A CHARACTERIZATION OF MINIMAL REAL HYPERSURFACES OF TYPE $\left(\mathrm{A}_{2}\right)$ IN A COMPLEX PROJECTIVE SPACE IN TERMS OF THEIR GEODESICS

YUICHIRO TANIGUCHI AND SADAHIRO MAEDA

Received October 25, 2011; revised December 16, 2011

Abstract

We characterize minimal real hypersurfaces $M^{2 n-1}$ of type (A_{2}) in a complex projective space by observing some geodesics on M. Note that there do not exist minimal real hypersurfaces $M^{2 n-1}$ of type $\left(\mathrm{A}_{2}\right)$ in a complex hyperbolic space.

1. Introduction

We denote by $\mathbb{C} P^{n}(c)$ a complex n-dimensional complex projective space of constant holomorphic sectional curvature $c(>0)$. In this paper we consider real hypersurfaces $M^{2 n-1}$ of $\mathbb{C} P^{n}(c)$ furnished with the canonical Kähler structure J and the standard Riemannian metric g through an isometric immersion.

Among real hypersurfaces in $\mathbb{C} P^{n}(c)$ the following hypersurfaces are typical examples:
$\left(\mathrm{A}_{1}\right)$ A geodesic sphere of radius $r(0<r<\pi / \sqrt{c})$ in $\mathbb{C} P^{n}(c)$;
(A_{2}) A tube of radius $r(0<r<\pi / \sqrt{c})$ around a totally geodesic Kähler submanifold $\mathbb{C} P^{\ell}(c)(1 \leqq \ell \leqq n-2)$ in $\mathbb{C} P^{n}(c)$.
These real hypersurfaces are said to be of type $\left(\mathrm{A}_{1}\right)$ and of type $\left(\mathrm{A}_{2}\right)$, respectively.
The following theorem shows the importance of these hypersurfaces.
Theorem A ([5]). For each real hypersurface $M^{2 n-1}$ of $\mathbb{C} P^{n}(c), n \geqq 2$, the length of the derivative of the shape operator A of M satisfies $\|\nabla A\|^{2} \geqq c^{2}(n-1) / 4$. The equality holds on M if and only if M is locally congruent to one of real hypersurfaces of type $\left(\mathrm{A}_{1}\right)$ and type $\left(\mathrm{A}_{2}\right)$.

Real hypersurfaces of type $\left(\mathrm{A}_{1}\right)$ have two distinct constant principal curvatures in $\mathbb{C} P^{n}(c)$. It is well-known that $\mathbb{C} P^{n}(c)$ does not admit totally umbilic real hypersurfaces and that a real hypersurface $M^{2 n-1}$ of $\mathbb{C} P^{n}(c), n \geqq 3$ is of type $\left(\mathrm{A}_{1}\right)$ if and only if M has at most two distinct principal curvatures at each point of M. These imply that real hypersurfaces of type $\left(\mathrm{A}_{1}\right)$ are the simplest examples of real hypersurfaces in $\mathbb{C} P^{n}(c)$ and that there exist no real hypersurfaces M all of whose geodesics are mapped to circles in $\mathbb{C} P^{n}(c)$.

Motivated by these facts, we characterize real hypersurfaces of type $\left(\mathrm{A}_{1}\right)$ in $\mathbb{C} P^{n}(c)$.
Theorem B ([4]). A connected real hypersurface $M^{2 n-1}$ of $\mathbb{C} P^{n}(c), n \geqq 2$ is locally congruent to a real hypersurface of type $\left(\mathrm{A}_{1}\right)$ of radius $r(0<r<\pi / \sqrt{c})$ if and only if there exist orthonormal vectors $v_{1}, v_{2}, \ldots, v_{2 n-2}$ perpendicular to the characteristic vector ξ_{x} at each point $x \in M$ satisfying the following two conditions:
(i) All geodesics $\gamma_{i}=\gamma_{i}(s)$ on $M^{2 n-1}$ with $\gamma_{i}(0)=x$ and $\dot{\gamma}_{i}(0)=v_{i}(1 \leqq i \leqq 2 n-2)$ are mapped to circles of positive curvature in $\mathbb{C} P^{n}(c)$;

[^0](ii) All geodesics $\gamma_{i j}=\gamma_{i j}(s)$ on $M^{2 n-1}$ with $\gamma_{i j}(0)=x$ and $\dot{\gamma}_{i j}(0)=\left(v_{i}+v_{j}\right) / \sqrt{2}$ $(1 \leqq i<j \leqq 2 n-2)$ are mapped to circles of positive curvature in $\mathbb{C} P^{n}(c)$.

