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Abstract. In this paper, we first obtain a weak mean convergence theorem of Baillon’s
type for generalized hybrid mappings in a Hilbert space. Further, using an idea of mean
convergence, we prove a strong convergence theorem of Halpern’s type for generalized
hybrid mappings in a Hilbert space.

1 Introduction Let H be a real Hilbert space, let C be a nonempty closed convex subset
of H and let T be a mapping of C into itself. Then, we denote by F (T ) the set of fixed
points of T . A mapping T : C → C is said to be nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for
all x, y ∈ C. Baillon [4] proved the first nonlinear ergodic theorem in a Hilbert space.

Theorem 1.1. Let C be a nonempty closed convex subset of H and let T be a nonexpansive
mapping of C into itself with F (T ) 6= ∅. Then, for any x ∈ C, Snx = 1

n

∑n−1
k=0 T kx converges

weakly to a fixed point of T .

We also know the following weak convergence theorem of Mann’s type; see, for instance,
[17], [18] and [23].

Theorem 1.2. Let C be a nonempty closed convex subset of H and let T be a nonexpansive
mapping of C into itself with F (T ) 6= ∅. For any x1 = x ∈ C, define a sequence {xn} in C by
xn+1 = αnxn+(1−αn)Txn for n = 1, 2, ..., where {αn} ⊂ [0, 1] satisfies

∑∞
n=1 αn(1−αn) =

∞. Then {xn} converges weakly to a fixed point of T .

The following strong convergence theorem of Halpern’s type was proved by Wittmann;
see [9], [23] and [28].

Theorem 1.3. Let C be a nonempty closed convex subset of H and let T be a nonexpansive
mapping of C into itself with F (T ) 6= ∅. For any x1 = x ∈ C, define a sequence {xn} in
C by xn+1 = αnx + (1 − αn)Txn for n = 1, 2, ..., where {αn} ⊂ [0, 1] satisfies αn → 0,∑∞

n=1 αn = ∞ and
∑∞

n=1 |αn − αn+1| < ∞. Then {xn} converges strongly to a fixed point
of T .

An important example of nonexpansive mappings in a Hilbert space is a firmly nonex-
pansive mapping. A mapping F : C → C is said to be firmly nonexpansive if

‖Fx − Fy‖2 ≤ 〈x − y, Fx − Fy〉

for all x, y ∈ C; see, for instance, Browder [6] and Goebel and Kirk [8]. It is also known that
a firmly nonexpansive mapping F is deduced from an equilibrium problem in a Hilbert space;
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see [5] and [7]. Kohsaka and Takahashi [15] introduced the following nonlinear mapping: A
mapping S : C → C is called nonspreading if

2‖Sx − Sy‖2 ≤ ‖Sx − y‖2 + ‖x − Sy‖2

for all x, y ∈ C. A nonspreading mapping was first defined in a Banach space; see also [14].
A nonspreading mapping in a Hilbert space is also deduced from a firmly nonexpansive
mapping; see [10], [11], [15] and [25]. Kurokawa and Takahashi [16] proved a nonlinear
ergodic theorem of Baillon’s type and a strong convergence theorem of Halpern’s type
for nonspreading mappings in a Hilbert space. Takahashi [25] defined another nonlinear
mapping which is deduced from a firmly nonexpansive mapping in a Hilbert space: A
mapping T : C → C is called hybrid if

3‖Tx − Ty‖2 ≤ ‖x − y‖2 + ‖Tx − y‖2 + ‖Ty − x‖2

for all x, y ∈ C. Motivated by the classes of nonexpansive mappings, nonspreading mappings
and hybrid mappings, Aoyama, Iemoto, Kohsaka and Takahashi [2] introduced a class of
mappings called λ-hybrid and then obtained a generalization of Baillon’s nonlinear ergodic
theorem; see also Takahashi and Yao [27]. Very recently, Kocourek, Takahashi and Yao
[13] introduced a more wide class of nonlinear mappings containing the class of λ-hybrid
mappings. Then, they proved fixed point theorems and weak convergence theorems of
Baillon’s type and Mann’s type for the mappings in a Hilbert space.

