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ABSTRACT. This paper presents three kinds of balanced fractional 3™ factorial designs
such that the general mean and all the main effects are estimable, and furthermore
(A) the linear by linear components of the two-factor interaction are estimable, and
the factorial effects of the quadratic by quadratic and linear by quadratic ones of the
two-factor interaction are confounded with each other, (B) the quadratic by quadratic
ones of the two-factor interaction are estimable, and the effects of the linear by linear
and linear by quadratic ones of the two-factor interaction are confounded with each
other, and (C) the linear by quadratic ones of the two-factor interaction are estimable,
and the effects of the linear by linear and quadratic by quadratic ones of the two-factor
interaction are confounded with each other, where the three-factor and higher-order
interactions are assumed to be negligible and the number of assemblies is less than the
number of non-negligible factorial effects. These designs are concretely given by the
indices of a balanced array of full strength, which is called a simple array.

1 Introduction As a generalization of an orthogonal array, the concept of a balanced
array (BA) was first introduced by Chakravarti [1] as a partially BA. However it is a gen-
eralization of a BIB design and not of a PBIB design, and hence Srivastava and Chopra
[9] called it a BA. A design is said to be balanced if the variance-covariance matrix of the
estimators of the factorial effects to be of interest is invariant under any permutation on the
factors. The relation between a BA of strength four, size IV, m constraints, three symbols
and index set {ft;o;,4,|J0 + j1 + j2 = 4}, which is denoted by BA(N,m, 3,4; {1}y, }) for
brevity, and a balanced fractional 3™ factorial (3™-BFF) design of resolution V was pre-
sented by Kuwada [5]. Furthermore the same author [6] obtained the explicit expression for
the characteristic polynomial of the information matrix of a 3™-BFF design of resolution
V derived from a BA(N,m, 3,4;{u;,;,j,}) using the algebraic structure of the multidimen-
sional relationship (MDR). In the design theory, the concept of a relationship was first
introduced by James [3]. By use of a different approach, the inversion of the information
matrix of a 3™-BFF design of resolution V was presented by Srivastava and Ariyaratna [8].
As a special case of a 3™-BFF design of resolution V, the expression for the trace of the
variance-covariance matrix of the estimators of non-negligible factorial effects based on a
balanced (2,0)-symmetric design was presented Srivastava and Chopra [10]. Some 3™-BFF
designs of resolution IV were obtained by Kuwada and Tkeda [7] using the properties of the
MDR algebra and a generalized inverse of a matrix. However their results are given by the
matrix formulas and they are very complex.

A BA of strength m and indices A, i,4, (70 + %1 + 92 = m) is called a simple array (SA)
and it is briefly denoted by SA(m; {\ii,4, }). Let Sz be one of the sets {20,02}, {02, 11} and
{02,11}. Then under the assumption that the three-factor and higher-order interactions
are negligible and the number of assemblies (or treatment combinations), N, say, is less
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than the number of non-negligible factorial effects (= v(m), say), Taniguchi et al. [11] has
given 3™-BFF designs derived from SA(m; { iy, })’s such that 8gg, 010, Op1 and 0,,,, are
estimable for ajas € S9 and the factorial effects of 8y, are confounded with themselves for
b1be € {20,02,11} \ S2, whose designs are said to be of resolutions R({00, 10,01} U S3|Q),
where 6 is the general mean, 819 and 6y; are the vectors of the linear and quadratic
components of the main effect, respectively, 829, 8p2 and 611 are the vectors of the linear
by linear, quadratic by quadratic and linear by quadratic ones of the two-factor interaction,
respectively, 2 = {00, 10,01, 20, 02,11}, and v(m) = 1 + 2m?.

In this paper, we present 3™-BFF designs derived from SA(m;{\;,i,})’s such that
000, 010, 001 and 6., ., are estimable for cicy € S; and the factorial effects of 04,4, are
confounded with each other for dids € {20,02,11} \ Sy, whose designs are said to be of
resolutions R({00, 10,01} U S1|Q?), where S; = {20}, {02} and {11}, the three-factor and
higher-order interactions are assumed to be negligible and N < v(m). These designs are con-
cretely given by the indices Ajyi,4, Of an SA. Resolutions R({00, 10,01} U S5|€?) designs given
above and resolutions R({00, 10,01} U S1|Q) designs considered here are a part of resolution
IV designs. In an even resolution design, 6py may or may not be estimable. Thus in sepa-
rate papers, we shall present another resolution IV designs derived from SA(m; { ;i i, })’s
such that (I) Ogp, 610 and Oy are estimable, and the factorial effects of 029, 892 and 07, are
confounded with each other, whose designs are said to be of resolution R({00,10,01}|(2),
and (II) B, and By; are estimable, and 0 is confounded with some two-factor interactions,
whose designs are said to be of resolutions R({10,01} U S|Q2), where S = S5, S1 and {¢}.
In all our evaluations, we code the three levels of a factor as 0, 1 or 2, and employ the
standard orthogonal contrasts used in the 3" case: viz., —1,0,1 and 1, —2,1 for the linear
and quadratic contrasts, respectively.

