notion of implication algebra (cf. [17]) were defined by Imai and Iséki in [15]. The class of all BCK-algebras does not form a variety. To prove this fact Y.Komori introduced in [18] the new class of algebras called BCC-algebras. In view of strongly connections with a BIK^{+}-logic, BCC -algebras also are called BIK^{+}-algebras (cf. [22] or [23]). Nowadays, the mathematicians especially from China, Japan and Korea, have been studying various generalizations of BCC-algebras such as, for example, B-algebras, difference algebras, implication algebras, $G B$-algebras, Hilbert algebras, d-algebras and many others. All these algebras have one distinguished element and satisfy some common identities playing a crucial role in these algebras.

One of very important identities is the identity $(x y) z=(x z) y$. It holds in BCK-algebras and in some generalizations of BCK-algebras, but not in BCC-algebras. BCC-algebras satisfying this identity are BCK-algebras (cf. [6] or [7]). Therefore, it makes sense to consider such BCC-algebras and some their generalizations for which this identity is satisfied only by elements belonging to some subsets. Such study has been initiated by W.A. Dudek in [9].

On the other hand, many mathematicians investigate BCI-algebras in which some basic properties are restricted to some subset called branches. For example, branchwise commutative BCI-algebras were described in [2], branchwise implicative and branchwise positive implicative BCI-algebras in [3] and [4]. But, as it was observed many years ago, results obtained for BCI-algebras can not be transferred to weak BCC-algebras.

Below we begin the study of weak BCC-algebras in which the condition $(x y) z=(x z) y$ is satisfied only in the case when elements x, y belong to the same branch.

2 Basic definitions and facts The BCC-operation will be denoted by juxtaposition. Dots will be used only to avoid repetitions of brackets. For example, the formula $((x y)(z y))(x z)=$ 0 will be written in the abbreviated form as $(x y \cdot z y) \cdot x z=0$.

Definition 2.1. A weak BCC-algebra is a system $(G ; \cdot, 0)$ of type $(2,0)$ satisfying the following axioms:
(i) $(x y \cdot z y) \cdot x z=0$,
(ii) $x x=0$,

[^0](iii) $x 0=x$,
(iv) $x y=y x=0 \Longrightarrow x=y$.

A weak BCC-algebra satisfying the identity
(v) $0 x=0$
is called a BCC-algebra. A BCC-algebra with the condition
(vi) $(x \cdot x y) y=0$
is called a BCK-algebra.
One can prove (see [6]) that a BCC-algebra is a BCK-algebra if and only if it satisfies the identity
(vii) $x y \cdot z=x z \cdot y$.

An algebra $(G ; \cdot, 0)$ of type $(2,0)$ satisfying the axioms $(i),(i i),(i i i),(i v)$ and $(v i)$ is called a BCI-algebra. A BCI-algebra satisfies also (vii). A weak BCC-algebra is a BCIalgebra if and only if it satisfies (vii).

A BCC-algebra which is not BCK-algebra is called proper. Similarly, a weak BCCalgebra which is not a BCC-algebra is called proper if it is not a BCI-algebra. A proper BCC-algebra has at least four elements (see [7]). Direct computation shows that there exist 45 distinct proper BCC-algebras of order four. Each of these BCC-algebras is isomorphic to one of eight proper BCC-algebras mentioned in [7]. One can prove (see [6]) that for every natural $n \geqslant 4$ there exists at least one proper BCC-algebra containing n elements. Proper weak BCC-algebras also have at least four elements (see [8]). But there are only two non-isomorphic weak BCC-algebras of order four:

$*$	0	1	2	3
0	0	0	2	2
1	1	0	2	2
2	2	2	0	0
3	3	3	1	0

Table 2.1.

$*$	0	1	2	3
0	0	0	2	2
1	1	0	3	3
2	2	2	0	0
3	3	3	1	0

Table 2.2.

They are proper, because in both cases $(3 * 2) * 1 \neq(3 * 1) * 2$.
The methods of construction of weak BCC-algebras proposed in [8] show that for every $n \geqslant 4$ there exist at least two non-isomorphic proper weak BCC-algebras of order n.

Any weak BCC-algebra can be considered as a partially ordered set. In any weak BCCalgebra we can define a natural partial order \leqslant putting

$$
\begin{equation*}
x \leqslant y \Longleftrightarrow x y=0 \tag{1}
\end{equation*}
$$

This means that a weak BCC-algebra can be considered as a partially ordered set with some additional properties.

Proposition 2.2. An algebra $(G ; \cdot, 0)$ of type $(2,0)$ with a relation \leqslant defined by (1) is a weak BCC-algebra if and only if for all $x, y, z \in G$ the following conditions are satisfied:
(i') $x y \cdot z y \leqslant x z$,
(ii') $x \leqslant x$,
$\left(i i i^{\prime}\right) \quad x 0=x$,
$\left(i v^{\prime}\right) \quad x \leqslant y$ and $y \leqslant x$ imply $x=y$.
Since two non-isomorphic weak BCC-algebras may have the same partial order, they cannot be investigated as partially ordered sets only. For example, weak BCC-algebras defined by Tables 2.1 and 2.2 have the same partial order but they are not isomorphic.
¿From (i^{\prime}) it follows that in weak BCC-algebras implications

$$
\begin{align*}
& x \leqslant y \Longrightarrow x z \leqslant y z \tag{2}\\
& x \leqslant y \Longrightarrow z y \leqslant z x \tag{3}
\end{align*}
$$

are satisfied by all $x, y, z \in G$.
In the investigations of algebras connected with various types of logics an important role plays the so-called Dudek's map φ defined as $\varphi(x)=0 x$. The main properties of this map in the case of weak BCC-algebras are collected in the following theorem proved in [12].

Theorem 2.3. Let G be a weak BCC-algebra. Then
(1) $\varphi^{2}(x) \leqslant x$,
(2) $x \leqslant y \Longrightarrow \varphi(x)=\varphi(y)$,
(3) $\varphi^{3}(x)=\varphi(x)$,
(4) $\varphi^{2}(x y)=\varphi^{2}(x) \varphi^{2}(y)$,
(5) $\varphi^{2}(x y)=\varphi(y x)$,
(6) $\varphi(x)(y x)=\varphi(y)$
for all $x, y \in G$.
The set

$$
B(a)=\{x \in G: a \leqslant x\}
$$

where $a \in G$ is fixed, is called a branch of G initiated by a. A branch $B(a)$ is proper if $B(b)=B(a)$ for every $b \leqslant a$. The set of initial elements of all proper branches of a weak BCC-algebra G is denoted by $I(G)$. Elements of $I(G)$ are called initial. A branch containing only initial element is called trivial.
Theorem 2.4. $I(G)=\left\{a \in G: \varphi^{2}(a)=a\right\}$.
The proof of this theorem is given in [10]. Comparing this result with Theorem 2.3 (4) we obtain

Corollary 2.5. $I(G)$ is a subalgebra of G.
Corollary 2.6. $I(G)=\varphi(G)$ for any weak BCC-algebra G.
Proof. Indeed, if $x \in \varphi(G)$, then $x=\varphi(y)$ for some $y \in G$. Thus, by Theorem 2.3, $\varphi^{2}(x)=\varphi^{3}(y)=\varphi(y)=x$. Hence $\varphi^{2}(x)=x$, i.e., $x \in I(G)$. So, $\varphi(G) \subset I(G)$.

Conversely, for $x \in I(G)$ we have $x=\varphi^{2}(x)=\varphi(\varphi(x))=\varphi(y)$, where $y=\varphi(x) \in G$. Thus $I(G) \subset \varphi(G)$, which completes the proof.

Corollary 2.7. An element a of a weak BCC-algebra G is its initial element if and only if there exists an element $x \in G$ such that $a=\varphi(x)$.

This means that the first row of the multiplication table determining a weak BCC-algebra contains only initial elements.