The purpose of this paper is to characterize minimal real hypersurfaces of type $\left(\mathrm{A}_{2}\right)$ in $\mathbb{C} P^{n}(c)$ from the viewpoint of Theorem B (see Theorem).

2. Preliminaries

Let $M^{2 n-1}$ be a real hypersurface with a unit normal local vector field \mathcal{N} of $\mathbb{C} P^{n}(c)$ furnished with the standard Riemannian metric g and the canonical Kähler structure J. The Riemannian connections $\widetilde{\nabla}$ of $\mathbb{C} P^{n}(c)$ and ∇ of M are related by the following formulas of Gauss and Weingarten:

$$
\begin{gather*}
\widetilde{\nabla}_{X} Y=\nabla_{X} Y+g(A X, Y) \mathcal{N} \tag{2.1}\\
\widetilde{\nabla}_{X} \mathcal{N}=-A X \tag{2.2}
\end{gather*}
$$

for arbitrary vector fields X and Y on M, where g is the Riemannian metric of M induced from the ambient space $\mathbb{C} P^{n}(c)$ and A is the shape operator of M in $\mathbb{C} P^{n}(c)$. An eigenvector of the shape operator A is called a principal curvature vector of M in $\mathbb{C} P^{n}(c)$ and an eigenvalue of A is called a principal curvature of M in $\mathbb{C} P^{n}(c)$. We set $V_{\lambda}=\{v \in T M \mid A v=\lambda v\}$ which is called the principal distribution associated to the principal curvature λ.

It is known that M admits an almost contact metric structure (ϕ, ξ, η, g) induced from the Kähler structure J of $\mathbb{C} P^{n}(c)$. The characteristic vector field ξ of M is defined as $\xi=-J \mathcal{N}$ and this structure satisfies

$$
\phi^{2}=-I+\eta \otimes \xi, \eta(\xi)=1 \quad \text { and } \quad g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y)
$$

where I denotes the identity map of the tangent bundle $T M$ of M. It follows from (2.1), (2.2) and $\widetilde{\nabla} J=0$ that

$$
\begin{gather*}
\left(\nabla_{X} \phi\right) Y=\eta(Y) A X-g(A X, Y) \xi, \tag{2.3}\\
\nabla_{X} \xi=\phi A X . \tag{2.4}
\end{gather*}
$$

The following is the so-called equation of Codazzi:

$$
\begin{equation*}
\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X=(c / 4)(\eta(X) \phi Y-\eta(Y) \phi X-2 g(\phi X, Y) \xi) \tag{2.5}
\end{equation*}
$$

We usually call M a Hopf hypersurface if the characteristic vector ξ of M is a principal curvature vector at each point of M. The following is useful for Hopf hypersurfaces in $\mathbb{C} P^{n}(c)$.
Proposition A ([5]). Suppose that ξ is a principal curvature vector at each point of $M^{2 n-1}$ in $\mathbb{C} P^{n}(c)$ and the corresponding principal curvature is δ. Then δ is locally constant on M. In addition, $A \phi X=((\delta \lambda+(c / 2)) /(2 \lambda-\delta)) \phi X$ holds for any $X \in V_{\lambda}$ which is perpendicular to ξ.

In Proposition A, we remark that $2 \lambda-\delta \neq 0$, since $c>0$. Furthermore, every tube of sufficiently small constant radius around each Kähler submanifold of $\mathbb{C} P^{n}(c)$ is a Hopf hypersurface. This fact means that the notion of Hopf hypersurfaces is natural in the theory of real hypersurfaces in $\mathbb{C} P^{n}(c)$.