2 Preliminaries Consider a fractional 3™ factorial design 7" with NV assemblies, where
m > 4, and the three-factor and higher-order interactions are assumed to be negligible. Then
the vector of non-negligible factorial effects is given by & = (0;0; 9/10; 0l01; 0,20; 0;)2; 9/11)/,
where A" denotes the transpose of a matrix A. Hence the linear model is given by y(T') =
Er® + er, where y(T), Er and ey are, respectively, an N x 1 observation vector based
on T, the N x v(m) design matrix and an N x 1 error vector with mean Oy and variance-
covariance matrix o2Iy. The normal equations for estimating @ are given by

(2.1) MO = Epy(T),

where My (= EpEr) is the information matrix of order v(m).
Let T be a design derived from a BA(N,m, 3,4;{1t;o;,j,}). Then from the properties of
the MDR algebra (see [6]), the M is given by

_ aiaz,bibz #(a1a27b1b2)
(22) MT - Ealag Zblbg Z’y H’y D’Y
+ Z Z LU, V102 D#(uluz,vlm)
uru2;i Lvv1ve;j U fij fij )
where the relations between £21%2:%1%2 (y = 0,1, 2) (or Ky 1201) and pjyj, j, are given in the

D#(alaz,blb) and D}f](u1u2ﬂ)102

Appendix of Yamamoto et al. [12]. Here the matrices ) of or-

der v(m) are given by some linear combinations of the relationship matrices Digazbiba) a4
D{avavve) (see [6]), respectively. Thus the My is isomorphic to the symmetric matrices
||grazbrb2|| (= K say) for v = 0,1,2 and ||/{}‘-i1j“2’vlv2|| (= Ky, say) (see [6]), i.e., there ex-

ists an orthogonal matrix @ of order v(m) such that Q/MTQ = diag[Ko; K1, ..., K1; Ko, ...,
Ky, Ky, ...,Ky], where the multiplicities of K3 are ¢ for § = 0,1,2, f. Here ¢g = 1,
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¢1 = m(m — 3)/2, ¢3 = (mgl) and ¢y = m — 1, where (5) is the binomial coefficient,
and (Z) = 0 if and only if ¢ < 0 or p < g. Note that the Kz are called the irreducible
representations of My and the order of Ky, K, K2 and Ky are 6, 3, 1 and 6, respectively.

The ajas-th row block and biby-th column one of DF(“142#1%2)
Aﬁ(alag,m(m)e A#(blb%blbz)ebl b2

are concerned with
ara, and respectively, where (i) if v = 0, then ajas, b1by =
00,10,01,20,02,11, (i) if v = 1, then ajas, bibs = 20,02,11, and (iii) if v = 2, then

ai1as,b1by = 11, and the ujus-th row block and vive-th column one of D}%E"lug’vw” are

also concerned with A}iEm“?’uluz)Oulw and Azngz’vlw)evwm respectively, where (ujuz;1),

(v1v2:4) = (1051), (0151), (20;2), (02;2), (11;3), (11;4). Here the matrices AFlarazbiba)
A?;#(blbmalaz)) and Aiguluz,vlvz) (: A#(Ulv2,u1u2))

Fai of size Ng,ay X Nbyby, AN Ny, X Ny,

are given by some linear combinations of the local relationship matrices Alarazbiba) o

Alpru212) (o6 [6]), respectively, where nq,q, = ("o

3 Decomposition of Kg An SA(m;{ iy, }) always exists for any indices A;i,i, and
any m, but a BA(N,m,3,4; {1,;.4,}) does not always exist for given p;,;,;, and m > 5.
Furthermore if N > v(m), then there exists a 3™-BFF design of resolution R(Q2|Q2), i.e
of resolution V, (e.g., [4]). Thus throughout this paper, we only consider a design derived
from an SA(m {)\Zomz}) with N < v(m). Here the relations between the indices 1 ;, ;, of
a BA of btrength four and A;,,4, of an SA are given by

(3.1) Hjojrjz = Zp0+p1+p2:m—4{(m - 4)!/(p0!p1!pQ!)})‘jo+Poj1+;D1j2+p27

and N = 3 it Amt/(iolintin!) } Nigiyi,. Note that if T is an SA(m; {Nigiyi, }), where
m > 4, then it is the BA(N,m,3,4; {1),j,j» }), but the converse is not always true for
m > 5. Since N < v(m), the information matrix My is singular, and hence at least one of
Kgs (8=0,1,2, f) is singular. Thus it holds that > _s[rank{Ks}]¢s < N < v(m).

A necessary and sufficient condition for a parametric function C@ of @ to be estimable
for some matrix C' of order v(m) is that there exists a matrix X of order v(m) such that
XMyp = C (e.g., [13]). If CO is estimable, then its BLUE is given by C@, where @ is a
solution of the Eqs. (2.1), and its variance-covariance matrix is given by 62X MpX .

Let T be an SA(m; {Xigiyip })- Then the My is given by some linear combinations of the
matrices D#(alaz’b1b2) nd D#(uluz’vlvz) as in (2.2). Thus we impose some restrictions on
C such that it is given by some linear combinations of these matrices, and hence we define
C as follows:

00,00 10,10 10,10 01,01 01,01
O = DY | (D010 | pEIOIOY L (010D | #0101y

ajaz,bybz #(a1az,b1b2) *ok w1 U2,V V2 FF(U1U2,v102)
+ Zalarz Zblbz Z g D + Zulug 1 Zvva,J gf” ‘Df” ’

where Za a0, and Zu upyi are the summations over all the values of a;as and (uqu2; 1) such
that (i) 1f'y =0,1, then ajas = 20,02,11 and (ii) if v = 2, then ajas = 11, and (ujue;i) =
(20;2),(02;2),(11; 3),(11; 4), respectively, and g2**>21%> (y = 0,1,2) and g;ﬁ;_w’vl” are some
constants. Similarly we define X as follows: ’

a1az,b1by #(a1a2,b1b2) uruz,v1v2 #(u1us, 'Ul'UZ)
X = Zznaz Zb1b2 Z X~ 1o 2D + Zuwz;i Zvlvz;j Xf” D

]

U U2,V V2

where x2192:"1% and x§j are also some constants which depend on k21291t and

g;““?’blbz, and /ﬁ}fjj“z’m” and gqjﬁ;juz’"l”, respectively. Then C' and X are isomorphic to I's
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and xg (6 =0,1,2, f), respectively, where

20,20 20,02 20,11 20,20 20,02 20,11
90 90 90 91 91 91
o | 02,20 0202 0211 _ | 02,20 0202 0211
Iy =diag[ls; | 90~ 90 90 L =97 o o ;
11,20 11,02 11,11 11,20 11,02 11,11
90 90 90 91 91 91
(3.2) 20,20 20,02 20,11 20,11

9fse 9fso Yfoz Ifou
02,20 02,02 02,11 02,11

L1l o | 9 f fas If
Iy =g, »Ff—dlag[l% 1?2,20 121?02 1?,11 1214,11 ],

Ifse 9fso Yfaz Ifau
11,20 11,02 11,11 11,11

fa2 fa2 faz faa

a1az, u1u2ﬂi1v2||

Yo = [t and vy = [Ix%
Thus XMy = C is also isomorphic to xgKg = I3.

