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COMMON FIXED POINTS FOR GENERALIZED WEAK

CONTRACTION MAPPINGS IN MODULAR SPACES

Chirasak Mongkolkeha and Poom Kumam1

Abstract. In this paper, we prove the existence of common fixed points for a gener-
alized weak contractive mapping in modular spaces. Moreover, we prove existence of
some fixed point theorem without the ∆2 − condition.

1 Introduction

The famous Banach’s contraction principle has been generalized in many ways over the
years ([1, 3, 27, 28, 32, 33, 34, 35, 36]). One of the most interesting and studies is extension
of Banach’s contraction principle to case of weakly contraction.

A mapping T : X → X where (X, d) is a metric space, is said to be weakly contraction
if

(1.1) d(T (x), T (y)) ≤ d(x, y) − φ(d(x, y)),

where φ : [0,∞) → [0,∞) is a continuous and nondecreasing function such that φ(t) = 0
if and only if t = 0. In 2008, Dutta and Choudhury [5] introduced a new generalization of
contraction in metric spaces and proved the following theorem;

Theorem 1.1. Let (X, d) be a complete metric space, T : X → X be a self-mapping
satisfying the inequality

(1.2) ψ(d(Tx, Ty)) ≤ ψ(d(x, y)) − φ(d(x, y)),

where ψ, φ : [0,∞) → [0,∞) are both continuous and monotone nondecreasing functions
with ψ(t) = φ(t) = 0 if and only if t = 0. Then T has a unique fixed point.

We note that, if one takes ψ(t) = t, then (1.2) reduces to (1.1).
In 2009, Zhang and Song [37] used generalized ϕ-weak contractions which is defined

for two mappings and gave conditions for existence of a common fixed point:

Theorem 1.2. Let (X, d) be a complete metric space and T, S : X → X two mapping
such that for all x, y ∈ X

(1.3) d(Tx, Sy) ≤ M(x, y) − ϕ(M(x, y)),

where ϕ : [0,∞) → [0,∞) is lower semi-continuous function with ϕ(t) > 0 for t ∈ (0,∞)
and ϕ(0) = 0, M(x, y) = max{d(x, y), d(Tx, x), d(Sy, y), d(y,Tx)+d(x,Sy)

2 }. Then there exists
the unique point u ∈ X such that u = Tu = Su.
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And later, D. Dorić [4] generalized Theorem 1.2 and proved the following theorem:

Theorem 1.3. Let (X, d) be a complete metric space and T, S : X → X be two self-
mappings such that for all x, y ∈ X

(1.4) ψ(d(Tx, Sy)) ≤ ψ(M(x, y)) − ϕ(M(x, y)),

where

(a) ψ : [0,∞) → [0,∞) is a continuous monotone nondecreasing function with ψ(t) = 0
if and only if t = 0,

(b) ϕ : [0,∞) → [0,∞) is a lower semi-continuous function with ϕ(t) = 0 if and only if
t = 0,

(c) M is defined in Theorem 1.2.

Then there exists the unique point u ∈ X such that u = Tu = Su.

On the other hand, the notion of modular space was introduced by Nakano in 1950
[29] in connection with the theory of order spaces and redefined and generalized by Lux-
emburg [14, 15, 16, 17, 18, 19, 20, 21, 22, 23] and Orlicz in 1959 [25]. These spaces were
developed following the successful theory of Orlicz spaces. For a current review of the the-
ory of Musielak-Orlicz spaces and modular spaces, the reader is referred to the books of
Musielak and Orlicz [25] and KozÃlowski [9]. The existence of fixed point theorems in modu-
lar spaces has been studied [7, 8, 10, 11, 12, 13, 31]. In 2009, Razani and Moradi [30] studied
fixed point theorems for ρ-compatible maps of integral type in modular spaces. Afterward,
Beygmohammadi and Razani [2] proved the existence for mapping defined on a complete
modular space satisfying contractive inequality of integral type. Recently Mongkolkaha and
Kumam [26], studied existence of fixed point theorems for weak contractions mapping of
integral type in modular spaces.