According to Corollary 2.7 each element satisfying the condition $\varphi(a)=a$ is initial, but this condition is not characteristic for initial elements, i.e., there are initial elements for which $\varphi(a) \neq a$.

Example 2.8. By computer we can check that the following table defines a weak BCCalgebra.

$*$	0	a	b	c	d	e
0	0	0	0	d	c	d
a	a	0	a	d	c	d
b	b	b	0	d	c	d
c	c	c	c	0	d	0
d	d	d	d	c	0	c
e	e	c	e	a	d	0

Table 2.3.

Diagram 2.3.

This weak BCC-algebra has three initial elements: $0, c, d$. But $\varphi(c) \neq c$ and $\varphi(d) \neq d$.

Corollary 2.9. $\varphi(a)=a$ if and only if $\varphi(x) \leqslant x$ for every $x \in B(a)$.
Proof. Let $\varphi(a)=a$ for some $a \in G$. Then $\varphi^{2}(a)=a$, so $a \in I(G)$. Hence for every $x \in B(a)$ we have $a \leqslant x$. From this, applying Theorem 2.3, we obtain $\varphi(x)=\varphi(a)=a \leqslant x$.

Conversely, $\varphi(x) \leqslant x$ for every $x \in B(a)$ means that also $\varphi(a) \leqslant a$. Since a is a minimal element in $B(a)$, the last implies $\varphi(a)=a$.

The branch initiated by 0 , i.e., the set

$$
B(0)=\{x \in G: 0 \leqslant x\}
$$

is called a $B C C$-part of a weak BCC-algebra G.
One can show (cf. [10]) that $B(0)$ is the greatest BCC-algebra contained in a weak BCC-algebra G.

3 Congruences and ideals In many algebras congruences are uniquely determined by some subsets. For example, congruences of groups are determined by normal subgroups, congruences of rings - by ideals.

In weak BCC-algebras the situation is more complicated. Indeed, as it was observed many years ago (cf. for example [14] or [19]) the kernel

$$
\rho(0)=\{x \in G: x \rho 0\}
$$

of a congruence ρ on a BCK-algebra G has the following property: $y \in \rho(0), x y \in \rho(0)$ imply $x \in \rho(0)$. Moreover, if A is an ideal of BCK-algebra G , then A determines some congruence of G , but there are congruences which are not determined by such subsets (cf. [21]).

According to [14] and [17], we say that a subset A of a BCK-algebra G is an ideal of G if
(1) $0 \in A$,
(2) $y \in A$ and $x y \in A$ imply $x \in A$.

Such defined ideal is an ideal in the sense of ordered sets. The relation

$$
\begin{equation*}
x \theta y \Longleftrightarrow x y, y x \in A \tag{4}
\end{equation*}
$$

is a congruence on a BCK-algebra G. Unfortunately it is not true for weak BCC-algebras (cf. [11]). In connection with this fact, W. A. Dudek and X. H. Zhang introduced in [11] the new concept of ideals. Now, in the literature these new ideals are called $B C C$-ideals, old ideals are called ideals or $B C K$-ideals.

Definition 3.1. A non-empty subset A of a weak BCC-algebra G is called a $B C C$-ideal if
(1) $0 \in A$,
(2) $y \in A$ and $x y \cdot z \in A$ imply $x z \in A$.

By putting $z=0$ we can see that a BCC-ideal is a BCK-ideal. In a BCK-algebra any BCK-ideal is a BCC-ideal, but there are BCC-algebras with BCC-ideals which are not BCK-ideals (cf. [11]).

Proposition 3.2. $B(0)$ is a $B C C$-ideal of each weak $B C C$-algebra.
Proof. Obviously $0 \in B(0)$. Let $x y \cdot z, y \in B(0)$. Then $0 \leqslant x y \cdot z$ and $0 \leqslant y$. From the last inequality, by (2) and (3) we obtain $x y \cdot z \leqslant x z$, which implies $0 \leqslant x z$ and consequently $x z \in B(0)$.

Each BCC-ideal of a BCC-algebra G is a kernel of some congruence on G, and conversely, each BCC-ideal of G determines some congruence on G. Similarly to BCK-algebras in infinite BCC-algebras there are congruences which are not determined by BCC-ideals. In finite BCC-algebras all congruences are determined by BCC-ideals (cf. [11]).

For a congruence θ an equivalence class containing an element x is denoted by C_{x}^{θ}. The quotient algebra $G / \theta=\left\{C_{x}^{\theta}: x \in G\right\}$ satisfies all axioms of a weak BCC-algebra except $(i v)$. This axiom is satisfied only in some cases.

Definition 3.3. The congruence θ defined on a weak BCC-algebra G is called regular if and only if $C_{x}^{\theta} \cdot C_{y}^{\theta}=C_{y}^{\theta} \cdot C_{x}^{\theta}=C_{0}^{\theta}$ implies $C_{x}^{\theta}=C_{y}^{\theta}$.

Regular congruences are characterized by BCC-ideals.
Proposition 3.4. A congruence of a weak BCC-algebra is regular if and only if it is defined by some BCC-ideal.

Proof. The proof of this proposition is identical with the proof given in [11] for BCCalgebras.

Example 3.5. The relation \sim defined on a weak BCC-algebra G by

$$
x \sim y \Longleftrightarrow \varphi(x)=\varphi(y)
$$

is an equivalence on G. Moreover, if $x \sim y$ and $u \sim v$, then $\varphi(x)=\varphi(y), \varphi(u)=\varphi(v)$. Hence, by Theorem 2.3, we obtain

$$
\varphi(u x)=\varphi^{2}(x u)=\varphi^{2}(x) \varphi^{2}(u)=\varphi^{2}(y) \varphi^{2}(v)=\varphi^{2}(y v)=\varphi(y v)
$$

which implies $u x \sim v y$. Thus \sim is a congruence. It is clear that the corresponding quotient algebra $G / \sim=\left\{C_{x}: x \in G\right\}$ satisfies the first three conditions of Definition 2.1. Moreover,
if $C_{x} \cdot C_{y}=C_{y} \cdot C_{x}=C_{0}$ for some $C_{x}, C_{y} \in G / \sim$, then $\varphi(x y)=\varphi(y x)=\varphi(0)=0$. This by Theorem 2.3 implies

$$
\varphi^{2}(y) \varphi^{2}(x)=\varphi^{2}(y x)=\varphi(x y)=0=\varphi(y x)=\varphi^{2}(x y)=\varphi^{2}(x) \varphi^{2}(y)
$$

Therefore $\varphi^{2}(x)=\varphi^{2}(y)$, and consequently $\varphi(x)=\varphi^{3}(x)=\varphi^{3}(y)=\varphi(y)$. Thus, $C_{x}=C_{y}$. Hence G / \sim is a weak BCC-algebra and \sim is a regular congruence.

Proposition 3.6. The congruence \sim coincides with the congruence induced by $B(0)$.
Proof. Indeed, if $x \sim y$, then $\varphi(x)=\varphi(y)$ and, by Theorem 2.3,

$$
\varphi(x y)=\varphi^{2}(y x)=\varphi^{2}(y) \varphi^{2}(x)=0
$$

i.e., $0 \leqslant x y$. Hence $x y \in B(0)$. Similarly, $y x \in B(0)$. Thus $x \theta y$, where θ is defined by (4) with $A=B(0)$.

Conversely, let $x \theta y$, where θ is defined by (4) with $A=B(0)$. Then $x y, y x \in B(0)$ and consequently $\varphi(x y)=\varphi(x y)=0$. Thus

$$
0=\varphi^{2}(x y)=\varphi^{2}(x) \varphi^{2}(y)
$$

Analogously, $0=\varphi^{2}(x) \varphi^{2}(y)$. This implies $\varphi^{2}(x)=\varphi^{2}(y)$. Therefore

$$
\varphi(x)=\varphi^{3}(x)=\varphi^{3}(y)=\varphi(y)
$$

which proves $x \sim y$.
Proposition 3.7. The class C_{x} coincides with the branch containing x.
Proof. Let $x \in G$ and $y \in C_{x}$. Then by Corollary $2.6 \varphi(y)=\varphi(x)=a \in I(G)$ and so by Theorems 2.4 and 2.3, we obtain $a=\varphi^{2}(a)=\varphi^{2}(y) \leqslant y$, which implies $y \in B(a)$. Thus $C_{x} \subset B(a)$.