By use of the methods similar to the proof of Theorem 3.4 due to Taniguchi et al. [11],
the following can be easily proved:

Theorem 3.1. If there exists a 3™-BFF design of resolutions R({00, 10,01}US1|Q2) derived
from an SA(m; {Niyiyi,}) with N < v(m), where m > 4, and S; = {20},{02} and {11},
then it holds that X;yiyi, = 0 for (igiriz) # (pm — p0) (1 < p <m),(0gm —q) (1 < g < m),
(m—1r0r) (1 <r <m),(1lm —2),(m — 211), (Im — 21).

It follows from Theorem 3.1 that in the rest of this paper, we consider a design derived
from an SA(m; {Niyii, ) With N < v(m), where the indices A;,;,4, satisfy the conditions of
Theorem 3.1. Let F, (v =0, 1,2) and Fy be some matrices whose rows and columns are con-
cerned with Aiﬁﬁ(alag’alw)eal@ and A4y, and Aﬁfulu%ulw)eulw and \;,i,4,, Tespectively,
and further let Az (8 =0, 1,2, f) be some diagonal matrices. Here the 6x1 column vectors of
F} of size 6 x3(m+1) concerned with the indices Apm—po; Aogm—g> Am—rors AMim—2, Am—211
and Ai,,—21 are, respectively, given by

’
)

—_

—p —(2m=3p) p(p-1) (2m-3p)°>~(4m-3p) p(2m-3p+1)) /
m—q m=3q (m—q)(m—q-1) (m=3q)*~(m+3q) (m—q)(m-3¢-1)),
—(m=2r) m  (m—2r)>-m m(m-1) 7(WL*1)(TIZ72’I”))/,

m—3 m-3 (m-2)(m-5) (m-1)(m—6) (m-3)(m—4)), /
—(m-3) m-3 (m—2)(m-5) (m—l)(m/—ﬁ) —(m=3)(m—4)) and
0 —2m-3) —2 2(2m>-14mi21) 0),

w
=
P3P
3
g
AAA/;\A/\

—_

>
§
4

b
Jhrt
—
i
(V)

—_

o
i
(V)
—_
—

—_

>
=
3\
)
=

—

where 1 <p, ¢, <m, the 3 x 1 column vectors of F; of size 3 x 3(m — 2) concerned with
>\p7rl—p07 /\qu—zp Am—ror, AMim—2, Am—211 and Ai,;,_o;1 are, respectively, given by

VoL 1T =1)", \Aogma(l 1 1), \Amor(l 0 0),
iim22 01, VAman(2 0 =1) and \Apmor (1 —1 0,

where 2 < p,q,r < m — 2, the elements of F5 of size 1 x 3 concerned with A\i1,n_2, Am_211
and A1,,—21 are, respectively, given by

(3.5) VAtim2(1), VAmo11(1) and \/Aim21(1),

(3.4)
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and the 6 x 1 column vectors or the 6 x 2 submatrices of F'y of size 6 x 3(m + 1) concerned
with Apm—po, Aogm—q> Am—ror, AMim—2, Am—211 and Ai,,_21 are, respectively, given by

mpo(l 1 p1 2m=3p-1 m m-3pHl),
ogma(—=1 1 m—g-1 —(m-3¢+) —m 2m-3¢-1),
Pmaror(2 0 2(m=2r) 0 —m  —(m=2)),

’

1 1 —(m-2) —(m-2) —-2(m-3) m-2
(3.6) VA“’“(—3 1 3m—10 —(m—2) 0 3(m—4)>,’
-1 1 —(m-2) —(m-2) 2(m-3) —(m—2)
VAm‘m(?) 1 3m-10 —(m-2) 0 —3(m—4)> and

S (b 00 0 m-3 m-2\
m=21{g -1 1 —©2m-7) 0 0o )"

(
where 1 < p,q,7 < m — 1 (see [11]). Furthermore the diagonal elements of Ay of order
3(m+1) concerned with the indices Appm—po, Aogm—q> Am—rors AMim—2, Am—211 and A1m_o1
are, respectively, given by

(3.7) NN G VO 205) (2(5) and 2(3)

where 1 < p,q,r < m, the diagonal elements of A; of order 3(m — 2) concerned with
Apm—p0s Aogm—gs Am—r0rs AMim—2, Am—211 and A1, 21 are, respectively, given by

(3.8) VO S0 405, Ve V2 and 2,

where 2 < p,q,r < m — 2, the diagonal elements of Ay of order 3 concerned with Aj1,,_2,
Am—211 and A1,,—21 are, respectively, given by

(3.9) 6, 6 and 6,

and the diagonal elements or the 2 x 2 block diagonal ones of A of order 3(m+1) concerned
with /\pm—pOa Aqu—(p Am—r0rs AMim—2, Am—211 and A1, _91 are, respectively, given by

s VDV D
diag[y/m/2;1/(m—2)/2], diag[\/m/2;\/(m—2)/2] and diag[v2m;+/2(m—2)],

where 1 < p,q,7 < m — 1. Then from Theorem 3.1, Lemma A.1 and (3.1), the following
yields (see [11]):

Theorem 3.2. Let T be an SA(m; {Niyi in }) satisfying the conditions of Theorem 3.1, then
(3.11) Ky = (DgFsAp)(DgFpAg) for f=0,1,2,f,

wherem > 4, Fg and Ag are given by (3.3) through (3.6) and (3.7) through (3.10), respectively,
and

Do = diag[1; 1/v/m: 1/v/ms 142/ (5) 117420/ (5) 514 /2(5) )], Dr = diagl1;9;3v2)
Dy =1 and Dy = diag[—1;3;1/v/m—2; —=3/vm—2;/2/m; \/2/(m—2)].