In objective of this paper we introduce some generalized weak contraction mapping
and investigate generalized weak contractions mappings of Theorem 1.3 in the sense of
modular spaces.

2 Preliminaries

First, we start with a brief recollection of basic concepts and facts in modular space;

Definition 2.1. Let X be a vector space over R(or C). A functional ρ : X → [0,∞] is
called a modular if for arbitrary x and y, elements of X, it satisfies the following conditions
:

(1) ρ(x) = 0 if and only if x = 0;

(2) ρ(αx) = ρ(x) for all scalar α with |α| = 1;

(3) ρ(αx + βy) ≤ ρ(x) + ρ(y), whenever α, β ≥ 0 and α + β = 1.

If we replace (3) by

(4) ρ(αx + βy) ≤ αsρ(x) + βsρ(y), for α, β ≥ 0, αs + βs = 1 with an s ∈ (0, 1], then the
modular ρ is called s-convex modular, and if s = 1, ρ is called convex modular.
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If ρ is a modular in X, then the set defined by

(2.1) Xρ = {x ∈ X : ρ(λx) → 0 as λ → 0},

is called a modular space. Xρ is a vector subspace of X.

Proposition 2.2. ([24])

(1) ρ(αx) is a nondecreasing function of α ≥ 0;

(2) If ρ is s − convex then α−sρ(αx) is a nondecreasing function of α ≥ 0.

Definition 2.3. A modular ρ is said to satisfy the ∆2 − condition if ρ(2xn) → 0 as
n → ∞, whenever ρ(xn) → 0 as n → ∞.

Definition 2.4. Let Xρ be a modular space.

(1) The sequence (xn)n∈N in Xρ is said to be ρ − convergent to x ∈ Xρ

if ρ(xn − x) → 0, as n → ∞.

(2) The sequence (xn)n∈N in Xρ is said to be ρ − Cauchy
if ρ(xn − xm) → 0, as n,m → ∞.

(3) A subset C of Xρ is said to be ρ − closed if the ρ − limit of a ρ-convergent sequence
of C always belongs to C.

(4) A subset C of Xρ is said to be ρ − complete if any ρ − Cauchy sequence in C is
ρ − convergent sequence and its limit is in C.

(5) A subset C of Xρ is said to be ρ − bounded if
δρ(C) = sup{ρ(x − y);x, y ∈ C} < ∞.

Definition 2.5. Let C be a subset of Xρ and T : C → C be an arbitrary mapping. T is
called a ρ − contraction if for each x, y ∈ Xρ there exists 0 ≤ k < 1 such that

(2.2) ρ(T (x) − T (y)) ≤ kρ(x − y).

Definition 2.6. [30, Definition 2.1]Let Xρ be a modular space, where ρ satisfies the
∆2 − condition. Two self-mappings T and f of Xρ are called ρ − compatible if ρ(Tfxn −
fTxn) → 0 as n → ∞, whenever {xn}n∈N is a sequence in Xρ such that fxn → z and
Txn → z for some point z ∈ Xρ.

3 A Generalized Weak Contraction in Modular Spaces

Theorem 3.1. Let Xρ be a ρ − complete modular space, where ρ satisfies the ∆2-
condition. Let c, l ∈ R+, c > l and T, f : Xρ → Xρ are two ρ − compatible mappings
such that T (Xρ) ⊆ f(Xρ) and satisfying the inequality

(3.1) ψ(ρ(c(Tx − Ty))) ≤ ψ(ρ(l(fx − fy))) − φ(ρ(l(fx − fy))),

for all x, y ∈ Xρ, where ψ, φ : [0,∞) → [0,∞) are both continuous and monotone nonde-
creasing functions with ψ(t) = φ(t) = 0 if and only if t = 0. If one of T or f is continuous,
then there exists a unique common fixed point of T and f .
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Proof. Let x ∈ Xρ and generate inductively the sequence {Txn}n∈N as follow: Txn =
fxn+1. First, we prove that the sequence {ρ(c(Txn − Txn−1))} converges to 0. By (3.1),
we have

(3.2)
ψ(ρ(c(Txn − Txn−1))) ≤ ψ(ρ(l(fxn − fxn−1))) − φ(ρ(l(fxn − fxn−1)))

≤ ψ(ρ(l(fxn − fxn−1))).

