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Abstract. In this paper, we shall show Kantorovich type inequalities for the difference
with two negative parameters as follows: Let A and B be positive invertible operators
on a Hilbert space H such that MI ≥ A ≥ mI for some positive numbers M > m > 0.
If the usual order A ≥ B holds, then

Bq + C(m, M, p, q)I ≥ Bq + C

�
1

M
,

1

m
,−p,−q

�
I ≥ Ap for all p, q < −1,

where C(m, M, p, q), the Kantorovich constant for the difference with two parameters,
is defined as

(q − 1)

�
Mp − mp

q(M − m)

� q
q−1

+
mpM − mMp

M − m
if m ≤

�
Mp − mp

q(M − m)

� 1
q−1

≤ M.

As applications, we show some characterizations of the chaotic order. Thereby, we
observe the difference between the usual order and the chaotic one by virtue of Kan-
torovich constant for the difference.

1 Introduction. Throughout this paper, we consider bounded linear operators on a com-
plex Hilbert space H . An operator T is said to be positive (denoted by T ≥ 0) if (Tx, x) ≥ 0
for all x ∈ H . The positivity defines the usual order A ≥ B for selfadjoint operators A and
B. For the sake of convenience, T > 0 means T is positive and invertible. The Löwner-
Heinz inequality asserts that A ≥ B ≥ 0 ensures Aα ≥ Bα for all 0 ≤ α ≤ 1. However
A ≥ B ≥ 0 does not ensure Aα ≥ Bα for α > 1 in general. As a complementary result to
the Löwner-Heinz inequality, Furuta [4] firstly showed Kantorovich type inequalities for the
ratio and afterward Yamazaki [7] showed the following Kantorovich type inequality for the
difference:

A ≥ B, MI ≥ B ≥ mI > 0 imply Ap + C(m,M, p)I ≥ Bp for all p ≥ 1,(1.1)

where the Kantorovich constant for the difference C(m,M, p) is defined by

C(m,M, p) = (p − 1)
(

Mp − mp

p(M − m)

) p
p−1

+
Mmp − mMp

M − m
for all p ∈ R,

see also [5]. We note that limp→0 C(m,M, p) = 0 and limp→1 C(m,M, p) = 0. Kantorovich
type inequalities for the difference provide a new view on the usual order and the chaotic
one. The following theorem was obtained in [6] as a two positive parameters version of
(1.1).
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Theorem A 1. Let A and B be positive operators on H such that MI ≥ B ≥ mI for some
positive numbers M > m > 0. Then the usual order A ≥ B is equivalent to

Aq + C(m,M, p, q)I ≥ Bp for all p, q > 1,

where C(m,M, p, q), the Kantorovich constant for the difference with two parameters is
defined by

C(m,M, p, q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mmp−mMp

M−m + (q − 1)
(

Mp−mp

q(M−m)

) q
q−1

if m ≤
(

Mp−mp

q(M−m)

) 1
q−1 ≤ M

mp − mq if
(

Mp−mp

q(M−m)

) 1
q−1

< m

Mp − M q if M <
(

Mp−mp

q(M−m)

) 1
q−1

(1.2)

for all p, q ∈ R such that pq > 0.

In particular, if we put q = p in (1.2), then we see that C(m,M, p, p) = C(m,M, p),

because the condition m ≤
(

Mp−mp

q(M−m)

) 1
q−1 ≤ M automatically holds. We also note that

C(m,M, p, 1) = mp − m(resp.Mp − M) if Mp − mp ≤ M − m(resp.Mp − M ≥ M − m).

In this note, as a continuation of [1], we discuss Kantorovich type inequalities for the
difference with two negative parameters: If A ≥ B > 0 such that MI ≥ A ≥ mI > 0, then

Bq + C(m,M, p, q)I ≥ Bq + C

(
1
M

,
1
m

,−p,−q

)
I ≥ Ap for all p, q < −1.

As applications, we show some characterizations of the chaotic order by means of Kan-
torovich type inequalities for the difference. Thereby, we observe the difference between the
usual order and the chaotic one by virtue of the Kantorovich constant for the difference.

2 Kantorovich type inequalities for difference. At the beginning, we show two neg-
ative parameters version of Theorem A. For this, we clarify the meaning of the Kantorovich
constant for the difference C(m,M, p, q) defined as (1.2).