Now let $z \in B(a)$. Then $a \leqslant z$ and, by Theorem 2.4, $\varphi(a)=\varphi(z)$. Thus

$$
\varphi(z)=\varphi(a)=\varphi^{3}(a)=\varphi\left(\varphi^{2}(a)\right)=\varphi\left(\varphi^{2}(y)\right)=\varphi^{3}(y)=\varphi(y)
$$

for any $y \in C_{x}$. Hence $z \in C_{x}$, i.e., $B(a) \subset C_{x}$. Consequently, $C_{x}=B(a)$ for $a=\varphi(x)$.
Corollary 3.8. Branches of a weak BCC-algebra coincide with the equivalence classes of a congruence induced by its BCC-part $B(0)$, i.e., $B(a)=C_{a}$ for any $a \in I(G)$.
Corollary 3.9. Let G be a weak BCC-algebra and $a, b \in I(G)$. Then

$$
B(a) B(b)=B(a b)
$$

As a simple consequence of the above results we obtain the following characterization of elements belonging to the same branch. This characterization was firstly presented in [10] with another proof.
Corollary 3.10. Elements $x, y \in G$ are in the same branch if and only if $x y \in B(0)$.
Proof. If $x, y \in B(a)$, then $x, y \in C_{a}$, so $x y, y x \in B(0)$. Conversely, if $x y \in B(0)$, then, by $\left(i^{\prime}\right)$, we have $0=0 \cdot x y=y y \cdot x y \leqslant y x$, which means that $y x \in B(0)$. Thus $x, y \in C_{a}$ for some $a \in I(G)$. Corollary 3.8 completes the proof.

Corollary 3.11. Comparable elements are in the same branch.

Proposition 3.12. If $x, y \in B(a)$, then also $x \cdot x y$ and $y \cdot y x$ are in $B(a)$.
Proof. Let $x, y \in B(a)$. Then $x y, y x \in B(0)$. Thus $0 \leqslant x y$ and $0 \leqslant y x$. From this, using (3), we obtain $x \cdot x y \leqslant x$ and $y \cdot y x \leqslant y$. Corollary 3.11 completes the proof.

Proposition 3.13. Let G be a weak $B C C$-algebra. The sum of all branches $B(a)$ of G such that $a \in A \subset I(G)$ is a subalgebra of G if and only if A is a subalgebra of G.

Proof. Let S be the sum of all branches $B(a)$ of G such that $a \in A$. Obviously $a \in S$. If S is a subalgebra of G, then $0 \in B(a)$ for some $a \in A$. Since $0 \in B(a)$ only in the case when $a=0$, we obtain $0 \in A$. Now let $a, b \in A$. Then $a, b \in S$, and consequently $a b \in S \cap I(G)=A$ (Corollary 2.5). Hence A is a subalgebra of G.

Conversely, if A is a subalgebra of G, then $0 \in A \subset S$. Moreover, for any $x, y \in S$ there are $a, b \in A$ such that $x \in B(a)$ and $y \in B(b)$. Thus $x y \in B(a) B(b)=B(a b)$. But $a b \in A$, so $B(a b) \subset S$. Hence $x y \in S$.

4 Group-like weak BCC-algebras One of important classes of weak BCC-algebras is the class of the so-called group-like weak BCC-algebras called also anti-grouped BZ-algebras [24]. It is a subclass of group-like BCI-algebras described in [5] and [20].

Definition 4.1. A weak BCC-algebra is group-like if all its branches are trivial.
This means that a group-like weak BCC-algebra contains only incomparable elements. From results proved in [5] it follows that such BCC-algebras are strongly connected with groups (see also [24]). The connection between group-like weak BCC-algebras and groups is given in the theorem presented below.

Theorem 4.2. A weak BCC-algebra $(G ; \cdot, 0)$ is group-like if and only if $(G ; *, e)$, where $e=0$ and $x * y=x \cdot 0 y$, is a group. Moreover, in this case $x y=x * y^{-1}$.

It is not difficult to see that if in the above theorem a group $(G ; *, e)$ is abelian then the corresponding weak BCC-algebra is a BCI-algebra. Thus, a group-like weak BCC-algebra is proper if and only if it is induced by a non-abelian group.

The conditions under which a weak BCC-algebra is group-like are found in [10]. These conditions are presented below.

Theorem 4.3. A weak BCC-algebra G is group-like if and only if at least one of the following conditions is satisfied:
(1) $\varphi^{2}(x)=x$ for all $x \in G$,
(2) $\varphi(x y)=y x$ for all $x, y \in G$,
(3) $x y \cdot z y=x z$ for all $x, y, z \in G$,
(4) $\operatorname{Ker} \varphi=\{0\}$,
(5) $x y=z y$ implies $x=z$ for all $x, y, z \in G$,
(6) $x y=0$ implies $x=y$ for all $x, y \in G$.

As a consequence of Theorems 2.4 and 4.3 we obtain
Corollary 4.4. A weak BCC-algebra G is group-like if and only if $G=I(G)$, or equivalently, if and only if $G=\varphi(G)$.

Corollary 4.5. $\varphi(G)$ is a maximal group-like subalgebra of each weak BCC-algebra G.
Proof. By Corollaries 2.5 and $2.6 \varphi(G)=I(G)$ is a subalgebra. By Corollary 4.4 it is group-like. To prove it is maximal, let us consider an arbitrary group-like subalgebra A of G. Then, by Theorem 4.3, for any $x \in A$ we have $x=\varphi^{2}(x)$, i.e., $x=\varphi(\varphi(x))$ which means that $x \in \varphi(G)$. Thus $A \subset \varphi(G)$ for any group-like subalgebra A of G. Hence $\varphi(G)$ is a maximal group-like subalgebra of G.

As a simple consequence of Theorem 4.2 we obtain
Corollary 4.6. ρ is a congruence of a group-like weak BCC-algebra if and only if it is a congruence of the corresponding group.

5 Solid weak BCC-algebras

Definition 5.1. A weak BCC-algebra $(G ; \cdot, 0)$ is called solid, if for all x and y belonging to the same branch the identity
(vii) $x y \cdot z=x z \cdot y$
is satisfied. If this identity is satisfied also in the case when y, z are in the same branch, then we say such a weak BCC-algebra is super solid.

All BCI-algebras and all BCK-algebras are solid weak BCC-algebras. A solid weak BCC-algebra containing only one branch is a BCK-algebra. But there are solid weak BCCalgebras which are not BCI-algebras. For example, a proper weak BCC-algebra defined by Table 2.1 is solid but it is not super solid. A weak BCC-algebra defined by Table 2.2 is not solid because in this algebra we have $(3 * 2) * 3 \neq(3 * 3) * 2$.

Theorem 5.2. In solid weak BCC-algebras the map φ is a homomorphism.
Proof. Indeed,

$$
\begin{aligned}
\varphi(x) \varphi(y)= & 0 x \cdot 0 y=((x y \cdot x y) x) \cdot 0 y=((x y \cdot x) \cdot x y) \cdot 0 y \\
& =((x x \cdot y) \cdot x y) \cdot 0 y=(0 y \cdot x y) \cdot 0 y=(0 y \cdot 0 y) \cdot x y \\
& =0 \cdot x y=\varphi(x y)
\end{aligned}
$$

for all $x, y \in G$.
Lemma 5.3. In any solid weak $B C C$-algebra

$$
a x=a b
$$

for all $a, b \in I(G)$ and $x \in B(b)$.
Proof. Let $a, b \in I(G)$. Then for any $x \in B(b)$ we have $b \leqslant x$, which, by (3), implies $a x \leqslant a b$. Since $I(G)$ is a subalgebra of G (Corollary 2.5), hence $a b \in I(G)$. This means that $a b$ is a minimal element of G. Thus $a x=a b$.