By monotone nondecreasing of ψ and Proposition 2.2 with c > l, we have

(3.3)
ρ(c(Txn − Txn−1))) ≤ ρ(l(fxn − fxn−1)))

= ρ(l(Txn−1 − Txn−2))
< ρ(c(Txn−1 − Txn−2)).

This means that the sequence {ρ(c(Txn−Txn−1))} is nonincreasing and bounded below.
Hence there exists r ≥ 0 such that

(3.4) lim
n→∞

ρ(c(Txn − Txn−1)) = r.

If r > 0, taking n → ∞ in the inequality (3.3), we get

(3.5) lim
n→∞

ρ(l(fxn − fxn−1)) = r.

Since

(3.6) ψ(ρ(c(Txn − Txn−1))) ≤ ψ(ρ(l(fxn − fxn−1))) − φ(ρ(l(fxn − fxn−1))),

from (3.4), (3.5) and (3.6), it follow that ψ(r) ≤ ψ(r) − φ(r) which is a contradiction, thus
r = 0. That is

(3.7) limn→∞ ρ(c(Txn − Txn−1)) = 0.

Next, we prove that the sequence {cTxn}n∈N is a ρ−Cauchy. Suppose that {cTxn}n∈N is
not ρ − Cauchy, then there exists ε > 0 and subsequence {xmk

}, {xnk
} with mk > nk ≥ k

such that

(3.8) ρ(c(Txmk
− Txnk

)) ≥ ε for k = 1, 2, 3, ...,

where we can assume that

(3.9) ρ(c(Txmk−1 − Txnk
)) < ε.

Let mk be the smallest number exceeding nk for which (3.8) holds, and set

(3.10) θk = {m ∈ N|∃nk ∈ N; ρ(c(Txm − Txnk
)) ≥ ε,m > nk ≥ k}.

Since θk ⊂ N and clearly, θk 6= ∅. By well ordering principle, the minimum element of θk is
denoted by mk and obviously (3.9) holds. Now, let α ∈ R+ such that l

c + 1
α = 1, then we

have

(3.11)
ψ(ρ(c(Txmk

− Txnk
))) ≤ ψ(ρ(l(fxmk

− fxnk
))) − φ(ρ(l(fxmk

− fxnk
)))

≤ ψ(ρ(l(fxmk
− fxnk

)))
= ψ(ρ(l(Txmk−1 − Txnk−1))),
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and

(3.12)

ρ(l(Txmk−1 − Txnk−1)) = ρ(l(Txmk−1 − Txnk
+ Txnk

− Txnk−1))
= ρ( l

cc(Txmk−1 − Txnk
) + 1

ααl(Txnk
− Txnk−1)))

≤ ρ(c(Txmk−1 − Txnk
)) + ρ(αl(Txnk

− Txnk−1))
< ε + ρ(αl(Txnk

− Txnk−1)).

Using the ∆2-condition and (3.7), we get

limk→∞ ρ(αl(Txnk
− Txnk−1)) = 0

and thus

(3.13) limk→∞ ψ(ρ(l(Txmk−1 − Txnk−1))) < ψ(ε).

¿From (3.8), (3.11), (3.12) and (3.13), it follows that

(3.14) ψ(ε) ≤ limk→∞ ψ(ρ(l(Txmk−1 − Txnk−1)))
< ψ(ε),

which is a contradiction. Hence, {cTxn}n∈N is ρ − Cauchy and by the ∆2-condition
{Txn}n∈N is ρ − Cauchy. Since Xρ is ρ − complete there exists a point u ∈ Xρ such
that ρ(Txn − u) → 0 as n → ∞, that is Txn → u and implies that fxn → u as n → ∞.
If T is continuous, then T 2xn → Tu and Tfxn → Tu as n → ∞. By ρ -compatible,
ρ(c(fTxn − Tfxn)) → 0 as n → ∞, thus, fTxn → Tu as n → ∞. Next, we prove that u is
a unique fixed point of T . Indeed,

(3.15) ψ(ρ(c(T 2xn − Txn))) = ψ(ρ(c(T (Txn) − Txn))).
≤ ψ(ρ(l(fTxn − fxn))) − φ(ρ(l(fTxn − fxn))).