In $\mathbb{C} P^{n}(c)(n \geqq 2)$, a Hopf hypersurface all of whose principal curvatures are constant is locally congruent to one of the following (cf. [3, 6, 7]):
$\left(\mathrm{A}_{1}\right)$ A geodesic sphere of radius r, where $0<r<\pi / \sqrt{c}$;
$\left(\mathrm{A}_{2}\right)$ A tube of radius r around a totally geodesic $\mathbb{C} P^{\ell}(c)(1 \leqq \ell \leqq n-2)$, where $0<r<\pi / \sqrt{c}$;
(B) A tube of radius r around a complex hyperquadric $\mathbb{C} Q^{n-1}$, where $0<r<\pi /(2 \sqrt{c})$;
(C) A tube of radius r around $\mathbb{C} P^{1}(c) \times \mathbb{C} P^{(n-1) / 2}(c)$, where $0<r<\pi /(2 \sqrt{c})$ and $n(\geqq 5)$ is odd;
(D) A tube of radius r around a complex Grassmann $\mathbb{C} G_{2,5}$, where $0<r<\pi /(2 \sqrt{c})$ and $n=9$;
(E) A tube of radius r around a Hermitian symmetric space $\mathrm{SO}(10) / \mathrm{U}(5)$, where $0<r<$ $\pi /(2 \sqrt{c})$ and $n=15$.

These real hypersurfaces are said to be of types $\left(A_{1}\right),\left(A_{2}\right),(B),(C),(D)$ and (E). Summing up, real hypersurfaces of types $\left(\mathrm{A}_{1}\right)$ and $\left(\mathrm{A}_{2}\right)$, we call them hypersurfaces of type (A). The numbers of distinct principal curvatures of these real hypersurfaces are $2,3,3,5,5,5$, respectively.

A direct calculation yields the following lemma.
Lemma 1. Every real hypersurface of types $\left(\mathrm{A}_{1}\right),\left(\mathrm{A}_{2}\right),(B),(C),(D)$ and (E), which is a tube of radius r, is minimal in the following cases:
$\left(\mathrm{A}_{1}\right) \cot (\sqrt{c} r / 2)=1 / \sqrt{2 n-1}$;
$\left(\mathrm{A}_{2}\right) \cot (\sqrt{c} r / 2)=\sqrt{(2 \ell+1) /(2 n-2 \ell-1)}$;
(B) $\cot (\sqrt{c} r / 2)=\sqrt{n}+\sqrt{n-1}$;
(C) $\cot (\sqrt{c} r / 2)=(\sqrt{n}+\sqrt{2}) / \sqrt{n-2}$;
(D) $\cot (\sqrt{c} r / 2)=\sqrt{5}$;
(E) $\cot (\sqrt{c} r / 2)=(\sqrt{15}+\sqrt{6}) / 3$.

At the end of this section we review the definition of circles in Riemannian geometry. A real smooth curve $\gamma=\gamma(s)$ parametrized by its arclength s in a Riemannian manifold M with Riemannian connection ∇ is called a circle of curvature k if it satisfies the ordinary differential equations $\nabla_{\dot{\gamma}} \dot{\gamma}=k Y_{s}$ and $\nabla_{\dot{\gamma}} Y_{s}=-k \dot{\gamma}$, where k is a nonnegative constant and Y_{s} is the unit normal vector of γ. A circle of null curvature is nothing but a geodesic. The definition of circles is equivalent to the equation

$$
\begin{equation*}
\nabla_{\dot{\gamma}}\left(\nabla_{\dot{\gamma}} \dot{\gamma}\right)+g\left(\nabla_{\dot{\gamma}} \dot{\gamma}, \nabla_{\dot{\gamma}} \dot{\gamma}\right) \dot{\gamma}=0 \tag{2.6}
\end{equation*}
$$