Lemma 2.1. For given M > m > 0 and p, q ∈ R with p, q > 1 or p, q < 0,

C(m,M, p, q) = max
{

Mp − mp

M − m
t +

mpM − mMp

M − m
− tq : t ∈ [m, M ]

}
.

Proof. Put h(t) = Mp−mp

M−m t + mpM−mMp

M−m − tq. Note that h′(t) = 0 has the unique solution

t1 =
{

Mp − mp

q(M − m)

} 1
q−1

> 0

and q �∈ [0, 1] implies

h′′(t1) = −q(q − 1)
{

Mp − mp

q(M − m)

} q−2
q−1

< 0.
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Thus, in the case of m ≤ t1 ≤ M , we have the upper bound h(t1) on [m, M ], where

h(t1) = (q − 1)
(

Mp − mp

q(M − m)

) q
q−1

+
mpM − mMp

M − m
.

Next, if t1 < m, then the upper bound h(m) on [m, M ] is given by

h(m) = −mq +
Mp − mp

M − m
m +

mpM − mMp

M − m

= mp − mq.

Similarly, if M < t1, then the upper bound h(M) on [m, M ] attains at t = M :

h(M) = Mp − M q.

By virtue of Lemma 2.1, we have the following Kantorovich type inequality for the
difference with two negative parameters:

Corollary 2.2. Let A and B be positive invertible operators on H such that MI ≥ A ≥ mI
for some positive numbers M > m > 0. If A ≥ B, then

Bq + C(m,M, p, q)I ≥ Ap for all p, q < −1.

Proof. First of all, we note that t = (Ax,x) ∈ [m, M ] for every unit vector x ∈ H by the
assumption. For p, q < −1, it follows from Lemma 2.1 that

(Apx, x) ≤ (Ax,x)q + C(m,M, p, q) for every unit vector x ∈ H

and hence

(Apx, x) ≤ (Ax,x)q + C(m,M, p, q)
≤ (Bx, x)q + C(m,M, p, q) by A ≥ B > 0
≤ (Bqx, x) + C(m,M, p, q) by the Hölder-McCarthy inequality

for every unit vector x ∈ H .

If we let q = p → −1 in Corollary 2.2, then C(m,M, p, p) → (
√

M−√
m)2

Mm �= 0, so that
Bq + C(m,M, p, q)I ≥ Ap for all p, q < −1 does not imply A ≥ B.

To discuss more precise estimation than Corollary 2.2, we prepare the following lemma:

Lemma 2.3. For M > m > 0

M(Mp−1 − mp−1)
M

p−1
q−1 − m

M − m
≥ C(m,M, p, q)(2.1)

for all p, q > 1 such that m ≤
(

Mp−mp

q(M−m)

) 1
p−1 ≤ M .
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Proof. First of all, we put h = M
m . Then the condition m ≤

(
Mp−mp

q(M−m)

) 1
p−1 ≤ M is equivalent

to
q ≤ (hp − 1)/(h − 1) ≤ qhp−1.

Therefore we have the following inequality as a tool.

hp−1 ≥ (q − 1)q−1

qq

(hp − 1)q

(h − 1)(hp − h)q−1
.

As a matter of fact, q(h − 1) ≤ hp − 1 has an equivalent expression

(0 <)
q − 1

q
· hp − 1
hp − h

≤ 1.

Moreover hp−1
h−1 ≤ qhp−1 implies that

(q − 1)q−1

qq

(hp − 1)q

(h − 1)(hp − h)q−1
≤ qhp−1

(
(q − 1)q−1

qq
· (hp − 1)q−1

(hp − h)q−1

)

= hp−1

(
q − 1

q
· hp − 1
hp − h

)q−1

≤ hp−1.

Now both sides of (2.1) are written as follows:

M(Mp−1 − mp−1)
M

p−1
q−1 − m

M − m
=

Mmp − mMp

M − m
+

M
p−1
q−1 (Mp − Mmp−1)

M − m

and by Lemma 2.1

C(m,M, p, q) ≤ Mmp − mMp

M − m
+ (q − 1)

(
Mp − mp

q(M − m)

) q
q−1

.

So, aiming at the second terms, it suffices to show that

M
p−1
q−1 (Mp − Mmp−1)

M − m
≥ (q − 1)

(
Mp − mp

q(M − m)

) q
q−1

.