In this paper, motivated by these results, we first obtain a nonlinear mean ergodic theo-
rem of Baillon’s type for generalized hybrid mappings which generalizes Akatsuka, Aoyama
and Takahashi [1], Kurokawa and Takahashi [16] and Kocourek, Takahashi and Yao [13] in
a Hilbert space. Further, using an idea of mean convergence by Shimizu and Takahashi [19]
and [20], we prove a strong convergence theorem of Halpern’s type for generalized hybrid
mappings in a Hilbert space.

2 Preliminaries Throughout this paper, we denote by H a real Hilbert space with inner
product 〈·, ·〉 and norm ‖ · ‖. We also denote by N the set of natural numbers. In a Hilbert
space, it is known that

(2.1) ‖y‖2 − ‖x‖2 ≤ 2〈y − x, y〉

for all x, y ∈ H; see, for instance, [24]. Let {xn} be a sequence in H and let x ∈ H. Weak
convergence of {xn} to x is denoted by xn ⇀ x and strong convergence by xn → x. Let C
be a nonempty closed convex subset of H. We can define the metric projection of H onto
C: For each x ∈ H, there exists a unique point z ∈ C such that

‖x − z‖ = min{‖x − y‖ : y ∈ C}.

For each x ∈ H, such a point z is denoted by Px and P is called the metric projection of
H onto C. It is known that

(2.2) 〈x − Px, Px − y〉 ≥ 0

for all x ∈ H and y ∈ C; see [22] for more details. Let T be a mapping from C into itself.
The set of fixed points of T is denoted by F (T ). A mapping T is said to be nonspreading [15]
if

2‖Tx − Ty‖2 ≤ ‖Tx − y‖2 + ‖x − Ty‖2
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for all x, y ∈ C. Iemoto and Takahashi [10] proved that T : C → C is nonspreading if and
only if

(2.3) ‖Tx − Ty‖2 ≤ ‖x − y‖2 + 2〈x − Tx, y − Ty〉

for all x, y ∈ C. A mapping T : C → C is called quasi-nonexpansive if F (T ) 6= ∅ and
‖Tx − u‖ ≤ ‖x − u‖ for all x ∈ C and u ∈ F (T ). If T is a nonspreading mapping from C
into itself and F (T ) is nonempty, then T is quasi-nonexpansive. Further, we know that the
set of fixed points of a quasi-nonexpansive mapping is closed and convex; see [12]. Then
we can define the metric projection of H onto F (T ). A mapping T : C → C is called
generalized hybrid [13] if there are α, β ∈ R such that

(2.4) α‖Tx − Ty‖2 + (1 − α)‖x − Ty‖2 ≤ β‖Tx − y‖2 + (1 − β)‖x − y‖2

for all x, y ∈ C. We call such a mapping an (α, β)-generalized hybrid mapping. Notice that
the class of the mappings above covers classes of several well-known mappings. For example,
an (α, β)-generalized hybrid mapping is nonexpansive for α = 1 and β = 0, nonspreading
for α = 2 and β = 1, and hybrid for α = 3

2 and β = 1
2 . We can also show that if x = Tx,

then for any y ∈ C,

α‖x − Ty‖2 + (1 − α)‖x − Ty‖2 ≤ β‖x − y‖2 + (1 − β)‖x − y‖2

and hence ‖x−Ty‖ ≤ ‖x−y‖. This means that an (α, β)-generalized hybrid mapping with
F (T ) 6= ∅ is quasi-nonexpansive. To prove our main results, we need the following lemmas:

Lemma 2.1 (Aoyama-Kimura-Takahashi-Toyoda [3]). Let {sn} be a sequence of nonnega-
tive real numbers, let {αn} be a sequence of [0, 1] with

∑∞
n=1 αn = ∞, let {βn} be a sequence

of nonnegative real numbers with
∑∞

n=1 βn < ∞, and let {γn} be a sequence of real numbers
with lim supn→∞ γn ≤ 0. Suppose that

sn+1 ≤ (1 − αn)sn + αnγn + βn

for all n = 1, 2, .... Then limn→∞ sn = 0.