By (3.11), it holds that rank{Kz} = r-rank{Fps} for 8 = 0,1,2, f, where r-rank{A}
denotes the row rank of a matrix A.

Note from Theorem 5.1 of Kuwada [6] that
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(i) if AZ?E (00’00)000 is estimable, then 6 is estimable,
(i) if Ao#(alaz’alaz)Bala2 and Aﬁgalaz’ala"’)ealw (a1as = 10,01) are estimable, then 0,4,
is estimable,
(iii) if AF"b2bib2g,
timable, then 0y, is estimable, and
(iv) if Aﬁ““’l”eu and Aﬁf“’“)ou are estimable for all v = 0,1,2 and 7 = 3,4, then 6,
is estimable.

AFOi2)g,  and A%, ) (biby = 20,02) are es-

2

4 Resolutions R({00,10,01} U S;1|Q2) designs with N < v(m) In this section, the
focus is on obtaining a 3"-BFF design of resolutions R({00, 10,01} U S1|Q?) derived from an
SA(m; {Nigiri, }) With N < v(m), where m >4, S; = {20}, {02} and {11}, and the indices
Aigiyip Satisfy the conditions of Theorem 3.1. The resulting array given by interchanging all
of the symbols 0 and 2 of an SA(m; {Aiyi,4, }) is also the SA(m; {A} 1, }), where Af ., =
Akski ko, and it is briefly denoted by (0, 2)-ISA.

(A) Resolution R({00,10,01,20}|?) designs

We firstly consider a 3™-BFF design of resolution R({00,10,01,20}|2) derived from
an SA(m; {Nigiri}) with N < v(m). Then 6gg, 019, Op1 and 699 are estimable and the
factorial effects of By and 611 are confounded with each other. Using the row relations of
Fs (8=0,1,2, f) given by (3.3) through (3.6) and Lemma A.1, we have the following:

Theorem 4.A. Let T be an SA(m; {Niyiyi, }) with N < v(m), where m > 4 and the indices
Nigirin Satisfy the conditions of Theorem 3.1. Then a necessary and sufficient condition for
T to be a 3™-BFF design of resolution R({00,10,01,20}|Q?) is that one of the following
holds:
(I) When m = 6, Aos1 = Ao15 = Azz0 = Az03 = 1, emactly three out of {\150, As10, A10s,
Xso1} are 1, Nigiyi, = 0 for (igiria) # (26 — 20) (x = 1,3,5,6), (0y6 —y) (y = 1,5,
6), (6 —20z) (2 =1,3,5,6) and Xsoo + Aoos + Aoso < 3, or its (0,2)-ISA,
(II) when m = 8, A170, Ao71, Ao17, A7i0 = 1, Aio7 + Avo1 > 1, Aaoa = 1, Nigiyi, = 0 for
(igi172) # (28 — 20) (x =1,7,8),(0y8 —y) (y =1,7,8),(8 — 202) (2 =1,4,7,8) and
Agoo + Aoog + Aogo + 8(A170 + Aor1 + Aor7 + Ario + Ator + Azor) < 59,
(III) when m =6 and 7,
(1) Aom—11 = Ao1m—1 = A2m—20 + Am—220 = A20m—2 + Am—202 = 1, and
(1) AMim—10 + Am—110 = A30m—3 + Am—303 (if m = 7) = 1, Xigii, = 0 for
(igi1iz) # (xm — 20) (x = 1,2,m —2,;m — 1,m), Oym —y) (y = 1,m — 1,
m),(m—20z) (z=2,3 (if m=7),m—3,m—2,m) and Moo+ Aoom+Aomo <
1+ m(m —2)(7T—m)/6, or its (0,2)-ISA, or
(2) Mom—1 + Am—101 = A3m—30 + Am—330 (if m = 7) = 1, Nigii, = 0 for
(tpiriz) # (xm —20) (x =2,3,m =3 (if m=7),m —2,m),(Oym —y) (y =
1,m—1,m),(m—20z) (z=1,2,m—2,m—1,m) and A\moo + Aoom + Aomo <
1+ m(m —2)(7T—m)/6, or its (0,2)-ISA,
(11) )\ab07>\0m—113 AOlm,—l 2 1 ((ab) = (1m71), (mfll)), >\ch =1 ((Cd) = (3m73),
(m—33) (if m=T7)), and
(1) Mpoa = 1, where (ab) is the same as in (i), Asom—3 + Am—3z03 (if m = 7)
=1, Nigiyin = 0 for (igiriz) # (m00), (ab0), (b0a), (Oym —y) (y = 1,m — 1,
m), (cd0), (m — 20z) (z =3 (if m =7),m —3,m) and Mmoo + Aoom + Aomo +
M(Aabo + Aom—11 + Aotm—1 + Aoa) < 1 +m{(m —2)(7 —m) + 12} /3, or its
(0,2)-ISA, or
(2) Am00 + Agom + Aomo > 1 (me = 6), Aaob = 1, Agoe = 1, where (ab) and
(cd) are the same as in (i), Niyiyi, = 0 for (igiviz) # (m00), (00m), (ab0),
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(aOb)v (Oym - y) (y = 17 m — 1’ m)’ (Cd0)7 (dOC) and )‘mOO + /\OOm + /\OmO +
m()\abo 4+ Aom—11 + Aotm—1 + >\a0b) <1+ m{(m — 2)(7 - m) + 12}/3, or its
(0, 2)-ISA,