Actually the prepared inequality ensures that

M
p−1
q−1 (Mp − Mmp−1)

M − m
= h

p−1
q−1 · m

p−1
q−1 mp(hp − h)

m(h − 1)

≥ (q − 1)

q
q

q−1

(hp − 1)
q

q−1

(h − 1)
1

q−1 (hp − h)

m
p−1
q−1 mp(hp − h)

m(h − 1)

=
(q − 1)

q
q

q−1

(hp − 1)
q

q−1 (mp)
q

q−1

(h − 1)
q

q−1 m
q

q−1

= (q − 1)
(

hpmp − mp

q(hm − m)

) q
q−1

= (q − 1)
(

Mp − mp

q(M − m)

) q
q−1

,

as desired. If we put p = q in (2.1), then it follows that M(Mp−1−mp−1) ≥ C(m,M, p, p) >
0 for all p > 1. Hence we have limp→1 C(m,M, p, p) = C(m,M, 1, 1) = 0.



KANTOROVICH TYPE INEQUALITIES FOR THE DIFFERENCE 431

Now we show the following two Kantorovich type inequalities for the difference with two
negative parameters, which characterize the usual order A ≥ B:

Theorem 2.4. Let A and B be positive invertible operators on H such that MI ≥ A ≥ mI
for some positive numbers M > m > 0. Then the usual order A ≥ B is equivalent to

Bq + C

(
1
M

,
1
m

,−p,−q

)
I ≥ Ap for all p, q < −1.(2.2)

Proof. Since B−1 ≥ A−1 and 1
mI ≥ A−1 ≥ 1

M I, we have

(B−1)q1 + C(
1
M

,
1
m

, p1, q1)I ≥ (A−1)p1 for p1, q1 > 1 by Theorem A .

Put q1 = −q (> 1), p1 = −p (> 1) for p = q → −1. Then it follows that

Bq + C

(
1
M

,
1
m

,−p,−q

)
I ≥ Ap for p, q < −1.

Conversely, suppose (2.2). Since C
(

1
M , 1

m ,−p,−q
) → 0 as p = q → −1 by Lemma 2.3, the

inequality (2.2) implies B−1 ≥ A−1, i.e., A ≥ B.

In particular, if we put q = −2 in Theorem 2.4, then we have the following corollary
which is utilized well later:

Corollary 2.5. Let A and B be positive invertible operators on H such that MI ≥ A ≥ mI
for some positive numbers M > m > 0. If A ≥ B, then

B−2 +
M2m2(mp − Mp)2 + 4(M − m)(Mp+1 − mp+1)

4(M − m)2
I ≥ Ap for all p < −1.(2.3)

Theorem 2.6. Let A and B be positive invertible operators on H such that MI ≥ A ≥ mI
for some positive numbers M > m > 0. Then the usual order A ≥ B is equivalent to

Bq +
(mp+1 − Mp+1)(Mm− p+1

q+1 − 1)
M − m

I ≥ Bq + C(
1
M

,
1
m

,−p,−q)I ≥ Ap(2.4)

for all p, q < −1 such that 1
M ≤

(
mM(mp−Mp)
−q(M−m)

) −1
p+1 ≤ 1

m .

Proof. Since B−1 ≥ A−1 and 1
mI ≥ A−1 ≥ 1

M I, we have the following inequalities by
Lemma 2.3:

1
m

(
1

mp1−1
− 1

Mp1−1

) 1

m
p1−1
q1−1

− 1
M

1
m − 1

M

≥ C

(
1
M

,
1
m

, p1, q1

)

for all p1, q1 > 1 such that

1
M

≤
( 1

mp1 − 1
Mp1

q1( 1
m − 1

M )

) 1
p1−1

≤ 1
m

.
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Taking q1 = −q (> 1) and p1 = −p (> 1) for given p, q < −1, it follows that

(mp+1 − Mp+1)
(Mm− p+1

q+1 − 1)
M − m

=
1
m

(mp+1 − Mp+1)
Mm(m−p+1

q+1 − M−1)
M − m

=
1
m

(
1

m−p−1
− 1

M−p−1

) 1

m
p+1
q+1

− 1
M

1
m − 1

M

≥ C

(
1
M

,
1
m

,−p,−q

)
.

Therefore, we have (2.4) by Theorem 2.4.
Conversely, suppose (2.4). If p = q, then we have

Bp +
(mp+1 − Mp+1)

m
I ≥ Ap for all p < −1.