Lemma 5.4. If in a solid weak $B C C$-algebra $a x=a b$ holds for some $a, x \in G$ and $b \in I(G)$, then $x \in B(b)$.

Proof. If $a x=a b$ holds for some $a, x \in G$ and $b \in I(G)$, then, according to (i), we have

$$
0=(a b \cdot x b) \cdot a x=(a b \cdot a x) \cdot x b=0 \cdot x b
$$

Thus $0 \leqslant x b$. This, by Corollary 3.10 , means that x and b are in the same branch.

Corollary 5.5. Elements x, y of a solid weak BCC-algebra G are in the same branch if and only if $a x=$ ay for some $a \in I(G)$.

Proof. If elements x, y belong to the branch $B(b)$, where $b \in I(G)$, then from Lemma 5.3 it follows $a x=a b=a y$ for all $a \in I(G)$.

Conversely, if $a x=a y$ for some $a \in I(G)$, then

$$
0=(a x \cdot y x) \cdot a y=(a x \cdot a y) \cdot y x=0 \cdot y x
$$

Thus $y x \in B(0)$. Corollary 3.10 completes the proof.
Definition 5.6. For $x, y \in G$ and non-negative integers n we define

$$
x y^{0}=x, \quad x y^{n+1}=\left(x y^{n}\right) y
$$

Lemma 5.7. In solid weak BCC-algebras we have

$$
0 \cdot 0 x^{n}=0 \cdot(0 x)^{n}
$$

for every $x \in G$ and every natural n.
Proof. For $n=1$ this identity is obvious. If it is valid for $n=k$, then for $n=k+1$, using Theorem 5.2, we obtain

$$
0 \cdot 0 x^{k+1}=0 \cdot\left(0 x^{k} \cdot x\right)=\left(0 \cdot 0 x^{k}\right) \cdot 0 x=\left(0 \cdot(0 x)^{k}\right) \cdot 0 x=0 \cdot(0 x)^{k+1}
$$

which completes the proof.
Lemma 5.8. ([9], Lemma 2). In a solid weak BCC-algebra

$$
x(x \cdot x y)=x y
$$

for x, y belonging to the same branch.
We present some generalizations of the above result.
Proposition 5.9. In a solid weak BCC-algebra

$$
x(x \cdot x y)^{2}=x y^{2}
$$

for x, y belonging to the same branch.
Proof. Indeed, using Lemma 5.8, we obtain

$$
x(x \cdot x y)^{2}=x(x \cdot x y) \cdot(x \cdot x y)=x y \cdot(x \cdot x y)=x(x \cdot x y) \cdot y=x y \cdot y=x y^{2}
$$

Theorem 5.10. In a super solid weak BCC-algebra

$$
x(x \cdot x y)^{n}=x y^{n}
$$

for all natural n and x, y belonging to the same branch.
Proof. For $n=1$ this theorem coincides with Lemma 5.8, for $n=2$ with Proposition 5.9.
For $n \geqslant 3$, by Lemma 5.8, we have

$$
\begin{aligned}
x(x \cdot x y)^{n} & =x(x \cdot x y) \cdot(x \cdot x y)^{n-1}=x y \cdot(x \cdot x y)^{n-1} \\
& =(x y \cdot(x \cdot x y)) \cdot(x \cdot x y)^{n-2}=(x(x \cdot x y)) y \cdot(x \cdot x y)^{n-2} \\
& =(x y \cdot y) \cdot(x \cdot x y)^{n-2}=((x y \cdot y) \cdot(x \cdot x y)) \cdot(x \cdot x y)^{n-3} .
\end{aligned}
$$

Since, by the assumption, x, y belong to the same branch $B(a)$, then, by Proposition 3.12, also $x \cdot x y \in B(a)$. Thus

$$
\begin{aligned}
((x y \cdot y) \cdot(x \cdot x y)) \cdot(x \cdot x y)^{n-3} & =(x y \cdot(x \cdot x y)) y \cdot(x \cdot x y)^{n-3} \\
& =(x(x \cdot x y) \cdot y) y \cdot(x \cdot x y)^{n-3} \\
& =(x y \cdot y) y \cdot(x \cdot x y)^{n-3} \\
& =x y^{3} \cdot(x \cdot x y)^{n-3} \\
& \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
& =x y^{n-1} \cdot(x \cdot x y) \\
& =\ldots=x y^{n} .
\end{aligned}
$$

This completes the proof.
Theorem 5.11. Any (solid) weak BCC-algebra can be extended to a (solid) weak BCCalgebra containing one element more.

Proof. Let $(G ; \cdot, 0)$ be a (solid) weak BCC-algebra and let $\theta \notin G$. Then the set $G^{\prime}=G \cup\{\theta\}$ with the operation

$$
x \star y=\left\{\begin{array}{cll}
x y & \text { for } & x, y \in G, \\
x & \text { for } & x \in G, y=\theta, \\
0 y & \text { for } & x=\theta, y \in G-\{0\}, \\
\theta & \text { for } & x=\theta, y=0, \\
0 & \text { for } & x=y=\theta
\end{array}\right.
$$

is a (solid) weak BCC-algebra.
The axioms $(i i)-(i v)$ are obvious. Since by the assumption the axiom (i) is satisfied for all $x, y, z \in G$, we must verify it only in the case when at least one of x, y, z is equal to θ. But this is a routine calculation. Also it is not difficult to verify that $\left(G^{\prime} ; \star, 0\right)$ is solid if $(G ; \cdot, 0)$ is solid.

It can be noticed that the above construction saves the number of branches. Indeed, $\theta \in B(0)$ since $0<\theta<y$ for every $y \in B(0)$. So, $(G ; \cdot, 0)$ and $\left(G^{\prime} ; \star, 0\right)$ have the same initial elements and the same branches determined by non-zero initial elements. The branch $B(0)$ has in $\left(G^{\prime} ; \star, 0\right)$ one element more than in $(G ; \cdot, 0)$.

Theorem 5.12. Any BCK-algebra can be embedded into a solid weak BCC-algebra as its $B(0)$ branch.

Proof. Let $(G ; \cdot, 0)$ be a BCK-algebra and let $\theta \notin G$ be a fixed element. Then, as it is not difficult to see, $\left(G^{\prime} ; \star, 0\right)$ with the operation

$$
x \star y=\left\{\begin{array}{cll}
x y & \text { for } & x, y \in G, \\
\theta & \text { for } & x \in G, y=\theta, \\
\theta & \text { for } & x=\theta, y \in G, \\
0 & \text { for } & x=y=\theta
\end{array}\right.
$$

is a solid weak BCC-algebra containing $(G ; \cdot, 0)$ as its subalgebra. This weak BCC-algebra contains two branches: $B(0)=G$ and $B(\theta)=\{\theta\}$.

Proposition 5.13. Any BCK-algebra can be embedded into a solid weak BCC-algebra without trivial branches.

Proof. Let $(G ; \cdot, 0)$ be a BCK-algebra and $(H ; *, 0)$ a solid weak BCC-algebra without trivial branches such that $G \cap H=\{0\}$. On $G \cup H$ we define a common operation \star by putting

$$
x \star y=\left\{\begin{array}{ccl}
x y & \text { if } & x, y \in G \\
x * y & \text { if } & x, y \in H \\
0 * y & \text { if } & x \in G, y \in H-\{0\} \\
x & \text { if } & x \in H, y \in G
\end{array}\right.
$$

Then long but simple calculations show that $(G \cup H ; \star, 0)$ is a solid weak BCC-algebra. The natural order of $(G \cup H ; \star, 0)$ coincides on G with the natural order of $(G ; \cdot, 0)$, and on H with the natural order of $(H ; *, 0)$. Each element of G is smaller than each non-zero element of the branch $B(0)$ of a weak BCC-algebra $(H ; *, 0)$. Elements of G and elements of other branches of H are incomparable.