Lemma 2.2 (Takahashi-Toyoda [26]). Let D be a nonempty closed convex subset of a real
Hilbert space H. Let P be the metric projection of H onto D and let {xn} be a sequence in
H. If ‖xn+1 − u‖ ≤ ‖xn − u‖ for all u ∈ D and n ∈ N, then {Pxn} converges strongly.

3 Weak Convergence Theorem In this section, using the technique developed by
Takahashi [21], we prove the following weak convergence theorem for generalized hybrid
mapping which generalizes Akatsuka, Aoyama and Takahashi [1], Kurokawa, Takahashi
[16], and Kocourekand, Takahashi and Yao [13].

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let T
be a generalized hybrid mapping from C into itself. Define two sequences {xn} and {zn} in
C as follows: x1 = x ∈ C and

xn+1 = αnxn + (1 − αn)Txn,

zn =
1
n

n∑
k=1

xk
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for all n ∈ N, where 0 ≤ αn < 1 and αn → 0. If F (T ) 6= ∅, then {zn} converges weakly
to z ∈ F (T ), where z = limn→∞ Pxn and P is the metric projection of H onto F (T ). In
particular, for any x ∈ C, define

Snx =
1
n

n−1∑
k=0

T kx.

Then, {Snx} converges weakly to z ∈ F (T ), where z = limn→∞ PTnx.

Proof. Since T : C → C is a generalized hybrid mapping, there are α, β ∈ R such that

(3.1) α‖Tx − Ty‖2 + (1 − α)‖x − Ty‖2 ≤ β‖Tx − y‖2 + (1 − β)‖x − y‖2

for all x, y ∈ C. Since a generalized hybrid mapping T with F (T ) 6= ∅ is quasi-nonexpansive,
we have that for all u ∈ F (T ),

‖xn+1 − u‖ = ‖αnxn + (1 − αn)Txn − u‖
≤ αn‖xn − u‖ + (1 − αn)‖Txn − u‖
≤ ‖xn − u‖.

(3.2)

So, limn→∞ ‖xn −u‖ exists. Then, {xn} and {Txn} are bounded. So {zn} is bounded. Let
{zni} be a weakly convergent subsequence of {zn} such that zni ⇀ v. Then, we can show
v ∈ F (T ). In fact, for any y ∈ C and k ∈ N, we have that

0 ≤ β‖Txk − y‖2 + (1 − β)‖xk − y‖2

− α‖Txk − Ty‖2 − (1 − α)‖xk − Ty‖2

= β
{
‖Txk − Ty‖2 + 2 〈Txk − Ty, Ty − y〉 + ‖Ty − y‖2

}
+ (1 − β)

{
‖xk − Ty‖2 + 2 〈xk − Ty, Ty − y〉 + ‖Ty − y‖2

}
− α‖Txk − Ty‖2 − (1 − α)‖xk − Ty‖2

= ‖Ty − y‖2 + 2 〈βTxk + (1 − β)xk − Ty, Ty − y〉
+ (β − α)

{
‖Txk − Ty‖2 − ‖xk − Ty‖2

}
= ‖Ty − y‖2 + 2 〈xk − Ty + β(Txk − xk), Ty − y〉

+ (β − α)
{
‖Txk − Ty‖2 − ‖xk − Ty‖2

}
.