(ill) AMm—10 + Am—110 = Aom-11 = Aoim—1 = A2om—2 = Am—202 = A3m—30 +
/\m7330 (Zf m = 7) = 1, )‘ioiﬂz =0 fOT' (ioilig) 7é (Jcm — .’L‘O) (LE = 1,3,
m—=3 (ifm ="7),m—1,m), (Oym—y) (y = 1,m—1,m), (m—20z) (z = 2,m—2,m)
and Amoo + Aoom + Aomo < 1+ m(m —2)(7 —m)/6, or its (0,2)-ISA,

(iv) Aom—11 = Aotm—1 = Aom—1 + Am—101 = A2m—20 = Am—220 = A3om—3 +
)\m7303 (zfm = 7) = 1, )‘ioiliQ =0 fO?” (202112) 7£ (xm - QCO) (.’E = 2,m - 2,
m),(Oym—y) (y=1,m—1,m),(m—20z2) (z=1,3 (f m=7),m—3,m—1,m)
and Amoo + Aoom + Aomo < 1+ m(m —2)(7 —m)/6, or its (0,2)-ISA, or

(V) AMm—10 = Aom—11 = Aotm—1 = Am—110 = Mom—1 = Am—101 = 1, and

(1) Azm—20 + Am—220 = A30m—3 + Am—303 (if m = 7) = 1, Nigii, = 0 for
(toiriz) # (xm — 20) (z = 1,2,m —2,m —1,m),(Oym —vy) (y = 1,m — 1,
m),(m—20z) (z=1,3 (if m=7),m—3,m—1,m) and Moo+ Aoom+Aomo <
1+ m(m —5)(7—m)/6, or its (0,2)-ISA,

(2) A20m—2 + Am—202 = A3m—30 + Am—330 (if m = 7) = 1, Xigii, = 0 for
(toiriz) # (xm —20) (x =1,3,m =3 (if m=7),m — 1,m),(Oym — y) (y =
I,m—1,m),(m—20z) (z=1,2,m—2,m—1,m) and Moo + Aoom + Aomo <
1+ m(m —5)(7—m)/6, or its (0,2)-ISA, or

(3) A20m—2 + Am—202 = Aom—3 + Am—303 (if m = 7) = 1, Xjjiyi, = 0 for
(tgiriz) # (zm—20) (x = 1,m—1,m), (Oym—y) (y = 1,m—1,m), (m—20z2)
(z=1,2,3 (if m=T7),m—3,m—2,m—1,m) and A\pnoo + Aoom + Aomo <
1+ m(m —5)(7T—m)/6,

(IV) when 6 <m < 8, Aom—11, Aotm—1 > 1, and furthermore
(i) exactly three out of {A1m—10s Am—110s AMom—1; Adm—101} are non-zero, and

(1) A2m—20 + Am—220 = Aom—3 + Am—303 (if m # 6) = 1, Xijii, = 0 for
(igi1iz) # (xm — 20) (x = 1,2,m —2,m —1,m), Oym —y) (y = 1,m —1
m), (m — 20z) (z = 1,3 (if m # 6),m — 3,m — 1,m) and Amoo + Aoom +
Aomo + M(Atm—10 + Aom—11 + Aotm—1 + Am—110 + Aom—1 + Am—101) < 1 +
m{(m —4)(8 —m) + 33}/6, or its (0,2)-ISA, or

(2) A20m—2 + Am—202 = A3m—30 + Am—330 (if m # 6) = 1, Xjjiyi, = 0 for
(toiriz) # (xm — 20) (x = 1,3,m —3 (if m # 6),m — 1,m), (Oym — y) (y =
1,m—1,m),(m—20z2) (z=1,2,m—2,m—1,m) and Anoo + Aoom + Aomo +
M(A1m—10+ Aom—11 +Aotm—1+Am—110 + AMom—1+Am—101) < 1+m{(m—4)
X (8 —m) + 33}/6, or its (0,2)-ISA, or

(i) Am—10, Am—110,Aa0p > 1 ((ab) = (Im — 1), (m — 11)), Aoom—2 + Am—202 =
A30m—3 + Am—303 (me =+ 6) =1, /\ioi1i2 =0 for (ioilig) #* (G,Ob), (.ﬁm—$0) (.L“ =
1,m—1,m),0ym —vy) (y=1,m—1,m),(m —202) (z=2,3 (if m #6),m — 3,
m —2,m) and Apmoo + Aoom + Aomo + M(A1m—10 + Aom—11 + Aotm—1 + Am—110 +
Aaob) < 14+ m{(m —4)(8 —m) + 33}/6,

(V) when 6 <m <9, Aom—11, No1m—1 > 1, and furthermore
(i) Aavos Acod = 1 ((ab), (cd) = (Im — 1), (m — 11)), and

(1) Aam—20 + Am—220 = Aom—3 + Am—303 (if m # 6) = 1, Xijii, = 0 for
(toi1i2) # (ab0), (c0d), (xm — x0) (x =2,m —2,m), Oym —y) (y=1,m —1,
m), (m—20z) (z =3 (if m # 6),m—3, m) and Amoo+Aoom +Aomo +m(Aapo +
Aom—11 + Ao1m—1 + Acoa) < 1+m{(m —3)(9 —m) 4+ 28}/6, or its (0,2)-ISA,
or