Taking n → ∞ in the inequality (3.15), we have

ψ(ρ(c(Tu − u))) ≤ ψ(ρ(l(Tu − u))) − φ(ρ(l(Tu − u)))
≤ ψ(ρ(l(Tu − u))).

By monotone nondecreasing of ψ and Proposition 2.2 with c > l we have ρ(c(Tu − u)) = 0
and Tu = u. Since T (Xρ) ⊆ f(Xρ), then there exists a point u1 such that u = Tu = fu1.
The inequality,

ψ(ρ(c(T 2xn − Tu1))) ≤ ψ(ρ(l(fTxn − fu1))) − φ(ρ(l(fTxn − fu1)))

as n → ∞, yields :

ψ(ρ(c(Tu − Tu1))) ≤ ψ(ρ(l(Tu − fu1))) − φ(ρ(l(Tu − fu1)))

and thus

ψ(ρ(c(u − Tu1))) ≤ ψ(ρ(l(u − fu1))) − φ(ρ(l(u − fu1)))
≤ ψ(ρ(l(u − fu1)))
= ψ(ρ(l(u − u)))
= 0.
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which implies that, u = Tu1 = fu1 and also fu = fTu1 = Tfu1 = Tu = u(see[6]). If f is
continuous, then by a similar argument, one can prove fu = Tu = u. Finally, suppose that
there exists v ∈ Xρ such that Tv = v = fv and v 6= u, we have

(3.16)
ψ(ρ(c(u − v))) = ψ(ρ(c(Tu − Tv)))

≤ ψ(ρ(l(fu − fv))) − φ(ρ(l(fu − fv)))
< ψ(ρ(l(u − v))),

again by monotone nondecreasing of ψ and Proposition 2.2 with c > l, we have

ρ(c(u − v)) < ρ(l(u − v)) < ρ(c(u − v))

which is a contradiction. Hence u = v and the proof is complete.

Corollary 3.2. Let Xρ be a ρ − complete modular space, where ρ satisfies the ∆2-
condition. Let c, l ∈ R+, c > l and T, f : Xρ → Xρ are two ρ − compatible mappings such
that T (Xρ) ⊆ f(Xρ) and satisfying the inequality

(3.17) ρ(c(Tx − Ty)) ≤ ρ(l(fx − fy)) − φ(ρ(l(fx − fy))),

for all x, y ∈ Xρ, where φ : [0,∞) → [0,∞) is a continuous and monotone nondecreasing
function with φ(t) = 0 if and only if t = 0. If one of T or f is continuous, then there exists
a unique common fixed point of T and f .

Proof. Take ψ(t) = t, we obtain the Corollary 3.2.

Theorem 3.3. Let Xρ be a ρ − complete modular space and let T, S : Xρ → Xρ be
mappings satisfying the inequality

(3.18) ψ(ρ((Tx − Sy))) ≤ ψ(M(x, y)) − φ(M(x, y))

for all x, y ∈ Xρ, where M(x, y) = max{ρ(x−y), ρ(x−Tx), ρ(y−Sy), ρ( 1
2 (y−Tx))+ρ( 1

2 (x−Sy))

2 }
and ψ, φ : [0,∞) → [0,∞) are both continuous and monotone nondecreasing functions with
ψ(t) = φ(t) = 0 if and only if t = 0. Then there exists the unique point u ∈ Xρ such that
u = Tu = Su.

Proof. Let x0 ∈ Xρ we construct the sequence {xn} for n ≥ 0 by x2n+1 = Sx2n and
x2n+2 = Tx2n+1. First, we prove that the sequence {ρ(xn+1 − xn)} converges to 0. If n is
odd, then we have

(3.19)
ψ(ρ(xn+1 − xn)) = ψ(ρ(Txn − Sxn−1))

≤ ψ(M(xn, xn−1)) − φ(M(xn, xn−1)).
≤ ψ(M(xn, xn−1)).

By monotone nondecreasing of ψ, we have

(3.20) ρ(xn+1 − xn) ≤ M(xn, xn−1).