Since mp+1 − Mp+1 → 0 as p → −1, the inequality above implies B−1 ≥ A−1, i.e., A ≥
B.

Theorem 2.4 is better than Corollary 2.2 by the following comparison:

Theorem 2.7. If M > m > 0 for positive numbers M and m, then

C(m,M,−p,−q) ≥ C

(
1
M

,
1
m

, p, q

)
for p, q > 1.

Proof. For each s ∈ R, Gs(x) is an affine function corresponding to xs on an interval [a, b].
We define G−p(x),Gp(x) on [m, M ] and [ 1

M , 1
m ], respectively. For any x ∈ [m, M ], there

exist positive numbers α and β such that x = βm + αM and α + β = 1. Then Gp( β
m + α

M )
can be defined. Now the (weighted) arithmetic-harmonic mean inequality says that

(
β

m
+

α

M

)−1

≤ βm + αM,

so that
β

m
+

α

M
≥ 1

βm + αM
.

Since Gp(x) is an increasing function, we have

Gp

(
β

m
+

α

M

)
≥ Gp

(
1

βm + αM

)
.

Moreover it follows from the affinity of Gs(x) that

G−p(x) = G−p(βm + αM) = βG−p(m) + αG−p(M)

= β

(
1
m

)p

+ α

(
1
M

)p

= βGp

(
1
m

)
+ αGp

(
1
M

)
= Gp

(
β

m
+

α

M

)
.

Thus,

G−p(x) ≥ Gp

(
1
x

)
.
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Hence we have the desired inequality as follows:

C

(
1
M

,
1
m

, p, q

)
= max

{
Gp

(
1
x

)
−

(
1
x

)q

: x ∈ [m, M ]
}

by Lemma 2.1

= Gp

(
1
x0

)
−

(
1
x0

)q

for some x0 ∈ [m, M ]

≤ G−p(x0) − x0
−q

≤ max{G−p(x) − x−q : x ∈ [m, M ]}
= C(m,M,−p,−q).

Remark 1. By Theorem 2.7, it follows that A ≥ B > 0 with MI ≥ A ≥ mI > 0 implies

Bq + C(m,M, p, q)I ≥ Bq + C(
1
M

,
1
m

,−p,−q)I ≥ Ap for p, q < −1.

As a generalization of Theorem 2.4, we shall show the following theorem:

Theorem 2.8. Let A and B be positive invertible operators on H such that MI ≥ A ≥ mI
for some positive numbers M > m > 0. Then the usual order A ≥ B is equivalent to

Bq + M r · C
(

1
M1+r

,
1

m1+r
,
r − p

1 + r
,
r − q

1 + r

)
I ≥ Ap for all r > 0 and p, q < −1.(2.5)

Proof. By the Furuta inequality [3], [5, Chapter 7], it follows that A ≥ B ensures that

A1+r ≥ (
A

r
2 BqA

r
2
) 1+r

q+r for all q > 1, r > 0.

For p, q > 1 and r > 0, put A1 = A1+r , B1 =
(
A

r
2 BqA

r
2
) 1+r

q+r , p1 = − p+r
1+r < −1, and

q1 = − q+r
1+r < −1 in Theorem 2.4. Since A1 ≥ B1 and M1+rI ≥ A1 ≥ m1+rI, then we have

Bq1
1 + C

(
1

M1+r
,

1
m1+r

,
r + p

1 + r
,
r + q

1 + r

)
I ≥ Ap1

1

and hence (
A

r
2 BqA

r
2
)−1

+ C

(
1

M1+r
,

1
m1+r

,
r + p

1 + r
,
r + q

1 + r

)
I ≥ A−p−r.

Multiply A
r
2 on both sides and replace p and q by −p and −q respectively, we have (2.5).

Conversely, suppose (2.5). If we put r → 0 and p = q → −1 in (2.5), then we have
B−1 ≥ A−1.

Corollary 2.9. Let A and B be positive invertible operators on H such that MI ≥ A ≥ mI
for some positive numbers M > m > 0. If A ≥ B, then

Bq +
4mq+1M q+1(mq+1 − M q+1)(Mp+1 − mp+1) + (mq+p+2 − M q+p+2)2

4M q+2(mq+1 − M q+1)2
I ≥ Ap

for all p < −1, q < −2.