3. Statements of Results

Theorem. A connected minimal real hypersurface $M^{2 n-1}$ of $\mathbb{C} P^{n}(c), n \geqq 3$ is locally congruent to a tube of radius $r=(2 / \sqrt{c}) \cot ^{-1} \sqrt{(2 \ell+1) /(2 n-2 \ell-1)}(0<r<\pi / \sqrt{c})$ around a totally geodesic $\mathbb{C} P^{\ell}(c)$ with $1 \leqq \ell \leqq n-2$ if and only if there exist a function $d: M \rightarrow \mathbb{N}$ and orthonormal vectors $v_{1}, v_{2}, \ldots, v_{2 n-2}$ perpendicular to the characteristic vector ξ_{x} at each point $x \in M$ satisfying the following two conditions:
(i) All geodesics $\gamma_{i}=\gamma_{i}(s)$ on $M^{2 n-1}$ with $\gamma_{i}(0)=x$ and $\dot{\gamma}_{i}(0)=v_{i}$
$(1 \leqq i \leqq 2 n-2)$ are mapped to circles of positive curvature in $\mathbb{C} P^{n}(c)$;
(ii) All geodesics $\gamma_{i j}=\gamma_{i j}(s)$ on $M^{2 n-1}$ with $\gamma_{i j}(0)=x$ and $\dot{\gamma}_{i j}(0)=a v_{i}+\sqrt{1-a^{2}} v_{j}(1 \leqq$ $\left.i \leqq d_{x}<j \leqq 2 n-2\right)$ are mapped to geodesics in $\mathbb{C} P^{n}(c)$, where $a=\sqrt{(2 \ell+1) /(2 n)}$.
In this case, d is automatically expressed as $d=2 \ell$.
Proof. We first investigate the "only if" part of our Theorem. It is known that a real hypersurface M of type $\left(\mathrm{A}_{2}\right)$ with radius $r(0<r<\pi / \sqrt{c})$ has three distinct constant principal curvatures $\lambda_{1}=(-\sqrt{c} / 2) \tan (\sqrt{c} r / 2), \lambda_{2}=(\sqrt{c} / 2) \cot (\sqrt{c} r / 2)$ and $\delta=\sqrt{c} \cot (\sqrt{c} r)=\lambda_{1}+\lambda_{2}$. As our real hypersurface M of type (A_{2}) is minimal, the principal curvatures λ_{1} and λ_{2} are expressed as follows (see Lemma 1):

$$
\begin{equation*}
\lambda_{1}=-\frac{\sqrt{c}}{2} \sqrt{\frac{2 n-2 \ell-1}{2 \ell+1}} \quad \text { and } \quad \lambda_{2}=\frac{\sqrt{c}}{2} \sqrt{\frac{2 \ell+1}{2 n-2 \ell-1}} . \tag{3.1}
\end{equation*}
$$

Take orthonormal vectors $v_{1}, v_{2}, \ldots, v_{2 n-2}$ orthogonal to ξ at an arbitrary point x of M in such a way that $v_{1}, v_{2}, \ldots, v_{2 \ell}$ and $v_{2 \ell+1}, \ldots, v_{2 n-2}$ are principal curvature vectors with principal curvatures λ_{1} and λ_{2}, respectively. Then by virtue of Lemma in [4] we find that these vectors satisfy Condition (i). That is, we have the following:
(i) All geodesics $\gamma_{i}=\gamma_{i}(s)$ on M with $\gamma_{i}(0)=x$ and $\dot{\gamma}_{i}(0)=v_{i}(1 \leqq i \leqq 2 \ell)$ are circles of positive curvature $\left|\lambda_{1}\right|$ in $\mathbb{C} P^{n}(c)$;
(ii) All geodesics $\gamma_{i}=\gamma_{i}(s)$ on M with $\gamma_{i}(0)=x$ and $\dot{\gamma}_{i}(0)=v_{i}(2 \ell+1 \leqq i \leqq 2 n-2)$ are circles of positive curvature λ_{2} in $\mathbb{C} P^{n}(c)$.
We next take the geodesic $\gamma_{i j}=\gamma_{i j}(s)$ on $M^{2 n-1}$ with $\gamma_{i j}(0)=x$ and $\dot{\gamma}_{i j}(0)=a v_{i}+\sqrt{1-a^{2}} v_{j}(1 \leqq$ $\left.i \leqq d_{x}=2 \ell<j \leqq 2 n-2\right)$, where $a=\sqrt{(2 \ell+1) /(2 n)}$. It is well-known that the shape operator A of our real hypersurface M satisfies (cf. [5]):

$$
\begin{equation*}
g\left(\left(\nabla_{X} A\right) X, X\right)=0 \quad \text { for each } X \in T M \tag{3.2}
\end{equation*}
$$