(2) X2om—2 + Am—202 = A3m—30 + Am—330 (if m # 6) = 1, Xigiiy, = 0 for

(i0i112) # (ab0), (c0d), (xm—x0) (z = 3,m—3 (if m # 6), ) (Oym—y) (y =
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1,m—1,m),(m—20z2) (z=2,m—2,m) and Anoo + Aoom + Aomo + m(Aapo +
Aom—11 + Ao1m—1 + )\cod) <1+ m{(m — 3) (9 - m) + 28}/6, or its (0, 2) -ISA,
or
(i) Am—10,Am—110 = 1, A2om—2 + Am—202 = A30m—3 + Am—303 (if m # 6) = 1,
Xigizin = 0 for (igiria) # (xm —20) (x =1,m —1,m),(Oym —y) (y=1,m —1,
m), (m —202) (z=2,3 (if m#6),m —3,m —2,m) and Amoo + Aoom + Aomo +
M(Aim—10 + Aom—11 + Aotm—1 + Am—110) < 1 +m{(m — 3)(9 —m) + 28} /6,
(VI) when 6 < m < 12, Aipm—105 Aom—11, Aotm—1: Am—110 = 1, Aom—1 + Am—101 > 1,
Aaob > 1 ((ab) = (3m —3), (m —33) (if m # 6)), Xigiyin = 0 for (igiriz) # (xm — x0)
(x=1,m—1,m),(Oym—y) (y=1,m—1,m),(m—20z) (z=1,m—1,m), (a0b) and
Amo0 + Aoom + Aomo + M (A1m—10 + Aom—11 + Aotm—1+ Am—110 + Mom—1 + Am—101) +
(7;) Aaob < 1+ 2m2,
(VII) Mom—11,Ao1m—1 > 1, and furthermore
(1) s Aedo > 1 ((ab) = (1m— 1), (m — 11); (cd) = (2m—2), (m —22) (if m # 4)),
and
(1) Aoy = 1 ((ef) = (2m — 2), (m = 22) (if m # 4)), and
(a) Apoa > 1, where (ab) is the same as in (1), Nigiyi, = 0 for (igiviz) # (ab0),
(b0a), (0ym — y) (y = 1,m — 1),(ed0), (e0f) and m(Aapo + Aom—11 +
Aotm—1 + /\bOa) + (ZL) (/\ch + )\eOf) <1+ 2m2, or its (O, 2)—ISA, or
(b) )\mOO + )\OOm + )\0m0 > ].7 )\gOh > 1 ((gh) = (1m - 1),(m — 11)),
Aigiviz = 0 for (igiriz) # (m00), (00m), (ab0), (gOh), (Oym —y) (y = 1,
m — 1,m), (CdO), (EOf) and Mmoo + Aoom + Aomo + m(/\abo + XAom—_11 +
Aotm—1 4 Agon) + () (Acdo + Aeos) < 1+ 2m?2, or its (0,2)-ISA, or
(2) when m > 5, Agop, Adoc > 1, where (ab) and (cd) are the same as in (i),
Aigigiz = 0 for (ioiliQ) # (abO) (aOb) (Oym y) (y =1m- 1)7 (CdO), (dOC)
and m(Aapo + Aom—11 + Aotm—1 + Aaos) + (5) (Aeao + Adoc) < 1+ 2m?, or its
(0, 2)-ISA,
(ii) AMm—10, Am—110 > 1, and
(1) Mom—1 + Am—101 = 1, Aoom—2 + Am—202 (if m # 4) > 1, Ngii, = 0 for
(toiriz) # (zm—20) (z = 1,m—1,m), Oym—y) (y = 1,m—1,m), (m—20z2)
(z=12(ifm#4),m—2,m—1,m) and Anoo + Aoom + Aomo + M(A1m—10 +
Aom—11+A01m—14+Am-110FA0m—1+Am—101)+ (3 ) (A20m—2+Am—202 (if m #
4)) <1+ 2m?2, or
(2) when m > 5, Apnoo + Aoom + Aomo > 1, A2om—2, Am—202 > 1, Aigiyi, = 0 for
(toiriz) # (zm—20) (z = 1,m—1,m), Oym—y) (y = 1,m—1,m), (m—20z2)
(2 =2,m—2,m) and N\ynoo + Aoom + Aomo + M (A1m—10 + Aom—11 + Aorm—1 +
Am—-110) + () (A20m—2 + Am—202) < 1+ 2m?, or
(iil) at least three out of {\m—10, Am—110, AM0om—1, Am—101} € NON-ZET0, Aap0s Acod =
1 ((ab), (ed) = (2m—2),(m—22) (if m # 4)), Xigiri, = 0 for (igiriz) # (xm —z0)
(x=1,m—1,m), Oym—y) (y=1,m—1,m),(m—20z) (z=1,m—1,m), (ab0),
(c0d) and Mmoo+ Aoom +A0mo +M( Atm—10+Aom—11FXo1m—1+Am—110+A10m—1+
Am—101) + (ZL) (Xabo + Acod) < 1+ 2m?, or its (0,2)-ISA, or
(VIII) when m > 5, Aom—11, Aotm—1 = 1, and furthermore
(i) A2om—2 = Am—202 = 1, and
(1) A27n—20 + Am—220 = 1, and
() Ao > 1 ((ab) = (m — 1), (m — 11)), Agirsy = 0 for (ioiria) #
(ab0), (xm—20) (x =2,m—2,m), Oym—y) (y =1,m—1,m), (m—20z)
(z=2,m—2,m) and A\pnoo+ Aoom + Aomo +mM(Aabo +Aom—11+Aotm—1) <
("F?), or its (0,2)-ISA,
(b) ezactly two out of {A\1m—105 Am—110, Mom—1, Am—101} except for {\1om—1,
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Am—101} are non-zero, \iyi i, = 0 for (igiria) # (xm—20) (x = 1,2,m—2,
m—1,m), Oym—y) (y =1,m—1,m),(m—20z) (z =1,2,m—2,m—1,m)
and Apmoo + Aoom + Aomo + M(A1m—10 + Aom—11 + Aotm—1 + Am—110 +
AMom—1 + Am—101) < (m;—Z)’ orits (0,2)-ISA, or