Proof. If we put r = −q−2 in (2.5) of Theorem 2.8, then we have the desired inequality.



434 Y.O. KIM, J.I. FUJII, M. FUJII, Y. SEO

3 Characterizations of chaotic order. In this section, as an application of Kan-
torovich type inequalities for the difference with two negative parameters, we give char-
acterizations of the chaotic order. For positive invertible operators A and B, the order
defined by log A ≥ log B is called the chaotic order. We shall show a chaotic order version
of Theorem 2.4.

Theorem 3.1. Let A and B be positive invertible operators on H such that MI ≥ A ≥ mI
for some positive numbers M > m > 0. If log A ≥ log B, then

Bq + M · C
(

1
M

,
1
m

, 1 − p, 1 − q

)
I ≥ Ap for all p, q < 0.(3.1)

Proof. Put p, q > 0. By the chaotic Furuta inequality [2], [5, Chapter 7], it follows that
log A ≥ log B ensures that A ≥ (A1/2BqA1/2)1/1+q. Since −(q + 1),−(p + 1) < −1, we
apply Theorem 2.4 to obtain

(A
1
2 BqA

1
2 )−1 + C(

1
M

,
1
m

, p + 1, q + 1)I ≥ A−p−1

and hence

B−q + C(
1
M

,
1
m

, p + 1, q + 1)A ≥ A−p.

Replacing p and q by −p and −q respectively, we have

Bq + M · C
(

1
M

,
1
m

, 1 − p, 1 − q

)
I ≥ Ap for all p, q < 0.

Though (2.2) in Theorem 2.4 characterizes the usual order, it follows that (3.1) in
Theorem 3.1 does not characterize the usual order, because C(1/M, 1/m, 1 − p)/p �→ 0 as
p → 0. By using (2.3) in Corollary 2.5, we show the following characterization of the chaotic
order.

Theorem 3.2. Let A and B be positive invertible operators on H such that MI ≥ A ≥ mI
for some positive numbers M > m > 0. Then the chaotic order log A ≥ log B is equivalent
to

Bq +
(mp+q − Mp+q)2 + 4M qmq(mq − M q)(Mp − mp)

4M q(mq − M q)2
I ≥ Ap for all p, q < 0.

Proof. By the chaotic Furuta inequality [2], [5, Chapter 7], it follows that log A ≥ log B
ensures that Aq ≥ (Aq/2BqAq/2)1/2 for all q > 0. Put A1 = Aq, B1 = (Aq/2BqAq/2)1/2,
p1 = − q+p

q (< −1), q1 = −2, M1 = M q and m1 = mq in Corollary 2.5. Then we have

(A
q
2 BqA

q
2 )−1 +

M2qm2q(m−p−q − M−p−q)2 + 4(M q − mq)(M−p − m−p)
4(M q − mq)2

I ≥ A−p−q

and hence

B−q + M q · M2qm2q(m−p−q − M−p−q)2 + 4(M q − mq)(M−p − m−p)
4(M q − mq)2

I ≥ A−p
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for all p, q > 0. Replacing p and q by −p and −q, we have

Bq + M−q · M−2qm−2q(mp+q − Mp+q)2 + 4(M−q − m−q)(Mp − mp)
4(M−q − m−q)2

I ≥ Ap

for all p, q < 0 and hence we have the desired inequality.
Conversely, if we put p = q, then we have

Bp +
(m2p − M2p)2 + 4Mpmp(mp − Mp)(Mp − mp)

4Mp(mp − Mp)2
I ≥ Ap

for all p < 0 and hence

Bp +
(mp − Mp)2

4Mp
I ≥ Ap for all p < 0.

This implies that

Bp − I

p
+

(mp − Mp)2

4pMp
I ≤ Ap − I

p
for all p < 0

and as p → 0 we have log B ≤ log A.

As a generalization of Theorem 3.1, we shall show the following theorem. Comparing
Theorem 2.8 with Theorem 3.3 in the below, we observe that variables p, q and r in the
Kantorovich constant change to p− 1, q− 1 and r− 1 respectively. This is explained by the
fact that limp→0

tp−1
p = log t for t > 0, as used in above, that is, the exponent of log t can

be regarded as 0.