It follows from (2.1), (3.1) and (3.2) that

$$
\begin{aligned}
g\left(\widetilde{\nabla}_{\dot{\gamma}_{i j}} \dot{\gamma}_{i j}, \mathcal{N}\right) & =g\left(A \dot{\gamma}_{i j}(s), \dot{\gamma}_{i j}(s)\right)=g\left(A \dot{\gamma}_{i j}(0), \dot{\gamma}_{i j}(0)\right) \\
& =a^{2} \lambda_{1}+\left(1-a^{2}\right) \lambda_{2}=0
\end{aligned}
$$

which yields Condition (ii).
We shall investigate the "if" part of our Theorem. We consider a connected real hypersurface $M^{2 n-1}$ satisfying Conditions (i) and (ii). We explain the discussion in [1] in detail. We first concentrate our attention on Condition (i). We study on an open dense subset

$$
\mathcal{U}=\left\{x \in M^{2 n-1} \left\lvert\, \begin{array}{l}
\text { the multiplicity of each principal curvature of } M^{2 n-1} \text { in } \\
\mathbb{C} P^{n}(c) \text { is constant on some neighborhood } \mathcal{V}_{x}(\subset \mathcal{U}) \text { of } x
\end{array}\right.\right\}
$$

of $M^{2 n-1}$. We take the geodesic $\gamma_{i}=\gamma_{i}(s)(1 \leqq i \leqq 2 n-2)$ on \mathcal{U} with initial vector v_{i} given by Condition (i). Since the curve γ_{i}, considered as a curve in $\mathbb{C} P^{n}(c)$, is a circle of positive curvature (, say) k_{i}, Equation (2.6) shows

$$
\begin{equation*}
\widetilde{\nabla}_{\dot{\gamma}_{i}} \widetilde{\nabla}_{\dot{\gamma}_{i}} \dot{\gamma}_{i}=-k_{i}^{2} \dot{\gamma}_{i} . \tag{3.3}
\end{equation*}
$$

On the other hand, using (2.1) and (2.2), we see that

$$
\begin{equation*}
\widetilde{\nabla}_{\dot{\gamma}_{i}} \widetilde{\nabla}_{\dot{\gamma}_{i}} \dot{\gamma}_{i}=-g\left(A \dot{\gamma}_{i}, \dot{\gamma}_{i}\right) A \dot{\gamma}_{i}+g\left(\left(\nabla_{\dot{\gamma}_{i}} A\right) \dot{\gamma}_{i}, \dot{\gamma}_{i}\right) \mathcal{N} \tag{3.4}
\end{equation*}
$$

Comparing the tangential components of Equations (3.3) and (3.4), we have

$$
g\left(A \dot{\gamma}_{i}, \dot{\gamma}_{i}\right) A \dot{\gamma}_{i}=k_{i}^{2} \dot{\gamma}_{i}
$$

This, together with $k_{i} \neq 0$, shows that at $s=0$ either $A v_{i}=k_{i} v_{i}$ or $A v_{i}=-k_{i} v_{i}$ holds for $i=1,2, \ldots, 2 n-2$. This means that our real hypersurface $M^{2 n-1}$ is a Hopf hypersurface with $A \xi=\delta \xi$ and that the linear subspace $T_{x}^{0} M^{2 n-1}=\left\{v \in T_{x} M^{2 n-1} \mid v \perp \xi_{x}\right\}$ of $T_{x} M^{2 n-1}$ is decomposed as:

$$
\begin{aligned}
T_{x}^{0} M^{2 n-1}= & \left\{v \in T_{x}^{0} M \mid A v=-k_{i_{1}} v\right\} \oplus\left\{v \in T_{x}^{0} M \mid A v=k_{i_{1}} v\right\} \\
& \oplus \cdots \oplus\left\{v \in T_{x}^{0} M \mid A v=-k_{i_{g}} v\right\} \oplus\left\{v \in T_{x}^{0} M \mid A v=k_{i_{g}} v\right\}
\end{aligned}
$$

where $0<k_{i_{1}}<k_{i_{2}}<\ldots<k_{i_{g}}$ and g is the number of distinct positive $k_{i}(i=1, \ldots, 2 n-2)$. We decompose $T_{x}^{0} M^{2 n-1}$ in such a way at each point $x \in \mathcal{U}$.