Corollary 5.14. Any BCC-algebra can be embedded into a weak BCC-algebra without trivial branches.

Proof. We can use the same construction. Obtained weak BCC-algebra will be solid only in the case when the starting BCC-algebra will be a BCK-algebra.

The idea of the above construction is based on gluing graphs presented in the following example.

Example 5.15. Consider a BCK-algebra $(G ; \cdot, 0)$:

\cdot	0	1	2	3
0	0	0	0	0
1	1	0	1	0
2	2	2	0	0
3	3	3	3	0

Table 5.1.

and a solid weak BCC-algebra $(H ; *, 0)$:

$*$	0	a	b	c	d
0	0	0	b	b	b
a	a	0	b	b	b
b	b	b	0	0	0
c	c	b	a	0	a
d	d	b	a	a	0

Table 5.2.
Diagram 5.2.

The above construction gives the following solid weak BCC-algebra:

\star	0	1	2	3	a	b	c	d
0	0	0	0	0	0	b	b	b
1	1	0	1	0	0	b	b	b
2	2	2	0	0	0	b	b	b
3	3	3	3	0	0	b	b	b
a	a	a	a	a	0	b	b	b
b	b	b	b	b	b	0	0	0
c	c	c	c	c	b	a	0	a
d	d	d	d	d	b	a	a	0

Table 5.3.

Diagram 5.3.

Theorem 5.16. Any weak BCC-algebra can be embedded into a BCC-algebra.
Proof. Let $(G ; \cdot, 0)$ be a weak BCC-algebra and let $G^{\prime}=G \cup\{\theta\}$, where $\theta \notin G$. Then, as it is not difficult to see, $\left(G^{\prime} ; \star, \theta\right)$ with the operation

$$
x \star y=\left\{\begin{array}{cll}
x y & \text { if } & x y \neq 0 \\
\theta & \text { if } & x y=0, \\
\theta & \text { if } & x=\theta, y \in G^{\prime} \\
x & \text { if } & x \in G^{\prime}, y=\theta
\end{array}\right.
$$

is a BCC-algebra.
Example 5.17. Using the last construction we can extend the weak BCC-algebra defined by Table 2.1.2 (Example 5.15) into the following BCC-algebra:

$*$	0	a	b	c	d	θ
0	θ	θ	b	b	b	0
a	a	θ	b	b	b	a
b	b	b	θ	θ	θ	b
c	c	b	a	θ	a	c
d	d	b	a	a	θ	d
θ						

Table 5.4.

Diagram 5.4.

Corollary 5.18. Any BCI-algebra can be embedded into a BCK-algebra.
Proof. According to the definition, any BCI-algebra is a solid weak BCC-algebra. So, starting from a BCI-algebra ($G ; \cdot, 0$) and using the construction proposed in the proof of Theorem 5.16 we obtain a BCC-algebra $\left(G^{\prime} ; \star, 0\right)$ which is a BCK-algebra. Indeed, $\left(G^{\prime} ; \star, 0\right)$ is a BCC-algebra and, by the assumption, the condition $(x \star y) \star z=(x \star z) \star y$ is satisfied by all $x, y, z \in G$. It is not difficult to verify that it is also satisfied in the case when at least one element of x, y, z is equal to θ. Thus, it is satisfied for all $x, y, z \in G^{\prime}$. Therefore, $\left(G^{\prime} ; \star, 0\right)$ is a BCK-algebra.

Corollary 5.19. Any group-like weak BCC-algebra can be embedded into a BCK-algebra containing only atoms.

Proof. Let G be a group-like weak BCC-algebra. Using the construction from the proof of Theorem 5.16 we obtain a BCC-algebra G^{\prime} in which elements of G are comparable only with θ since in this construction we have $\theta \star x=\theta$ for all $x \in G^{\prime}$. Also $x \star \theta=x$. Thus the condition $(x \star y) \star z=(x \star z) \star y$ is satisfied if at least one of x, y, z is equal to θ. Let $x, y, z \in G$. Then by definition of $\star, \theta \leqslant y$ and so by (3), $x \star y \leqslant x \star \theta$. Since x is comparable only with θ and x, then we have $x \star y=\theta$ or $x \star y=x$. In the first case $x=y$ and $(x \star x) \star z=\theta \star z=\theta=(x \star z) \star x$. In the second $(x \star y) \star z=x \star z=x=x \star z=(x \star z) \star y$. This proves that this BCC-algebra is a BCK-algebra.

6 Quasi-commutative weak BCC-algebras As it is widely known (cf. for example [19]), commutative BCC-algebras, i.e., BCC-algebras satisfying the identity $x \cdot x y=y \cdot y x$, form a variety, but the class of all BCC-algebras is not a variety (cf. [18]). Also the class of all weak BCC-algebras is not a variety. Similarly, the class of all BCI-algebras. However, the so-called quasi-commutative BCI-algebras form a variety (cf. [13]). In this section we prove that analogous result is valid for quasi-commutative weak BCC-algebras.

In a weak BCC-algebra G for non-negative integers m, n we define a polynomial $Q_{m, n}(x, y)$ by putting:

$$
Q_{m, n}(x, y)=(x \cdot x y)(x y)^{m} \cdot(y x)^{n}
$$

Definition 6.1. A weak BCC-algebra G is called quasi-commutative of type ($m, n ; i, j$) if there exist two pairs of non-negative integers i, j and m, n such that

$$
Q_{m, n}(x, y)=Q_{i, j}(y, x)
$$

or equivalently

$$
(x \cdot x y)(x y)^{m} \cdot(y x)^{n}=(y \cdot y x)(y x)^{i} \cdot(x y)^{j}
$$

holds for all $x, y \in G$. If the above identity holds only for all x, y belonging to the same branch, then we say that this weak BCC-algebra is branchwise quasi-commutative (shortly: b-quasi-commutative).

Exchanging x and y in $Q_{m, n}(x, y)=Q_{i, j}(y, x)$, we see that a weak BCC-algebra is quasicommutative of type $(i, j ; m, n)$ if and only if it is quasi-commutative of type $(m, n ; i, j)$.

Example 6.2.

(1) A group-like weak BCC-algebra is b-quasi-commutative of any type since each its branch has only one element.
(2) A medial weak BCC-algebra is quasi-commutative of type $(0,1 ; 0,0)$ because it satisfies the identity $x \cdot x y=y$.
(3) A weak BCC-algebra is branchwise commutative (commutative) if and only if it b-quasi-commutative (quasi-commutative) of type (0,$0 ; 0,0$).

Proposition 6.3. A b-quasi-commutative solid weak BCC-algebra G of type $(0, k ; 0,0)$ is branchwise commutative.

Proof. Let G be a weak BCC-algebra satisfying the assumption. Then

$$
Q_{0, k}(x, y)=(x \cdot x y)(y x)^{k}=y \cdot y x=Q_{0,0}(y, x)
$$

for x, y belonging to the same branch. For $k=0$ it is obviously branchwise commutative.

Let $k>0$. Then $y x \in B(0)$. Hence $0 \leqslant y x$, and consequently $(x \cdot x y)(y x) \leqslant x \cdot x y$, by (3). Thus

$$
y \cdot y x=(x \cdot x y)(y x)^{k} \leqslant(x \cdot x y)(y x)^{k-1} \leqslant \ldots \leqslant(x \cdot x y)(y x) \leqslant x \cdot x y
$$

i.e., $y \cdot y x \leqslant x \cdot x y$.

Interchanging x and y we get $x \cdot x y=y \cdot y x$.