Since

(3.21)

M(xn, xn−1) = max{ρ(xn − xn−1), ρ(xn+1 − xn), ρ( 1
2 (xn−1−xn+1))

2 }
≤ max{ρ(xn − xn−1), ρ(xn+1 − xn),

ρ(xn−1−xn)+ρ(xn−xn+1)
2 }

≤ max{ρ(xn − xn−1), ρ(xn+1 − xn)}.
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If ρ(xn+1 − xn) > ρ(xn − xn−1), then ρ(xn+1 − xn) ≤ M(xn, xn−1) ≤ ρ(xn+1 − xn), so we
have M(xn, xn−1) = ρ(xn+1 − xn), which implies that

(3.22)

ψ(ρ(xn+1 − xn)) = ψ(ρ(Txn − Sxn−1))
≤ ψ(M(xn, xn−1)) − φ(M(xn, xn−1))
= ψ(ρ(xn+1 − xn)) − φ(ρ(xn+1 − xn))
< ψ(ρ(xn+1 − xn)),

which is a contradiction, thus

(3.23) ρ(xn+1 − xn) ≤ ρ(xn − xn−1).

Similarly, in the case n is an even number we can obtain inequalities (3.23). So, we have
the sequence {ρ(xn+1 −xn)} is nonincreasing and bounded below. Hence there exists r ≥ 0
such that

(3.24) limn→∞ ρ(xn+1 − xn) = r.

Assume that r > 0. Since

(3.25)
ψ(ρ(xn+1 − xn)) = ψ(ρ(Txn − Sxn−1))

≤ ψ(M(xn, xn−1)) − φ(M(xn, xn−1))
= ψ(ρ(xn − xn−1)) − φ(ρ(xn − xn−1)),

taking n → ∞ in the inequality (3.25), we have ψ(r) ≤ ψ(r)−φ(r) which is a contradiction,
thus r = 0. So, we have

(3.26) limn→∞ ρ(xn+1 − xn) = 0.

Next, we prove that the sequence {xn} is ρ − Cauchy. Let m,n ∈ N. Without loss of
generality we can assume that m is odd and n is even. In fact, we have

(3.27)

ρ(xm − xn) ≤ M(xm, xn)
= max{ρ(xm − xn), ρ(xm − xm+1), ρ(xn − xn+1)

ρ( 1
2 (xn−xm+1))+ρ( 1

2 (xm−xn+1))

2 }
≤ max{ρ(xm − xn), ρ(xm − xm+1), ρ(xn − xn+1)

ρ(xn−xm)+ρ(xm−xm+1)+ρ(xm−xn)+ρ(xn−xn+1)
2 }.

Taking m,n → ∞ in the inequality (3.27), we get

(3.28) lim
m,n→∞

M(xm, xn) = lim
m,n→∞

ρ(xm − xn) := d ≥ 0

Since

(3.29)
ψ(ρ(xm+1 − xn+1)) = ψ(ρ(Txm − Sxn))

≤ ψ(M(xm, xn)) − φ(M(xm, xn)),

from (3.28) and (3.29), it follow that ψ(d) ≤ ψ(d) − φ(d), if d > 0, it is impossible. Thus
d = 0. That is, the sequence {xn}n∈N is ρ − Cauchy. Since Xρ is ρ- complete there exists
a point u ∈ Xρ such that ρ(xn − u) → 0 as n → ∞. Moreover, ρ(x2n − u) → 0 and
ρ(x2n+1 −u) → 0 as n → ∞. Now we prove that u = Tu = Su. Suppose that Tu 6= u, then
ρ(u − Tu) > 0 and there exists N1 ∈ N such that for any n > N1,

(3.30)
ρ(x2n+1 − u) < 1

4ρ(u − Tu), ρ(x2n − u) < 1
4ρ(u − Tu)

and ρ(x2n − x2n+1) < 1
4ρ(u − Tu).
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By the inequalities (3.30) and property of ρ, we have

(3.31)

ρ(u − Tu) ≤ M(u, x2n)
= max{ρ(u − x2n), ρ(u − Tu), ρ(x2n − x2n+1)