Since Txk = xk+1 + αk(Txk − xk) and (1 − αk)(Txk − xk) = xk+1 − xk, we have that

0 ≤ ‖Ty − y‖2 + 2 〈xk − Ty, Ty − y〉 + 2β(1 − αk)−1 〈xk+1 − xk, Ty − y〉
+ (β − α)

{
‖xk+1 − Ty + αk(Txk − xk)‖2 − ‖xk − Ty‖2

}
= ‖Ty − y‖2 + 2 〈xk − Ty, Ty − y〉 + 2β(1 − αk)−1 〈xk+1 − xk, Ty − y〉

+ (β − α)
{
‖xk+1 − Ty‖2 + 2αk 〈xk+1 − Ty, Txk − xk〉

+ ‖αk(Txk − xk)‖2 − ‖xk − Ty‖2
}

= ‖Ty − y‖2 + 2 〈xk − Ty, Ty − y〉 + 2β(1 − αk)−1 〈xk+1 − xk, Ty − y〉
+ (β − α)

{
‖xk+1 − Ty‖2 − ‖xk − Ty‖2 + 2αk〈xk+1 − Ty, Txk − xk〉

+ ‖αk(Txk − xk)‖2
}
.

From 1 − αk > 0, we also have

0 ≤ (1 − αk)‖Ty − y‖2 + 2(1 − αk) 〈xk − Ty, Ty − y〉 + 2β 〈xk+1 − xk, Ty − y〉
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+ (β − α)(1 − αk)
{
‖xk+1 − Ty‖2 − ‖xk − Ty‖2 + 2αk 〈xk+1 − Ty, Txk − xk〉

+ ‖αk(Txk − xk)‖2
}

= ‖Ty − y‖2 + 2 〈xk − Ty, Ty − y〉 + 2β 〈xk+1 − xk, Ty − y〉
+ (β − α)

{
‖xk+1 − Ty‖2 − ‖xk − Ty‖2

}
− αk‖Ty − y‖2

− 2αk 〈xk − Ty, Ty − y〉 − (β − α)αk

{
‖xk+1 − Ty‖2 − ‖xk − Ty‖2

}
+ (β − α)(1 − αk)

{
2αk 〈xk+1 − Ty, Txk − xk〉 + α2

k‖Txk − xk‖2
}

≤ ‖Ty − y‖2 + 2 〈xk − Ty, Ty − y〉
+ 2β 〈xk+1 − xk, Ty − y〉 + (β − α)

{
‖xk+1 − Ty‖2 − ‖xk − Ty‖2

}
+ αk

{
− 2 〈xk − Ty, Ty − y〉 − (β − α)(‖xk+1 − Ty‖2 − ‖xk − Ty‖2)

}
+ αk|β − α||2 〈xk+1 − Ty, Txk − xk〉 + αk‖Txk − xk‖2|

≤ ‖Ty − y‖2 + 2 〈xk − Ty, Ty − y〉 + 2β 〈xk+1 − xk, Ty − y〉
+ (β − α)

{
‖xk+1 − Ty‖2 − ‖xk − Ty‖2

}
+ αkM + αk|β − α|K,

where

M = sup
k∈N

{−2 〈xk − Ty, Ty − y〉 − (β − α)(‖xk+1 − Ty‖2 − ‖xk − Ty‖2)}

and
K = sup

k∈N
{|2 〈xk+1 − Ty, Txk − xk〉 + αk‖Txk − xk‖2|}.

Summing up these inequalities with respect to k = 1, 2, . . . , n,

0 ≤ n‖Ty − y‖2 + 2

〈
n∑

k=1

xk − nTy, Ty − y

〉
+ 2β 〈xn+1 − x1, Ty − y〉

+ (β − α)
{
‖xn+1 − Ty‖2 − ‖x1 − Ty‖2

}
+

n∑
k=1

αkM +
n∑

k=1

αk|β − α|K.

Deviding this inequality by n, we have

0 ≤ ‖Ty − y‖2 + 2 〈zn − Ty, Ty − y〉 +
1
n

2β 〈xn+1 − x1, Ty − y〉

+
1
n

(β − α)
{
‖xn+1 − Ty‖2 − ‖x1 − Ty‖2

}
+

1
n

n∑
k=1

αkM +
1
n

n∑
k=1

αk|β − α|K,

where zn = 1
n

∑n
k=1 xk. Replacing n by ni and letting ni → ∞, we obtain from zni ⇀ v

and αn → 0 that
0 ≤ ‖Ty − y‖2 + 2 〈v − Ty, Ty − y〉 .