Proposition 6.4. In solid weak BCC-algebras the following inequalities
(1) $Q_{n-1, n}(x, y) \geqslant Q_{n, n}(x, y) \geqslant Q_{n, n+1}(x, y) \geqslant Q_{n+1, n+1}(x, y)$,
(2) $Q_{n-1, n}(x, y) \geqslant Q_{n, n}(y, x) \geqslant Q_{n, n+1}(x, y) \geqslant Q_{n+1, n+1}(y, x)$
are valid for all natural n and x, y belonging to the same branch.
Proof. (1) Observe that $x \cdot x y \in B(a)$ and $(x \cdot x y)(x y)^{k} \in B(a)$ for every k and $x, y \in B(a)$. The first is a consequence of Proposition 3.12 , the second follows from the fact that $0 \leqslant x y$ implies $a \cdot x y \leqslant a$, i.e., $a \cdot x y=a$ because $a \in I(G)$. Therefore $a=a \cdot(x y)^{k} \leqslant(x \cdot x y)(x y)^{k}$. Thus using (i^{\prime}) and (2) we obtain

$$
\begin{aligned}
Q_{n, n}(x, y) \cdot Q_{n-1, n}(x, y) & =\left((x \cdot x y)(x y)^{n} \cdot(y x)^{n}\right) \cdot\left((x \cdot x y)(x y)^{n-1} \cdot(y x)^{n}\right) \\
& \leqslant\left((x \cdot x y)(x y)^{n} \cdot(y x)^{n-1}\right) \cdot\left((x \cdot x y)(x y)^{n-1} \cdot(y x)^{n-1}\right) \\
& \leqslant\left((x \cdot x y)(x y)^{n} \cdot(y x)^{n-2}\right) \cdot\left((x \cdot x y)(x y)^{n-1} \cdot(y x)^{n-2}\right) \\
& \leqslant \ldots \leqslant(x \cdot x y)(x y) \cdot(x \cdot x y) \\
& =(x \cdot x y)(x \cdot x y) \cdot x y=0 \cdot x y=0 .
\end{aligned}
$$

Thus

$$
Q_{n, n}(x, y) \cdot Q_{n-1, n}(x, y)=0
$$

which proves

$$
Q_{n, n}(x, y) \leqslant Q_{n-1, n}(x, y)
$$

Similarly,

$$
\begin{aligned}
Q_{n, n+1}(x, y) \cdot Q_{n, n}(x, y) & =\left((x \cdot x y)(x y)^{n} \cdot(y x)^{n+1}\right) \cdot\left((x \cdot x y)(x y)^{n} \cdot(y x)^{n}\right) \\
& \leqslant\left((x \cdot x y)(x y)^{n} \cdot(y x)^{n}\right) \cdot\left((x \cdot x y)(x y)^{n} \cdot(y x)^{n-1}\right) \\
& \leqslant \ldots \leqslant\left((x \cdot x y)(x y)^{n} \cdot y x\right) \cdot(x \cdot x y)(x y)^{n} \\
& =\left((x \cdot x y)(x y)^{n} \cdot(x \cdot x y)(x y)^{n}\right) \cdot y x=0 \cdot y x=0 .
\end{aligned}
$$

Hence

$$
Q_{n, n+1}(x, y) \leqslant Q_{n, n}(x, y)
$$

The last inequality of (1) is a consequence of the first.
(2) If $x, y \in B(a)$, then $x y, y x \in B(0)$ and $x \cdot x y, y \cdot y x \in B(a)$ by Corollary 3.10 and Proposition 3.12. From this, analogously as in the proof of (1), we can deduce that $(x \cdot x y)(x y)^{n-1}$ and $(x \cdot x y)(x y)^{n-1} \cdot(y x)^{n}$ are in $B(a)$ for every natural n. Therefore

$$
\begin{aligned}
Q_{n, n}(y, x) \cdot Q_{n-1, n}(x, y) & =\left((y \cdot y x)(y x)^{n} \cdot(x y)^{n}\right) \cdot\left((x \cdot x y)(x y)^{n-1} \cdot(y x)^{n}\right) \\
& =\left((y \cdot y x)(y x)^{n} \cdot\left((x \cdot x y)(x y)^{n-1} \cdot(y x)^{n}\right)\right) \cdot(x y)^{n} \\
& \leqslant\left((y \cdot y x) \cdot(x \cdot x y)(x y)^{n-1}\right) \cdot(x y)^{n} \\
& =(y \cdot y x)(x y)^{n} \cdot(x \cdot x y)(x y)^{n-1} \\
& \leqslant(y \cdot y x)(x y) \cdot(x \cdot x y) \leqslant(y \cdot y x) x=0 .
\end{aligned}
$$

$$
Q_{n, n}(y, x) \leqslant Q_{n-1, n}(x, y)
$$

Analogously,

$$
\begin{aligned}
Q_{n, n+1}(x, y) \cdot Q_{n, n}(y, x) & =\left((x \cdot x y)(x y)^{n} \cdot(y x)^{n+1}\right) \cdot\left((y \cdot y x)(y x)^{n} \cdot(x y)^{n}\right) \\
& =\left((x \cdot x y)(x y)^{n} \cdot\left((y \cdot y x)(y x)^{n} \cdot(x y)^{n}\right)\right) \cdot(y x)^{n+1} \\
& \leqslant\left((x \cdot x y) \cdot(y \cdot y x)(y x)^{n}\right) \cdot(y x)^{n+1} \\
& =(x \cdot x y)(y x)^{n+1} \cdot(y \cdot y x)(y x)^{n} \\
& \leqslant(x \cdot x y)(y x) \cdot(y \cdot y x) \leqslant(x \cdot x y) y=0 .
\end{aligned}
$$

This proves that

$$
Q_{n, n+1}(x, y) \leqslant Q_{n, n}(y, x)
$$

The last inequality of (2) is a consequence of the first.
Theorem 6.5. Every solid weak BCC-algebra which is decomposed into a finite number of finite branches is b-quasi-commutative of some type of the form $(m, m ; m, m+1)$.

Proof. Each branch $B(a)$ of G is finite, hence for each pair of elements $x, y \in B(a)$ the sequence (2) from Proposition 6.4 is finite. This means that for all $x, y \in B(a)$ there exists natural $n^{\prime}=n(x, y)$ such that $Q_{n, n}(x, y)=Q_{n, n+1}(y, x)$ for all $n \geqslant n^{\prime}$. Since $I(G)$ is finite for every

$$
m \geqslant \max \{n(x, y): x, y \in B(a), a \in I(G)\}
$$

and x, y belonging to the same branch we have $Q_{m, m}(x, y)=Q_{m, m+1}(y, x)$, which shows that G is quasi-commutative of type $(m, m ; m, m+1)$.
Corollary 6.6. Any finite solid weak BCC-algebra is b-quasi-commutative of some type $(m, m ; m, m+1)$.

Theorem 6.7. If a proper weak BCC-algebra is quasi-commutative of type $(i, j ; m, n)$, then $i-j+m-n+1 \neq \pm 1$.
Proof. Since, by the assumption, a weak BCC-algebra G is proper, it has at least two branches, i.e., there exists $a \in I(G)$ such that $a \neq 0$. For this a we have $Q_{i, j}(0, a)$. $Q_{m, n}(a, 0)=0$ because G is quasi-commutative of type $(i, j ; m, n)$.

By Corollary $2.5 I(G)$ is a subalgebra of G. By Theorems 2.4 and 4.3 it is a group-like subalgebra. Hence (Theorem 4.2) there exists a group $(I(G) ; *, 0)$ such that $x y=x * y^{-1}$ for $x, y \in I(G)$. Thus,

$$
\begin{aligned}
0=Q_{i, j}(0, a) \cdot Q_{m, n}(a, 0) & =\left((0 \cdot 0 a)(0 a)^{i} \cdot(a 0)^{j}\right) \cdot\left((a \cdot a 0)(a 0)^{m} \cdot(0 a)^{n}\right) \\
& =\left(\left(a \cdot(0 a)^{i}\right) \cdot a^{j}\right) \cdot\left(\left(0 \cdot a^{m}\right) \cdot(0 a)^{n}\right) \\
& =\left(a^{1+i} * a^{-j}\right) *\left(a^{-m} * a^{n}\right)^{-1} \\
& =a^{1+i-j+m-n} .
\end{aligned}
$$

For $i-j+m-n+1= \pm 1$, from the above we obtain $a^{ \pm 1}=0$, which implies $a=0$. But this contradicts to our assumption on a. Therefore, it must be $i-j+m-n+1 \neq \pm 1$.