Theorem 3.3. Let A and B be positive invertible operators on H such that MI ≥ A ≥ mI
for some positive numbers M > m > 0. Then the chaotic order log A ≥ log B is equivalent
to

Bq + M r · C
(

1
M r

,
1

mr
,
r − p

r
,
r − q

r

)
I ≥ Ap for all r > 0 and p, q < 0.(3.2)

Proof. (⇒) By the chaotic Furuta inequality [2], [5, Chapter 7], it follows that log A ≥ log B
ensures that Ar ≥ (A

r
2 BqA

r
2 )

r
q+r for all q, r ≥ 0. Put A1 = Ar, B1 = (A

r
2 BqA

r
2 )

r
r+q ,

p1 = − r+p
r (< −1), q1 = − r+q

r (< −1), M1 = M r and m1 = mr in Theorem 2.4. Then we
have

(A
r
2 BqA

r
2 )−1 + C

(
1

M r
,

1
mr

,
r + p

r
,
r + q

r

)
I ≥ A−r−p for all p, q > 0,

so that

B−q + C

(
1

M r
,

1
mr

r + p

r
,
r + q

r

)
Ar ≥ A−p for all p, q > 0.

Since M rI ≥ Ar ≥ mrI, we have

Bq + M r · C
(

1
M r

,
1

mr
,
r − p

r
,
r − q

r

)
I ≥ Ap for all p, q < 0.
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(⇐) Put p = q = −r(r > 0) in the assuming inequality. Then we have

B−r + M rC

(
1

M r
,

1
mr

, 2
)

I ≥ A−r for all r > 0

and

M rC

(
1

M r
,

1
mr

, 2
)

=
(Mr − mr)2

4m2rM r
by the definition of C

(
1

M r
,

1
mr

, 2
)

.

Since
B−r − I

r
+

1
r

(Mr − mr)2

4m2rM r
I ≥ A−r − I

r
for all r > 0

and

lim
r→0

(Mr − mr)2

4rm2rM r
= lim

r→0

(Mr − 1) − (mr − 1)
r

· M r − mr

4m2rM r
= 0,

we have log B−1 ≥ log A−1, i.e., log A ≥ log B.

Corollary 3.4. Let A and B be positive invertible operators such that MI ≥ A ≥ mI ≥
I > 0 for some positive numbers M > m > 0. If log A ≥ log B, then

Bq + M r(mp − Mp)
(Mrm− rp

q − 1)
M r − mr

I ≥ Bq + M rC

(
1

M r
,

1
mr

,
r − p

r
,
r − q

r

)
I ≥ Ap

for all p, q < 0 such that 1
Mr ≤

(
(r−q)(Mr−mr)

rmrMr(mp−r−Mp−r)

) r
p ≤ 1

mr .

Proof. Put m1 = 1
Mr , M1 = 1

mr , p1 = r−p
r (> 1), and q1 = r−q

r (> 1) for p, q < 0 in
Lemma 2.3. Then we have

1
mr

{(
1

mr

)− p
r

−
(

1
M r

)− p
r

}
( 1

mr )
p
q − ( 1

Mr )
1

mr − 1
Mr

≥ C

(
1

M r
,

1
mr

,
r − p

r
,
r − q

r

)
.

Moreover, since the left hand side of the above coincides with

1
mr

(mp − Mp)
m− rp

q − M−r

Mr−mr

mrMr

= (mp − Mp)
(Mrm− rp

q − 1)
M r − mr

,

it follows that

(mp − Mp)
(Mrm− rp

q − 1)
M r − mr

≥ C

(
1

M r
,

1
mr

,
r − p

r
,
r − q

r

)
.

Therefore we have

Bq + M r(mp − Mp)
(Mrm− rp

q − 1)
M r − mr

I ≥ Bq + M rC

(
1

M r
,

1
mr

,
r − p

r
,
r − q

r

)
I ≥ Ap

by Theorem 3.3.

Remark 2. Theorem 3.3 will give an alternative proof to the first half of a proof of Theorem
3.2: As a matter of fact, if we put r = −q in (3.2) of Theorem 3.3, then we have

Bq + M−qC(M q, mq,
p + q

q
, 2)I ≥ Ap.