Note that each $k_{i_{j}}$ is a smooth function on \mathcal{V}_{x} for each $x \in \mathcal{U}$. We shall show the constancy of each $k_{i_{j}}$. It suffices to check the case of $A v_{i_{j}}=k_{i_{j}} v_{i_{j}}$. As $k_{i_{j}}$ is a constant function along the curve $\gamma_{i_{j}}$ in the ambient space $\mathbb{C} P^{n}(c)$, we have $v_{i_{j}} k_{i_{j}}=0$. For any $v_{\ell}\left(1 \leqq \ell \neq i_{j} \leqq 2 n-2\right)$, since A is symmetric, we have

$$
\begin{equation*}
g\left(\left(\nabla_{v_{i_{j}}} A\right) v_{\ell}, v_{i_{j}}\right)=g\left(v_{\ell},\left(\nabla_{v_{i_{j}}} A\right) v_{i_{j}}\right) . \tag{3.5}
\end{equation*}
$$

In order to compute Equation (3.5) easily, we extend the vectors $v_{\ell}, v_{i_{j}}\left(\in T_{x}^{0} M\right)$ on some sufficiently small neighborhood $\mathcal{W}_{x}\left(\subset \mathcal{V}_{x}\right)$ in the following manner.

We define a smooth vector field V_{ℓ} on \mathcal{W}_{x} satisfying that $\left(V_{\ell}\right)_{x}=v_{\ell}$ and V_{ℓ} is perpendicular to ξ. Next we shall define $V_{i_{j}}$. First we define a smooth unit vector field $W_{i_{j}}$ on some "sufficiently small" neighborhood $\mathcal{W}_{x}\left(\subset \mathcal{V}_{x}\right)$ by using parallel displacement for the vector $v_{i_{j}}$ along each geodesic with origin x. We note that in general $W_{i_{j}}$ is not principal on \mathcal{W}_{x}, but $A W_{i_{j}}=k_{i_{j}} W_{i_{j}}$ on the geodesic $\gamma_{i_{j}}=\gamma_{i_{j}}(s)$ with $\gamma_{i_{j}}(0)=x$ and $\dot{\gamma}_{i_{j}}(0)=v_{i_{j}}$. We here define the vector field $U_{i_{j}}$ on \mathcal{W}_{x} as: $U_{i_{j}}=\left(\prod_{\alpha \neq k_{i_{j}}}(A-\alpha I)\right) W_{i_{j}}$, where α runs over the set of all distinct principal curvatures of $M^{2 n-1}$ except for the principal curvature $k_{i_{j}}$. We remark that $U_{i_{j}} \neq 0$ on the neighborhood \mathcal{W}_{x}, because $\left(U_{i_{j}}\right)_{x} \neq 0$. Moreover, the vector field $U_{i_{j}}$ satisfies $A U_{i_{j}}=k_{i_{j}} U_{i_{j}}(\perp \xi)$ on $\mathcal{W}_{i_{j}}$. We define $V_{i_{j}}$ by normalizing $U_{i_{j}}$ in some sense. That is, when $\prod_{\alpha \neq k_{i_{j}}}\left(k_{i_{j}}-\alpha\right)(x)>0$ (resp. $\prod_{\alpha \neq k_{i_{j}}}\left(k_{i_{j}}-\alpha\right)(x)<0$), we define $V_{i_{j}}=U_{i_{j}} /\left\|U_{i_{j}}\right\|$ (resp. $\left.V_{i_{j}}=-U_{i_{j}} /\left\|U_{i_{j}}\right\|\right)$. Then we know that $A V_{i_{j}}=k_{i_{j}} V_{i_{j}}$ on \mathcal{W}_{x} and $\left(V_{i_{j}}\right)_{x}=v_{i_{j}}$. Furthermore, our construction shows that the integral curve of $V_{i_{j}}$ through the point x is a geodesic on M^{n}, so that in particular $\nabla_{V_{i_{j}}} V_{i_{j}}=0$ at the point x.