Theorem 6.8. For $i-j+m-n+1 \neq \pm 1$ there exists a group-like quasi-commutative weak BCC-algebra of type $(i, j ; m, n)$.

Proof. Let $k=|i-j+m-n+1|$. By Theorem 6.7 we have $k \neq 1$. Consider a group-like weak BCC-algebra ($G ; \cdot, 0$) induced by an abelian group $(G ; *, 0)$. Then, as it is not difficult to verify,

$$
Q_{i, j}(x, y) \cdot Q_{m, n}(y, x)=\left(x^{-1} * y\right)^{i-j+m-n+1}=\left(x^{-1} * y\right)^{ \pm k}
$$

This means that for $k=0$ each group-like weak BCC-algebra induced by an abelian group is quasi-commutative of type $(i, j ; m, n)$. For $k>1$ such weak BCC-algebra should be induced by a cyclic group of order k.

Theorem 6.9. An algebra $(G ; \cdot, 0)$ of type $(2,0)$ is a quasi-commutative weak BCC-algebra of type $(i, j ; m, n)$ if and only if it satisfies the following three identities:
(a) $(x y \cdot z y) \cdot x z=0$,
(b) $x 0=x$,
(c) $\quad Q_{i, j}(x, y)=Q_{m, n}(y, x)$.

Proof. The necessity is obvious. To show the sufficiency, we only need to verify two axioms from the definition of weak BCC-algebras: $(i i)$ and $(i v)$, because (i) coincides with $(a),(i i i)$ with (b).

Using (a) and (b) we obtain $x x=x x \cdot 0=(x 0 \cdot x 0) \cdot 00=0$, which proves $(i i)$. If $x y=$ $y x=0$, then $Q_{i, j}(x, y)=(x \cdot x y)(x y)^{i} \cdot(y x)^{j}=x$ and $Q_{m, n}(y, x)=(y \cdot y x)(y x)^{m} \cdot(x y)^{n}=y$. This, by (c), implies $x=y$ and completes the proof.

Corollary 6.10. The class of quasi-commutative weak BCC-algebras of a fixed type is a variety.

The class of quasi-commutative weak BCC-algebras of a fixed type can also be defined by two identities.

Theorem 6.11. An algebra $(G ; \cdot, 0)$ of type $(2,0)$ is a quasi-commutative weak BCC-algebra of type $(i, j ; m, n)$ if and only if it satisfies the following identities:
($\alpha) u \cdot((x y \cdot z y) \cdot x z)=u$,
(β) $\quad Q_{i, j}(x, y)=Q_{m, n}(y, x) \cdot 0$.
Proof. The necessity is obvious. To prove sufficiency we will show that any algebra $(G ; \cdot, 0)$ satisfying the conditions $(\alpha),(\beta)$, also satisfies the conditions $(a),(b),(c)$ from the previous theorem.

Let $\theta=(00 \cdot 00) \cdot 00$. Then, by (α), we have

$$
\theta \theta=\theta \cdot((00 \cdot 00) \cdot 00)=\theta
$$

Using (α) once again, for every $u \in G$ we obtain

$$
u \cdot((\theta \theta \cdot \theta \theta) \cdot \theta \theta)=u
$$

which, in view of $\theta \theta=\theta$, gives $u \theta=u$. Now, putting $y=z=\theta$ in (α) and applying just proved identity $u \theta=u$ we get $u \cdot x x=u$ for all $x, u \in G$. This means that

$$
\begin{equation*}
u \cdot(x x)^{k}=u \tag{5}
\end{equation*}
$$

for any natural k. In particular $0 \cdot(00)^{k}=0$. Hence

$$
Q_{i, j}(0,0)=(0 \cdot 00)(00)^{i} \cdot(00)^{j}=0 \cdot(00)^{j}=0
$$

Similarly, $Q_{m, n}(0,0)=0$. This, by (β), implies $00=0$. Consequently, $u 0=u \cdot 00=u$ for every $u \in G$. So, the condition (b) from Theorem 6.9 is satisfied. Combining (b) and (β) we obtain the condition (c).

Observe that (5) for $u=x x$ implies $(x x)^{k+1}=x x$ for any natural k. ¿From (5) we also obtain $0 \cdot(x x)^{k}=0$ for any natural k. Hence

$$
\begin{aligned}
Q_{i, j}(x x, 0) & =(x x \cdot(x x \cdot 0))(x x \cdot 0)^{i} \cdot(0 \cdot x x)^{j} \\
& =(x x \cdot x x)(x x)^{i} \cdot 0^{j}=(x x)^{i+2}=x x
\end{aligned}
$$

and

$$
\begin{aligned}
Q_{m, n}(0, x x) & =(0 \cdot(0 \cdot x x))(0 \cdot x x)^{m} \cdot(x x \cdot 0)^{n} \\
& =\left(00 \cdot 0^{m}\right) \cdot(x x)^{n}=0 \cdot(x x)^{n}=0
\end{aligned}
$$

which together with just proved (c) gives $x x=0$ for every $x \in G$. Now, putting $u=$ $(x y \cdot z y) \cdot x z$ in (α) we have

$$
u=u \cdot(x y \cdot z y) \cdot x z=u u=0
$$

This means that $(x y \cdot z y) \cdot x z=0$, so any algebra $(G ; \cdot, 0)$ satisfying $(\alpha),(\beta)$ satisfies also (c), and consequently it is a quasi-commutative weak BCC-algebra of type $(i, j ; m, n)$.

Theorem 6.12. If a solid weak BCC-algebra G is quasi-commutative of type $(i, j ; m, n)$, then its branch $B(0)$ is a quasi-commutative BCK-algebra of one of the following three types: $(i, i ; i, i),(j, j ; j, j)$ and $(n, j ; j, n)$.

The proof of this theorem is based on the following lemma.
Lemma 6.13. In a quasi-commutative solid weak BCC-algebra of type $(i, j ; m, n)$ we have
(1) $x y^{i+1}=x y^{n+1}$,
(2) $x y^{j+1}=x y^{m+1}$
for $x, y \in B(0)$.
Proof. According to [10] $B(0)$ is the greatest BCC-algebra contained in G. Since G is solid, for all $x, y, z \in B(0)$ we have $x y \cdot z=x z \cdot y$. Thus, $B(0)$ is a BCK-algebra.

Observe first that

$$
x(x \cdot x y)^{k}=x y^{k}
$$

for $x, y \in B(0)$ and any natural k.