ρ( 1
2 (x2n−Tu))+ρ( 1

2 (u−x2n+1))

2 }
≤ max{ 1

4ρ(u − Tu), ρ(u − Tu), 1
4ρ(u − Tu)

ρ(x2n−u)+ρ(u−Tu)+ρ(x2n−u)+ρ(x2n−x2n+1)
2 }

≤ max{ 1
4ρ(u − Tu), ρ(u − Tu), 7

8ρ(u − Tu)}
= ρ(u − Tu),

that is, M(u, x2n) = ρ(u − Tu). Thus,

(3.32)
ψ(ρ(Tu − x2n+1)) = ψ(ρ(Tu − Sx2n))

≤ ψ(M(u, x2n)) − φ(M(u, x2n))
= ψ(ρ(Tu − u)) − φ(ρ(Tu − u))

Taking n → ∞ in the inequality (3.32), we have

ψ(ρ(Tu − u)) ≤ ψ(ρ(Tu − u)) − φ(ρ(Tu − u)) < ψ(ρ(Tu − u)).

By monotone nondecreasing of ψ, we have

ρ(Tu − u) < ρ(Tu − u)

which is a contradiction. Hence ρ(u− Tu) = 0 and Tu = u. If Su 6= u, then ρ(Su− u) > 0
. Using u is fixed point of T and property of ρ, we have

(3.33)

ψ(ρ(u − Su)) = ψ(ρ(Tu − Su)
≤ ψ(M(u, u)) − φ(M(u, u))
= ψ(ρ(u − Su)) − φ(ρ(u − Su))
< ψ(ρ(u − Su)).

Again by monotone nondecreasing of ψ, we have ρ(u − Su) < ρ(u − Su) which is a contra-
diction. Thus u = Tu = Su. If there exists point v ∈ Xρ such that Tv = v = Sv and u 6= v,
then from

(3.34)
ψ(ρ(u − v)) = ψ(ρ(Tu − Sv))

≤ ψ(M(u, v)) − φ(M(u, v))
≤ ψ(ρ(u − v)) − φ(ρ(u − v)),

we conclude that u = v and the proof is complete.

Corollary 3.4. Let Xρ be a ρ − complete modular space and let T, S : Xρ → Xρ be
mappings satisfying the inequality

(3.35) ρ(Tx − Sy) ≤ M(x, y) − φ(M(x, y))

for all x, y ∈ Xρ, where M(x, y) = max{ρ(x−y), ρ(x−Tx), ρ(y−Sy), ρ( 1
2 (y−Tx))+ρ( 1

2 (x−Sy))

2 }
and φ : [0,∞) → [0,∞) is continuous and monotone nondecreasing function with φ(t) = 0
if and only if t = 0. Then there exists the unique point u ∈ Xρ such that u = Tu = Su.
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Corollary 3.5. Let Xρ be a ρ − complete modular space and let T : Xρ → Xρ be a
mapping satisfying the inequality

(3.36) ψ(ρ((Tx − Ty))) ≤ ψ(M(x, y)) − φ(M(x, y))

for all x, y ∈ Xρ, where M(x, y) = max{ρ(x−y), ρ(x−Tx), ρ(y−Ty), ρ( 1
2 (y−Tx))+ρ( 1

2 (x−Ty))

2 }
and ψ, φ : [0,∞) → [0,∞) are both continuous and monotone nondecreasing functions with
ψ(t) = φ(t) = 0 if and only if t = 0. Then T has a unique fixed point.

Corollary 3.6. Let Xρ be a ρ − complete modular space and let T : Xρ → Xρ be a
mapping satisfying the inequality

(3.37) ρ(Tx − Ty) ≤ M(x, y) − φ(M(x, y))

for all x, y ∈ Xρ, where M(x, y) = max{ρ(x−y), ρ(x−Tx), ρ(y−Ty), ρ( 1
2 (y−Tx))+ρ( 1

2 (x−Ty))

2 }
and φ : [0,∞) → [0,∞) is continuous and monotone nondecreasing function with φ(t) = 0
if and only if t = 0. Then T has a unique fixed point.
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