This is just the required inequality.
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4 Complementary inequalities. In this final section, we consider complementary in-
equalities to results with respect to the usual order in §2. For this, we prepare some
notations. For 0 < m < M and p, q ∈ R with pq > 0, p �= q,

β1(m,M, p, q) = max{mp − mq, Mp − M q}

and

β2(m,M, p, q) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

mp − mq if
(

p
q

) 1
q−p

< m,(
p
q

) p
q−p −

(
p
q

) q
q−p

if m ≤
(

p
q

) 1
q−p ≤ M ,

Mp − M q if M <
(

p
q

) 1
q−p

.

We here recall the following result proved in [6]:

Lemma 4.1. Let A and B be positive operators on H such that M1I ≥ A ≥ m1I > 0 and
M2I ≥ B ≥ m2I > 0 for some scalars M1 > m1 > 0 and M2 > m2 > 0. If A ≥ B, then
the following inequalities hold:
(1) 0 < q < p < 1 ⇒ Aq + β1(m1, M1, p, q)I ≥ Bp,
(2) p > 1, 0 < q < 1 ⇒ Aq + β1(m2, M2, p, q)I ≥ Bp,
(3) 0 < p < 1, p < q ⇒ Aq + β2(m1, M1, p, q)I ≥ Bp.

Based on Lemma 4.1, we give complementary inequalities:

Theorem 4.2. Let A and B be as in above. Then the following inequalities hold:
(1) −1 < p < q < 0 ⇒ Bq + β1(m2, M2, p, q)I ≥ Ap,
(1’) −1 < q < p < 0 ⇒ Bp + β1(m2, M2, q, p)I ≥ Aq,
(2) −1 < q < 0, p < −1 ⇒ Bq + β1(m1, M1, p, q)I ≥ Ap,
(2’) −1 < p < 0, q < −1 ⇒ Bp + β1(m1, M1, q, p)I ≥ Aq,
(3)−1 < p < 0, q < p ⇒ Bq + β2(m2, M2, p, q)I ≥ Ap,
(3’)−1 < q < 0, p < q ⇒ Bp + β2(m2, M2, q, p)I ≥ Aq.

Proof. (1) Since B−1 ≥ A−1 > 0 and 1
m2

I ≥ B−1 ≥ 1
M2

I, it follows from (1) of Lemma 4.1
that

(B−1)q1 + β1

(
1

M2
,

1
m2

, p1, q1

)
I ≥ (A−1)p1 for 0 < q1 < p1 < 1.

Putting q1 = −q and p1 = −p, we have

Bq + β1

(
1

M2
,

1
m2

,−p,−q

)
I ≥ Ap for − 1 < p < q < 0.

Since

β1

(
1

M2
,

1
m2

,−p,−q

)
= max

{(
1

M2

)−p

−
(

1
M2

)−q

,

(
1

m2

)−p

−
(

1
m2

)−q
}

= max{M2
p − M2

q, m2
p − m2

q}
= β1(m2, M2, p, q),
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we have the desired inequality as follows:

Bq + β1(m2, M2, p, q)I ≥ Ap for − 1 < p < q < 0.

(2) Since B−1 ≥ A−1 > 0 and 1
m1

I ≥ A−1 ≥ 1
M1

I, it follows from (2) of Lemma 4.1 that

(B−1)q1 + β1

(
1

M1
,

1
m1

, p1, q1

)
I ≥ (A−1)p1 for p1 > 1, 0 < q1 < 1.

Putting q1 = −q, p1 = −p, then

Bq + β1

(
1

M1
,

1
m1

,−p,−q

)
I ≥ Ap for p < −1, −1 < q < 0.

Hence we have

Bq + β1(m1, M1, p, q)I ≥ Ap for p < −1, −1 < q < 0.

(3) Since B−1 ≥ A−1 > 0 and 1
m2

I ≥ B−1 ≥ 1
M2

I, it follows from (3) of Lemma 4.1
that

(B−1)q1 + β2

(
1

M2
,

1
m2

, p1, q1

)
I ≥ (A−1)p1 for 0 < p1 < 1, p1 < q1.

Putting p1 = −p, q1 = −q, then

Bq + β2

(
1

M2
,

1
m2

,−p,−q

)
I ≥ Ap for − 1 < p < 0, q < p.

Since β2

(
1

M2
, 1

m2
,−p,−q

)
= β2(m2, M2, p, q) by the definition of β2, we have

Bq + β2(m2, M2, p, q)I ≥ Ap for − 1 < p < 0, q < p.

Proofs of (1’), (2’) and (3’) are given by replacing p and q by q and p in (1), (2) and (3),
respectively.
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