(c) when m > 7, exactly three out of {\m—10, An—110, Mom—1, Am—101} are
non-zero, Nigi;i, = 0 for (ipiriz) # (xm — z0) (x = 1,2,m — 2,m — 1,
m),(Oym—y) (y =1,m—1,m),(m—202) (z =1,2,m—2,m—1,m) and
Am00 + A0om + Aomo +M(A1m—10 + Aom—11 + Aotm—1+Am—110 + Atom—1+
Am—101) < (™5?), or its (0,2)-ISA, or

(2) when m > 9, AMim—10, Am—110, Mom—1- Am—101 = 1, Aam—20 + Aom—22 +
Ao2m—2 + Am—220 = 1, Nigiyi, = 0 for (igiriz) # (zm — 20) (z =1,2,m — 2,
m—1,m), (Oym—y) (y = 1,2,m—2,m—1,m), (m—202) (z=1,2,m—2,m—1,
m) and Amoo+Aoom +A0mo+m(Am—10+FAom—11+FAo1m—1+Am—110+A1om—1+
Am—101) < (’”2*2), or

(ii) A2m—20 = Am—220 = A20m—2 + Am—202 = 1, and

(1) )\aOb Z 1 ((ab) = (1m — 1), (m — 11)), )‘ioiﬂz =0 fO’I“ (ioilig) 7é (aOb),
(xm —20) (x =2,m —2,m), Oym —y) (y =1,m—1,m), (m — 20z) (z =
m —2,m) and Mmoo + Aoom + Aomo + M(Aom—11 + Xotm—1 + Aaos) < ("57),
or its (0,2)-ISA,

(2) exactly two out of {Mm—10, Am—110, AMom—1, Am—101} except for {Aim—1o0,
Am—110} are non-zero, N i,i, = 0 for (igiria) # (xm — 20) (x =1,2,m — 2,
m—1,m), Oym—y) (y=1,m—1,m),(m—20z2) (z=1,2,m—2,m—1,m)
and Mmoo + Aoom + Aomo + M (Atm—10+ Aom—11+ Aotm—1+Am—110 + Aom—1+
Am—101) < (™F?), or its (0,2)-ISA, or

(3) whenm > 7, at least three out of {\m—10s An—1105 AM10m—1, Am—101} are non-
zero, Nigiyin = 0 for (igi1iz) # (xm—20) (x = 1,2,m—2,m—1,m), (Oym—y)
(y=1,m—1,m),(m—20z) (z=1,2,m—2,m —1,m) and Mmoo + Xoom +
Aomo +M(Aim—10+ Aom—11 + Aotm—1+Am—110 + Mom—1 + Am—101) < (m;2),
or its (0,2)-ISA.

Remark 4.A. In Theorem 4.A, we have the following

0 < N < 73 for (I), 110 < N < 129 for (IT), 3m + 2(3) + (7) < N < v(m) for
(IIT) (i), (iii) and (iv), 65 < N < 73 (if m = 6) and N = 98 (if m =

6m + () + (§) < N < wv(m) for (I)(v), 5m + () + (3) < N < v(m) for (IV), 4m +
(3) + (%) <N < v(m) for (V), 5m+ (% )gN<V (m) for (VI), N = km+ h(y) (h =2
and4d<k<m+1lform>4; h=3and 4 <k < (m+3)/2for m >5) for (VII)(i)(1)(a),
1+4m+2(7%) < N < v(m) for (VII)(i)(1)(b) and (ii)(2), N = km + h(y) (h = 2 and
4<k<m+1; h=3and 4 <k < (m+3)/2) for (VII)(i)(2), 5m + (' )_N<1/(m) for
(VID)(ii)(1), 5m+2("y) < N < v(m) for (VII)(iii), 3m—|—3( ) < N < v(m) for (VIIT)(i)(1)(a)
and (ii)(1), 4m +3("y) < N < v(m) for (VIII)(i)(1)(b) and (ii)(2), 5m+3("y) < N < v(m)
for (VIII)(i)(1)(c) and (ii)(3), and 6m+3("y) < N < v(m) for (VIII)(i)(2), and furthermore
r-rank{Fp} = 6, r-rank{F;} = 2 and the last row of F} equals w;(= —1) times the second,
r-rank{F>} = 0 and r-rank{F;} = 6 for (I), (III)(i), (ii), (iii), (iv) and (v)(1) and (2),
(IV)(i), (V)(i), (VII)(i) and (iii), and (VIII), and r-rank{Fy} = 6, r-rank{F;} = 1 and
the last two rows of Fy are zero, r-rank{Fy} = 0 and r-rank{Fy} = 6 for (II), (III)(v)(3),
(IV)(ii), (V)(ii), (VI), and (VII)(ii).

(B) Resolution R({00, 10,01, 02}|2) designs
Let T be a 3™-BFF design of resolution R({00,10,01,02}|2) derived from an SA(m
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{Aigirip }) with N < v(m). Then O, 019, Op1 and Opy are estimable and the effects of 84
and 61, are confounded with each other. Using the row relations of Fjz (5 =0,1,2, f) given
by (3.3) through (3.6), and Lemmas A.1 and A.2, we obtain the following:

Theorem 4.B. There does not exist a 3™-BFF design of resolution R({00,10,01,02}|€2)
derived from an SA(m; {Aiyi iy }) with N < v(m), where m > 4 and the indices Ayiyi, Satisfy
the conditions of Theorem 3.1.

(C) Resolution R({00, 10,01, 11}|2) designs

We finally consider a 3™-BFF design of resolution R({00, 10,01, 11}|Q2) derived from an
SA(m; { Nigiyin}) With N < v(m), and hence O, 019, 8p1 and 611 are estimable and the
effects of 5y and By, are confounded with each other. By use of the methods similar to
Theorem 4.B, the following yields:

Theorem 4.C. There does not exist a 3™-BFF design of resolution R({00,10,01,11}|€2)
derived from an SA(m; {Niyi iy ) with N < v(m), where m > 4 and the indices Aiyiyi, Satisfy
the conditions of Theorem 3.1.

