Scientiae Mathematicae Japonicae Online, e-2010, 427-439 427

KANTOROVICH TYPE INEQUALITIES FOR THE DIFFERENCE
WITH TWO NEGATIVE PARAMETERS

Younc OK Kim*, JUN IcHI Fujir**, MASATOSHI FuJir™ AND YUKI SEOT™T

Received April 13, 2010; revised August 18, 2010

ABSTRACT. In this paper, we shall show Kantorovich type inequalities for the difference
with two negative parameters as follows: Let A and B be positive invertible operators
on a Hilbert space H such that MI > A > ml for some positive numbers M > m > 0.
If the usual order A > B holds, then
a a L1 P
B +C(m»M7p7Q)IZB +C M7_7_p7_q [ZA for aﬂp»(]<_17
m

where C(m, M, p, q), the Kantorovich constant for the difference with two parameters,
is defined as

q 1
MP —mP | a1 mP M — mMP MP —mP | a1
_ C—m” mM —mME LA -m < M.
(a U{q(Mfm)} RER Ve it m_{q(Mfm)} =M

As applications, we show some characterizations of the chaotic order. Thereby, we
observe the difference between the usual order and the chaotic one by virtue of Kan-
torovich constant for the difference.

1 Introduction. Throughout this paper, we consider bounded linear operators on a com-
plex Hilbert space H. An operator T is said to be positive (denoted by 7' > 0) if (Tx,z) > 0
for all z € H. The positivity defines the usual order A > B for selfadjoint operators A and
B. For the sake of convenience, T' > 0 means T is positive and invertible. The Lowner-
Heinz inequality asserts that A > B > 0 ensures A* > B® for all 0 < o < 1. However
A > B > 0 does not ensure A% > B® for a > 1 in general. As a complementary result to
the Lowner-Heinz inequality, Furuta [4] firstly showed Kantorovich type inequalities for the
ratio and afterward Yamazaki [7] showed the following Kantorovich type inequality for the
difference:

(1.1) A>B, MI>B>mlI>0 imply A?+C(m,M,p)l > B? forallp>1,

where the Kantorovich constant for the difference C(m, M, p) is defined by

MP —mP \7T  MmP — mMP
Mp)=p-1)——— ———  forall R
Cm M) = (0= 1) (57— VW forall pe
see also [5]. We note that lim, o C(m, M,p) = 0 and lim,_,; C(m, M, p) = 0. Kantorovich
type inequalities for the difference provide a new view on the usual order and the chaotic

one. The following theorem was obtained in [6] as a two positive parameters version of
(1.1).
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Theorem A 1. Let A and B be positive operators on H such that MI > B > mlI for some
positive numbers M > m > 0. Then the usual order A > B is equivalent to

AT+ C(m,M,p,q)I > B?  forall p, ¢ >1,

where C(m, M, p,q), the Kantorovich constant for the difference with two parameters is
defined by

MmP—mMP MP—mP a1
Mmoot (q—l)(qm_m))

if m < (M“mp)q‘_l <M

(1.2) C(m,M,p,q) = 1

. MP—_mP \ a1
mP —m4 if (q(M_’ﬁL)) <m

MP — M4 sz<(%)f

for all p,q € R such that pg > 0.

In particular, if we put ¢ = p in (1.2), then we see that C(m,M,p,p) = C(m, M, p),
1

because the condition m < ( %&i’%)ﬁ < M automatically holds. We also note that

C(m,M,p,1) =mP — m(resp.MP — M) it MP —mP < M — m(resp.M? — M > M —m).

In this note, as a continuation of [1], we discuss Kantorovich type inequalities for the
difference with two negative parameters: If A > B > 0 such that MI > A > mlI > 0, then

1 1
BT+ C(m,M,p,q)I > BT+ C (M,E,—p, —q> 1> AP for all p,q¢ < —1.