Indeed, for $k=1$ it is valid by Lemma 5.8. If it is valid for some k, then for $k+1$ we have

$$
\begin{array}{rlr}
x(x \cdot x y)^{k+1} & =x(x \cdot x y)^{k} \cdot(x \cdot x y) & \\
& =x y^{k} \cdot(x \cdot x y) & \\
& =\left(x y^{k-1} \cdot(x \cdot x y)\right) \cdot y & \\
& =\left(x y^{k-2} \cdot(x \cdot x y)\right) \cdot y^{2} \\
& =\ldots=(x \cdot(x \cdot x y)) \cdot y^{k}=x y \cdot y^{k} & \quad \text { by the assumption on } k \\
& =x y^{k+1} . &
\end{array}
$$

Then it is valid for every natural k.
Hence

$$
\begin{array}{rlr}
Q_{i, j}(x, x y) & =(x \cdot(x \cdot x y))(x \cdot x y)^{i} \cdot(x y \cdot x)^{j} \\
& =x(x \cdot x y)^{i+1} \cdot 0^{j} & \quad \text { because } x y \cdot x=0 \\
& =x(x \cdot x y)^{i+1}=x y^{i+1} &
\end{array}
$$

Likewise,

$$
\begin{aligned}
Q_{m, n}(x y, x) & =(x y \cdot(x y \cdot x))(x y \cdot x)^{m} \cdot(x \cdot x y)^{n} \\
& =x y \cdot(x \cdot x y)^{n}=x(x \cdot x y)^{n} \cdot y=x y^{n+1}
\end{aligned}
$$

Further, since G is quasi-commutative of type $(i, j ; m, n)$, we have

$$
Q_{i, j}(x, x y)=Q_{m, n}(x y, x)
$$

Thus, $x y^{i+1}=x y^{n+1}$. This proves the first identity.
The second follows from the fact that any quasi-commutative weak BCC-algebra of type $(i, j ; m, n)$ is also quasi-commutative of type ($m, n ; i, j$).

Proof of Theorem 6.12. Let a solid weak BCC-algebra G be quasi-commutative of type $(i, j ; m, n)$. Then, in particular,

$$
(x \cdot x y)(x y)^{i} \cdot(y x)^{j}=(y \cdot y x)(y x)^{m} \cdot(x y)^{n}
$$

for $x, y \in B(0)$. Since $y x \in B(0)$, the second identity of Lemma 6.13 shows that

$$
(y \cdot y x)(y x)^{m}=y \cdot(y x)^{m+1}=y \cdot(y x)^{j+1}=(y \cdot y x)(y x)^{j} .
$$

Thus

$$
(x \cdot x y)(x y)^{i} \cdot(y x)^{j}=(y \cdot y x)(y x)^{j} \cdot(x y)^{n}
$$

for all $x, y \in B(0)$. Hence $Q_{i, j}(x, y)=Q_{j, n}(y, x)$ for $x, y \in B(0)$. So, $B(0)$ is quasicommutative of type $(i, j ; j, n)$. Obviously, it also is quasi-commutative of type $(j, n ; i, j)$. Repeating the above procedure we can show that $B(0)$ is quasi-commutative of type $(j, n ; n, j)$. This implies that it is quasi-commutative of type $(n, j ; j, n)$. For $j=n$ it is quasicommutative of type $(j, j ; j, j)$. Thus in a solid weak BCC-algebra quasi-commutative of type $(i, j ; m, j)$ the branch $B(0)$ is quasi-commutative of type $(j, j ; j, j)$.

Finally let us consider the case $i=j$, i.e., the quasi-commutativity of type $(i, i ; m, n)$. From the first part of this proof it follows that in this case $B(0)$ is quasi-commutative of type $(i, i ; i, n)$. Thus for $x, y \in B(0)$ and $i=j$ we have

$$
(x \cdot x y)(x y)^{i} \cdot(y x)^{i}=(y \cdot y x)(y x)^{i} \cdot(x y)^{n} .
$$

Since

$$
(y \cdot y x)(y x)^{i} \cdot(x y)^{n} \leqslant(y \cdot y x)(y x)^{i} \cdot(x y)^{i}
$$

for $i \leqslant n$ and $x, y \in B(0)$, the above implies

$$
(x \cdot x y)(x y)^{i} \cdot(y x)^{i} \leqslant(y \cdot y x)(y x)^{i} \cdot(x y)^{i} .
$$

Exchanging x and y we obtain

$$
(y \cdot y x)(y x)^{i} \cdot(x y)^{i} \leqslant(x \cdot x y)(x y)^{i} \cdot(x y)^{i},
$$

which together with the previous inequality gives

$$
(x \cdot x y)(x y)^{i} \cdot(y x)^{i}=(y \cdot y x)(y x)^{i} \cdot(x y)^{i} .
$$

Therefore in this case $B(0)$ is quasi-commutative of type $(i, i ; i, i)$.
Corollary 6.14. Suppose that G is a quasi-commutative BCK-algebra of type $(i, j ; m, n)$. Then its type of quasi-commutativity can be reduced to one of the following types: $(i, i ; i, i)$, $(j, j ; j, j)$ and $(n, j ; j, n)$.

References

[1] W.M. Bunder, BCK and related algebras and their corresponding logics, J. Non-classical Logic, 7 (1983), $15-24$.
[2] M.A. Chaudhry, Branchwise commutative BCI-algebras, Math. Japonica, 37 (1992), 163 - 170.
[3] M.A. Chaudhry, On two classes of BCI-algebras, Math. Japonica, 53 (2001), $269-278$.
[4] M.A. Chaudhry, On branchwise implicative BCI-algebras, International J. Math. Math. Sci., 29 (2002), $417-425$.
[5] W.A. Dudek, On group-like BCI-algebras, Demonstratio Math., 21 (1988), 369 - 376.
[6] W.A. Dudek, On BCC-algebras, Logique et Analyse, 129-130 (1990), 103 - 111.
[7] W.A. Dudek, On proper BCC-algebras, Bull. Inst. Math. Acad. Sinica, 20 (1992), 137 - 150.
[8] W.A. Dudek, Remarks on the axioms system for BCI-algebras, Prace Naukowe WSP w Czestochowie, ser. Matematyka, 2 (1996), $46-61$.
[9] W.A. Dudek, Solid weak BCC-algebras, Intern. J. Computer Math. 88 (2011), 2915-2925.
[10] W.A. Dudek, B. Karamdin, S.A. Bhatti, Branches and ideals of weak BCC-algebras, Algebra Coll., 18 (Special) (2011), 899-914.
[11] W.A. Dudek, X.H. Zhang, On ideals and congruences in BCC-algebras, Czechoslovak Math. J., 48(123) (2000), $21-29$.
[12] W.A.Dudek, X.H.Zhang, Y.Q.Wang, Ideals and atoms of BZ-algebras, Math. Slovaca, 59 (2009), 387-404.
[13] Y.S. Huang, BCI-algebra, Science Press, Beijing 2006.
[14] K. Iséki, S. Tanaka, Ideal theory of BCK-algebras, Math. Japonica, 21 (1976), 351 - 366.
[15] Y. Imai, K. Iséki, On axiom system of propositional calculi, Proc. Japan Acad., 42 (1966), $19-22$.
[16] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad., 42 (1966), 26 - 29.
[17] K. Iséki, S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japonica 23 (1978), $1-26$.
[18] Y. Komori, The class of BCC-algebras is not variety, Math. Japonica, 29 (1984), 391 - 394.
[19] J. Meng, Y.B. Jun, BCK-algebras, Kyung Moon SA, Seoul, 1994.
[20] L. Tiande, X. Changchang, p-radicals in BCI-algebras, Math. Japonica, 30 (1985), 511 - 517.
[21] A. Wroński, BCK-algebras do not form a variety, Math. Japonica, 28 (1983), 211 - 213.
[22] X.H. Zhang, BIK ${ }^{+}$-logic and non-commutative fuzzy logics, Fuzzy Systems Math. 21 (2007), 31-36.
[23] X.H. Zhang, W.A. Dudek, Fuzzy BIK ${ }^{+}$-logic and non-commutative fuzzy logics, Fuzzy Systems Math. 23 (2009), 9 - 20.
[24] X.H. Zhang, R. Ye, BZ-algebras and groups, J. Math. Phys. Sci., 29 (1995), 223 - 233.
communicated by Mariko Yasugi

* Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore54590, Pakistan

E-mail address: ayeshafatima5@hotmail.com
** Hinueberstrasse 13 A, 30175 Hannover, Germany
E-mail address: janus.thomys@htp-tel.de

[^0]: 2010 Mathematics Subject Classification. 03G25, 06F35.
 Key words and phrases. weak BCC-algebra, BCC-algebra, quasi-commutative BCC-algebra, branch.