It follows from Remark 4.A that we have the following theorem:

Theorem 4.1. Let T be a 3™-BFF design of resolution R({00,10,01,20}|2) derived from
an SA(m; {Nigiyip }) with N < v(m), where m > 4 and the indices Xiqiy4, Satisfy the condi-
tions of Theorem 3.1, then
(I) rrank{Fo} = 6, and hence Ao#(alaz,a1a2)9a1a2 (a1a2 = 00,10,01,20,02,11) are
estimable,
(I1) (i) if r-rank{F1} = 1 and the last two rows of Fy are zero, then A#(20720)020 is
estimable, and
(ii) if r-rank{F1} = 2 and the last row of Fy equals wy (# 0) times the second, then
Af(m’?o)ogo and Afk(oz’oz)eog+wTAf£(O2’11)011 are estimable, where w = (v/2/3)w1,
and
(IIT) r-rank{Fy} = 6, and hence Aﬁf“lm’"luﬂeulu? ((uyug;i) = (10;1),(01;1),(20;2),
(02;2),(11;3),(11;4)) are estimable.

Appendix

Let ZL = H be a matrix equation, where Z is a variable matrix of order n, L = || L]

Ly Lo
Loy L22>
=n1+ne (> 1), and H = ||H;|| (4,5 = 1,2,3) is some matrix of order n with Hy; =
I, Hia= Hél = Op,xn, and Hiz = H:/n = Op, xns- Here L;; and H;; are of size n; X ny,
and n1+no4ns = n. Then ZL = H has a solution if and only if rank{L'} = rank{(L’; H')}.
Thus we get the following:

(i,7=1,2,3) is the positive semidefinite matrix of order n with rank{L} =rank{ (

Lemma A.1. (see [2]) A matriz equation ZL = H has a solution if and only if
(I) n3 = 0, where Hos (if ne > 1) is arbitrary, or
(I1) ng > 1, and in addition
(i) when ng =0, L3z = Opyxng, and furthermore Hss = Opyxng, OT
(ii) when ny > 1, there exists a matric W of size ng X ny such that [Ls1; Lsa; L3
= W([La1; Lao; Los), and furthermore Hyy = W Hyy and Hay = W Hay,, where Hoy and
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Hso are arbitrary.

Lemma A.2. The existence of a solution Z to the matrix equation ZL = H is equivalent
to that of Z* to Z*L* = H*, where Z* = P ZP, L* = P LP and H* = P HP, and P is a
permutation matrixz of order n.

Acknowledgments

The authors would like to express their thanks to Dr. Hiromu Yumiba, International
Institute for Natural Sciences, Kurashiki, Japan, for his valuable comments. The last
author’s work was partially supported by Grant-in-Aid for Scientific Research (C) of the
JSPS under Contract Number 17500181.

REFERENCES

[1] I. M. Chakravarti, Fractional replication in asymmetrical factorial designs and partially bal-
anced arrays, Sankhya, 17 (1956), 143-164.

[2] S. Ghosh and M. Kuwada, Estimable parametric functions for balanced fractional 2™ facto-
rial designs, Statistical Research Group, Technical Report 01-7 (2001), Hiroshima University,
Hiroshima.

[3] A. T. James, The relationship algebra of an experimental design, Ann. Math. Statist., 28
(1957), 993-1002.

[4] M. Kuwada, Optimal balanced fractional 3™ factorial designs of resolution V and balanced
third-order designs, Hiroshima Math. J., 9 (1979), 347-450.

[65] M. Kuwada, Balanced arrays of strength 4 and balanced fractional 3™ factorial designs, J.
Statist. Plann. Inference, 3 (1979), 347-360.

[6] M. Kuwada, Characteristic polynomials of the information matrices of balanced fractional 3™
factorial designs of resolution V, J. Statist. Plann. Inference, 5 (1981), 189-2009.

[7] M. Kuwada and K. Ikeda, Balanced fractional 3™ factorial designs of resolution IV, J. Statist.
Plann. Inference, 73 (1998), 29-45.

[8] J. N. Srivastava and W. M. Ariyaratna, Inversion of information matrices of balanced 3™
factorial designs of resolution V, and optimal designs, Statistics and Probability, (eds. G.
Kallianpur et al.), North-Holland, Amsterdam, 1982, 671-688.

[9] J. N. Srivastava and D. V. Chopra, On the characteristic roots of the information matrix of 2™
balanced factorial designs of resolution V, with applications, Ann. Math. Statist., 42 (1971),
722-734.

[10] J. N. Srivastava and D. V. Chopra, Balanced fractional factorial designs of resolution V for
3™ series, Bull. Inst. Int. Statist., 39 (1973), 271-276.

[11] E. Taniguchi, Y. Hyodo and M. Kuwada, Balanced fractional 3™ factorial designs of resolution
R({00, 10,01} U S2|€2), submitted.

[12] S. Yamamoto, Y. Fujii, Y. Hyodo and T. Yamada, Bounds on number of constraints for
three-symbol balanced arrays, SUT J. Math., 26 (1990), 111-141.

[13] S. Yamamoto and Y. Hyodo, Extended concept of resolution and the designs derived from
balanced arrays, TRU Math., 20 (1984), 341-349.



514 EIJI TANIGUCHI, YOSHIFUMI HYODO AND MASAHIDE KUWADA

International Institute for Natural Sciences, Graduate School of Informatics,
Kurashiki 710-0821, Japan Okayama University of Science,
Okayama 700-0005, Japan
e-mail : hyodo@ousgw.pub.ous.ac.jp

Graduate School of Engineering,
Hiroshima University,
Higashi-Hiroshima 739-8527, Japan
e-mail : kuwada@mis.hiroshima-u.ac.jp