Putting y = v, we have 0 ≤ −‖Tv − v‖2 and hence Tv = v. To show that {zn} converges
weakly to a fixed point of T , we first show that limn→∞ Pxn exists. Since F (T ) 6= ∅, from
(3.2) we have that for all u ∈ F (T ),

‖xn+1 − u‖ ≤ ‖xn − u‖.

On the other hand, since T is quasi-nonexpansive, F (T ) is closed and convex. So, we can
define the metric projection P of H onto F (T ). Putting D = F (T ) in Lemma 2.2, we have
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that limn→∞ Pxn converges strongly. Put z = limn→∞ Pxn. Then we can prove zn ⇀ z.
In fact, let {zni} be a subsequence of {zn} such that zni ⇀ w. From the above argument,
we have w ∈ F (T ). To complete the proof of the first part, it is sufficient to prove z = w.
From w ∈ F (T ) and (2.2), we have

〈w − z, xk − Pxk〉 = 〈w − Pxk, xk − Pxk〉 + 〈Pxk − z, xk − Pxk〉
≤ 〈Pxk − z, xk − Pxk〉
≤ ‖Pxk − z‖‖xk − Pxk‖
≤ ‖Pxk − z‖L

for all k ∈ N, where L = sup{‖xk − Pxk‖ : k ∈ N}. Summing these inequalities from k = 1
to ni and dividing by ni, we have〈

w − z, zni −
1
ni

ni∑
k=1

Pxk

〉
≤ 1

ni

ni∑
k=1

‖Pxk − z‖L.

Since zni ⇀ w as i → ∞ and Pxn → z as n → ∞, we have 〈w − z, w − z〉 ≤ 0. This
implies z = w. This completes the proof of the first part. In particular, putting αn = 0
for all n ∈ N, we see that xn+1 = Tnx and zn = 1/n

∑n−1
k=0 T kx for all n ∈ N, where

T 0 = I. So, we obtain Snx = zn. Therefore, {Snx} converges weakly to z ∈ F (T ), where
z = limn→∞ PTnx. So, we get the desired result.

Using Theorem 3.1, we obtain the following results proved by Akatsuka, Aoyama and
Takahashi [1] and Kurokawa and Takahashi [16].

Theorem 3.2 (Akatsuka, Aoyama and Takahashi [1]). Let C be a nonempty closed convex
subset of a real Hilbert space H. Let T be a nonexpansive mapping from C into itself. Define
two sequences {xn} and {zn} in C as follows: x1 = x ∈ C and

xn+1 = αnxn + (1 − αn)Txn,

zn =
1
n

n∑
k=1

xk

for all n ∈ N, where 0 ≤ αn < 1 and αn → 0. If F (T ) 6= ∅, then {zn} converges weakly
to z ∈ F (T ), where z = limn→∞ Pxn and P is the metric projection of H onto F (T ). In
particular, for any x ∈ C, define

Snx =
1
n

n−1∑
k=0

T kx.

Then {Snx} converges weakly to z ∈ F (T ), where z = limn→∞ PTnx.

Proof. Since an (α, β)-generalized hybrid mapping is nonexpansive for α = 1 and β = 0,
we obtain the desired result from Theorem 3.1.

Theorem 3.3 (Kurokawa and Takahashi [16]). Let C be a nonempty closed convex subset
of a real Hilbert space H. Let T be a nonspreading mapping from C into itself. Define two
sequences {xn} and {zn} in C as follows: x1 = x ∈ C and

xn+1 = αnxn + (1 − αn)Txn,

zn =
1
n

n∑
k=1

xk
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for all n ∈ N, where 0 ≤ αn < 1 and αn → 0. If F (T ) 6= ∅, then {zn} converges weakly
to z ∈ F (T ), where z = limn→∞ Pxn and P is the metric projection of H onto F (T ). In
particular, for any x ∈ C, define

Snx =
1
n

n−1∑
k=0

T kx.