Since the Codazzi equation (2.5) yields that $g\left(\left(\nabla_{X} A\right) Y, Z\right)=g\left(\left(\nabla_{Y} A\right) X, Z\right)$ for any $X, Y, Z(\perp$ ξ), at the point x we have

$$
\begin{aligned}
(\text { the left-hand side of }(3.5)) & =g\left(\left(\nabla_{v_{\ell}} A\right) v_{i_{j}}, v_{i_{j}}\right) \\
& =g\left(\left(\nabla_{V_{\ell}} A\right) V_{i_{j}}, V_{i_{j}}\right) \\
& =g\left(\nabla_{V_{\ell}}\left(k_{i_{j}} V_{i_{j}}\right)-A \nabla_{V_{\ell}} V_{i_{j}}, V_{i_{j}}\right) \\
& =g\left(\left(V_{\ell} k_{i_{j}}\right) V_{i_{j}}+\left(k_{i_{j}} I-A\right) \nabla_{V_{\ell}} V_{i_{j}}, V_{i_{j}}\right) \\
& =v_{\ell} k_{i_{j}}
\end{aligned}
$$

and

$$
\begin{aligned}
\text { (the right-hand side of (3.5)) } & =g\left(V_{\ell},\left(\nabla_{V_{i_{j}}} A\right) V_{i_{j}}\right) \\
& =g\left(V_{\ell}, \nabla_{V_{i_{j}}}\left(k_{i_{j}} V_{i_{j}}\right)-A \nabla_{V_{i_{j}}} V_{i_{j}}\right) \\
& =g\left(v_{\ell},\left(v_{i_{j}} k_{i_{j}}\right) v_{i_{j}}\right)=0 .
\end{aligned}
$$

Thus we can see that $X k_{i_{j}}=0$ for any $X(\perp \xi) \in T_{x} M$. Next, we shall show that $\xi k_{i_{j}}=0$. It follows from (2.4) and Proposition A that

$$
\begin{aligned}
\left(\nabla_{\xi} A\right) V_{i_{j}}-\left(\nabla_{V_{i_{j}}} A\right) \xi & =\nabla_{\xi}\left(A V_{i_{j}}\right)-A \nabla_{\xi} V_{i_{j}}-\nabla_{V_{i_{j}}}(\delta \xi)+A \nabla_{V_{i_{j}}} \xi \\
& =\nabla_{\xi}\left(k_{i_{j}} V_{i_{j}}\right)-A \nabla_{\xi} V_{i_{j}}-\delta \phi A V_{i_{j}}+A \phi A V_{i_{j}} \\
& =\left(\xi k_{i_{j}}\right) V_{i_{j}}+\left(k_{i_{j}} I-A\right) \nabla_{\xi} V_{i_{j}}-k_{i_{j}}\left(\delta-\frac{\delta k_{i_{j}}+(c / 2)}{2 k_{i_{j}}-\delta}\right) \phi V_{i_{j}}
\end{aligned}
$$

On the other hand, the Codazzi equation (2.5) implies

$$
g\left(\left(\nabla_{\xi} A\right) V_{i_{j}}-\left(\nabla_{V_{i_{j}}} A\right) \xi, V_{i_{j}}\right)=0
$$

Hence, $\xi k_{i_{j}}=0$. Therefore we can see that the differential $d k_{i_{j}}$ of $k_{i_{j}}$ vanishes at the point x, which shows that every $k_{i_{j}}(>0)$ is constant on \mathcal{W}_{x}, since we can take the point x as an arbitrarily fixed point of \mathcal{W}_{x}. So the principal curvature function $k_{i_{j}}$ is locally constant on the open dense subset \mathcal{U} of $M^{2 n-1}$. This, together with the continuity of $k_{i_{j}}$ and the connectivity of $M^{2 n-1}$, implies that $k_{i_{j}}$ is constant on the hypersurface $M^{2 n-1}$. Hence all principal curvatures of $M^{2 n-1}$ are constant if $M^{2 n-1}$ satisfies Condition (i).

Next, we consider Condition (ii). Since the above argument tells us that every $v_{i}(1 \leqq i \leqq$ $2 n-2)$ is principal, we can set $A v_{i}=\mu_{i} v_{i}$. On the other hand, Condition (ii) shows that $g\left(A \dot{\gamma}_{i j}(0), \dot{\gamma}_{i j}(0)\right)=0$, so that

$$
\begin{equation*}
a^{2} \mu_{i}+\left(1-a^{2}\right) \mu_{j}=0 \quad \text { for } 1 \leqq \forall i \leqq d_{x}<\forall j \leqq 2 n-2 . \tag{3.6}
\end{equation*}
$$

This, combined with $0<a^{2}=(2 \ell+1) /(2 n)<1$, implies that M is a Hopf hypersurface with three distinct constant principal curvatures δ, μ_{i} and μ_{j} satisfying Equation (3.6). Hence M is of either type $\left(\mathrm{A}_{2}\right)$ or type (B). Needless to say, all minimal real hypersurfaces of type $\left(\mathrm{A}_{2}\right)$ satisfy Equation (3.6) (see the "only if" part of the proof of our Theorem).