Then {Snx} converges weakly to z ∈ F (T ), where z = limn→∞ PTnx.

Proof. Since an (α, β)-generalized hybrid mapping is nonspreading for α = 2 and β = 1,
we obtain the desired result from Theorem 3.1.

4 Strong Convergence Theorem In this section, using an idea of mean convergence
by Shimizu and Takahashi [19] and [20], we prove the following strong convergence theorem
for generalized hybrid mappings in a Hilbert space.

Theorem 4.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let T
be a generalized hybrid mapping of C into itself. Let u ∈ C and define two sequences {xn}
and {zn} in C as follows: x1 = x ∈ C and

xn+1 = αnu + (1 − αn)zn,

zn =
1
n

n−1∑
k=0

T kxn

for all n = 1, 2, ..., where 0 ≤ αn ≤ 1, αn → 0 and
∑∞

n=1 αn = ∞. If F (T ) is nonempty,
then {xn} and {zn} converge strongly to Pu, where P is the metric projection of H onto
F (T ).

Proof. We follow Kurokawa and Takahashi [16] for the proof. Since T : C → C be a
generalized hybrid mapping, there are α, β ∈ R such that

(4.1) α‖Tx − Ty‖2 + (1 − α)‖x − Ty‖2 ≤ β‖Tx − y‖2 + (1 − β)‖x − y‖2

for all x, y ∈ C. Since F (T ) 6= ∅, T is quasi-nonexpansive. So, we have that for all q ∈ F (T )
and n = 1, 2, 3, ...,

‖zn − q‖ =

∥∥∥∥∥ 1
n

n−1∑
k=0

T kxn − q

∥∥∥∥∥ ≤ 1
n

n−1∑
k=0

‖T kxn − q‖

≤ 1
n

n−1∑
k=0

‖xn − q‖ = ‖xn − q‖.

(4.2)

Then we have

‖xn+1 − q‖ = ‖αnu + (1 − αn)zn − q‖
≤ αn‖u − q‖ + (1 − αn)‖zn − q‖
≤ αn‖u − q‖ + (1 − αn)‖xn − q‖.

Hence, by induction, we obtain

‖xn − q‖ ≤ max {‖u − q‖, ‖x − q‖}
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for all n ∈ N. This implies that {xn} and {zn} are bounded. Since ‖Tnxn − q‖ ≤ ‖xn − q‖,
we have also that {Tnxn} is bounded. Let n ∈ N. Since T is generalized hybrid, we have
that for all y ∈ C and k = 0, 1, 2, ..., n − 1,

0 ≤ β‖T k+1xn − y‖2 + (1 − β)‖T kxn − y‖2

− α‖T k+1xn − Ty‖2 − (1 − α)‖T kxn − Ty‖2

= β
{
‖T k+1xn − Ty‖2 + 2

〈
T k+1xn − Ty, Ty − y

〉
+ ‖Ty − y‖2

}
+ (1 − β)

{
‖T kxn − Ty‖2 + 2

〈
T kxn − Ty, Ty − y

〉
+ ‖Ty − y‖2

}
− α‖T k+1xn − Ty‖2 − (1 − α)‖T kxn − Ty‖2

= ‖Ty − y‖2 + 2
〈
βT k+1xn + (1 − β)T kxn − Ty, Ty − y

〉
+ (β − α)

{
‖T k+1xn − Ty‖2 − ‖T kxn − Ty‖2

}
= ‖Ty − y‖2 + 2

〈
T kxn − Ty + β(T k+1xn − T kxn), Ty − y

〉
+ (β − α)

{
‖T k+1xn − Ty‖2 − ‖T kxn − Ty‖2

}
.

Summing these inequalities from k = 0 to n − 1 and dividing by n, we have

0 ≤‖Ty − y‖2 + 2〈zn − Ty, Ty − y〉 + 2β
1
n
〈Tnxn − xn, Ty − y〉

+ (β − α)
1
n

{
‖Tnxn − Ty‖2 − ‖xn − Ty‖2

}
.

Since {zn} is bounded, there exists a subsequence {zni} of {zn} such that zni ⇀ w ∈ C.
Replacing n by ni, we have

0 ≤‖Ty − y‖2 + 2〈zni − Ty, Ty − y〉 + 2β
1
ni

〈Tnixni − xni , Ty − y〉

+ (β − α)
1
ni

{
‖Tnixni − Ty‖2 − ‖xni − Ty‖2

}
.

Since {xn} and {Tnxn} are bounded, we have that

0 ≤ ‖Ty − y‖2 + 2〈w − Ty, Ty − y〉

as i → ∞. Putting y = w, we have

0 ≤ ‖Tw − w‖2 + 2〈w − Tw, Tw − w〉 = −‖Tw − w‖2.

Hence, w ∈ F (T ). On the other hand, since xn+1 − zn = αn(u − zn), {zn} is bounded and
αn → 0, we have limn→∞ ‖xn+1−zn‖ = 0. Let us show lim supn→∞〈u−Pu, xn+1−Pu〉 ≤ 0.
We may assume without loss of generality that there exists a subsequence {xni+1} of {xn+1}
such that

lim sup
n→∞

〈u − Pu, xn+1 − Pu〉 = lim
i→∞

〈u − Pu, xni+1 − Pu〉

and xni+1 ⇀ v. From ‖xn+1 − zn‖ → 0, we have zni ⇀ v. From the above argument, we
have v ∈ F (T ). Since P is the metric projection of H onto F (T ), we have

lim
i→∞

〈u − Pu, xni+1 − Pu〉 = 〈u − Pu, v − Pu〉 ≤ 0.

This implies

lim sup
n→∞

〈u − Pu, xn+1 − Pu〉 ≤ 0.(4.3)
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Since xn+1 − Pu = (1 − αn)(zn − Pu) + αn(u − Pu), from (2.1) and (4.2) we have

‖xn+1 − Pu‖2 = ‖(1 − αn)(zn − Pu) + αn(u − Pu)‖2

≤ (1 − αn)2‖zn − Pu‖2 + 2αn〈u − Pu, xn+1 − Pu〉
≤ (1 − αn)‖xn − Pu‖2 + 2αn〈u − Pu, xn+1 − Pu〉.

Putting sn = ‖xn − Pu‖2, βn = 0 and γn = 2〈u − Pu, xn+1 − Pu〉 in Lemma 2.1, from∑∞
n=1 αn = ∞ and (4.3) we have

lim
n→∞

‖xn − Pu‖ = 0.

By limn→∞ ‖xn − zn‖ = 0, we also obtain zn → Pu as n → ∞.

Using Theorem 4.1, we can show the following result obtained by Kurokawa and Taka-
hashi [16].

Theorem 4.2 (Kurokawa and Takahashi [16]). Let C be a nonempty closed convex subset
of a real Hilbert space H. Let T be a nonspreading mapping of C into itself. Let u ∈ C and
define two sequences {xn} and {zn} in C as follows: x1 = x ∈ C and

xn+1 = αnu + (1 − αn)zn,

zn =
1
n

n−1∑
k=0

T kxn

for all n = 1, 2, ..., where 0 ≤ αn ≤ 1, αn → 0 and
∑∞

n=1 αn = ∞. If F (T ) is nonempty,
then {xn} and {zn} converge strongly to Pu, where P is the metric projection of H onto
F (T ).

Proof. Since an (α, β)-generalized hybrid mapping is nonspreading for α = 2 and β = 1,
we obtain the desired result from Theorem 4.1.

Remark. We do not know whether a strong convergence theorem of Halpern’s type for
generalized hybrid mappings holds or not.
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