Finally we shall check the case of type (B). We know that a real hypersurface M of type (B) with radius $r(0<r<\pi /(2 \sqrt{c}))$ has three distinct constant principal curvatures $\lambda_{1}=$ $(\sqrt{c} / 2) \cot ((\sqrt{c} r) / 2-\pi / 4), \lambda_{2}=(\sqrt{c} / 2) \cot ((\sqrt{c} r) / 2+\pi / 4)$ and $\delta=\sqrt{c} \cot (\sqrt{c} r)$. As our real hypersurface M of type (B) is minimal, the principal curvatures λ_{1} and λ_{2} are expressed as (see Lemma 1):

$$
\begin{equation*}
\lambda_{1}=-\frac{\sqrt{c}}{2} \frac{1+\sqrt{n}}{\sqrt{n-1}} \quad \text { and } \quad \lambda_{2}=\frac{\sqrt{c}}{2} \frac{\sqrt{n}-1}{\sqrt{n-1}} . \tag{3.7}
\end{equation*}
$$

The rest of the proof is to show that the principal curvatures λ_{1} and λ_{2} in (3.7) satisfy neither $a^{2} \lambda_{1}+\left(1-a^{2}\right) \lambda_{2}=0$ nor $a^{2} \lambda_{2}+\left(1-a^{2}\right) \lambda_{1}=0$. Suppose that $a^{2} \lambda_{1}+\left(1-a^{2}\right) \lambda_{2}=0$. Then we have $-(2 \ell+1)(1+\sqrt{n})+(2 n-2 \ell-1)(\sqrt{n}-1)=0$, so that $\sqrt{n}=n-2 \ell-1$. Hence we can set $\sqrt{n}=p$ for some $p \in \mathbb{N}$, which implies that $p=p^{2}-2 \ell-1$. Thus we obtain the equality $p(p-1)=2 \ell+1$, which is a contradiction. We next suppose that $a^{2} \lambda_{2}+\left(1-a^{2}\right) \lambda_{1}=0$. By easy computation we get $(2 \ell+1)(\sqrt{n}-1)-(2 n-2 \ell-1)(1+\sqrt{n})=0$, so that $-\sqrt{n}=n-2 \ell-1$.

Then by the same discussion as in the case of $\sqrt{n}=n-2 \ell-1$ we also obtain a contradiction in this case.

References

[1] T. Adachi, M. Kimura and S. Maeda, A chracterization of all homogeneous real hypersurfaces in a complex projective space by observing the extrinsic shape of geodesics, Arch. Math. (Basel) 73 (1999), 303-310.
[2] J. Berndt, Real hypersurfaces with constant principal curvatures in complex hyperbolic space, J. Reine Angew. Math. 395 (1989), 132-141.
[3] M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc. 296 (1986), 137-149.
[4] S. Maeda and K. Ogiue, Characterizations of geodesic hyperspheres in a complex projective space by observing the extrinsic shape of geodesics, Math. Z. 225 (1997), 537-542.
[5] Y. Maeda, On real hypersurfaces of a complex projective space, J. Math. Soc. Japan 28 (1976), 529-540.
[6] R. Niebergall and P.J. Ryan, Real hypersurfaces in complex space forms, in: Tight and Taut submanifolds, T.E. Cecil and S.S. Chern (eds.), Cambridge Univ. Press, 1998, 233-305.
[7] R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 10 (1973), 495506.
communicated by Yasunao Hattori
Department of Mathematics, Saga University, 1 Honzyo, Saga 840-8502, Japan
E-mail address: 11634009@edu.cc.saga-u.ac.jp
Department of Mathematics, Saga University, 1 Honzyo, Saga 840-8502, Japan
E-mail address: smaeda@ms.saga-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 53C40, Secondary 53C22.
 Key words and phrases. real hypersurfaces, real hypersurfaces of type (A_{2}), complex projective spaces, geodesics, circles.

 The second author is partially supported by Grant-in-Aid for Scientific Research (C) (No. 23540097), Japan Society for the Promotion of Sciences.