As applications, we show some characterizations of the chaotic order by means of Kan-
torovich type inequalities for the difference. Thereby, we observe the difference between the
usual order and the chaotic one by virtue of the Kantorovich constant for the difference.

2 Kantorovich type inequalities for difference. At the beginning, we show two neg-
ative parameters version of Theorem A. For this, we clarify the meaning of the Kantorovich
constant for the difference C'(m, M, p, q) defined as (1.2).

Lemma 2.1. For given M >m >0 and p,q € R with p,q > 1 orp,q <0,

M”—mpt—’_mpM—mM”
M—-—m M—-—m

C(m,Map7Q)_maX{ —tthE[m,M]}.

Proof. Put h(t) = MJ\ijpt + m’p%:;ZMp —t?. Note that h'(¢t) = 0 has the unique solution

MP — mp ) T 0
f=4 —— >
' {q(M —m) }
and ¢ ¢ [0, 1] implies
q—2

w(0) = ot~ D { S} <o
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Thus, in the case of m < t; < M, we have the upper bound h(t1) on [m, M], where

M”—m”)q+1 mP M — mMP

h(t1) = (¢—1) (m -

Next, if ¢; < m, then the upper bound h(m) on [m, M] is given by

h(m)__mq+Mp—mpm+mpM—mMp
o M —m M—-—m

=mP — mi.

Similarly, if M < t;, then the upper bound h(M) on [m, M] attains at ¢t = M:

h(M) = MP — M9,

429

O

By virtue of Lemma 2.1, we have the following Kantorovich type inequality for the

difference with two negative parameters:

Corollary 2.2. Let A and B be positive invertible operators on H such that M1 > A > ml

for some positive numbers M >m > 0. If A > B, then

BT+ C(m,M,p,q)I > AP for all p,q < —1.

Proof. First of all, we note that ¢t = (Ax,z) € [m, M] for every unit vector x € H by the

assumption. For p,q < —1, it follows from Lemma 2.1 that
(APz,x) < (Az,2)? + C(m, M, p,q) for every unit vector z € H
and hence

(AP, x) < (A, 2)? + C(m, M, p,q)

<
< (Br,a)1 + C(m, M,p,q) by A>B >0
< (Biz,z) + C(m,M,p,q) by the Holder-McCarthy inequality

for every unit vector z € H.

If we let ¢ = p — —1 in Corollary 2.2, then C(m, M,p,p) — W # 0, so that

BY+ C(m,M,p,q)I > AP for all p,q < —1 does not imply A > B.

To discuss more precise estimation than Corollary 2.2, we prepare the following lemma:

Lemma 2.3. For M >m >0

p—1
MaT —m

(2.1) M(MP~t —mP™1) S

Z C(m,M,p, q)

1

for all p, q > 1 such that m < (%)ﬁ <M.
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Proof. First of all, we put h = %
to

Then the condition m < ( MY imp
q(M—m)

¢ < (" =1)/(h—1) < gh?~".

Therefore we have the following inequality as a tool.

Pl >

(-1 (w—1y

@ (- L —mya

As a matter of fact, g(h — 1) < h? — 1 has an equivalent expression

hP—1

(0 <)—

_ p_
q l'h 1<1.
q hp —h —

Moreover &=L < gh?~! implies that

h—1

(n — 1y

(=101 (h? — 1)1 — < gh?~1 ((q - 1)t

¢ (=D =)

qq

—1 hP—
— pp—1 i
( q h?—nh

Now both sides of (2.1) are written as follows:

p—1
M =T

M(MP~1 —mpP~1)

(b — Ry

)

1
) U< Mis equivalent

)

< pr7 L

—m _ Mm? —mM? | M= (MP — Mmp—1)

and by Lemma 2.1

C(m,M,p,q) <

M1 (MP — MmP—1)

MmP — mMP

M-m M—m

M—-—m

0 ()

So, aiming at the second terms, it suffices to show that

M—m >(q_1)<m

Actually the prepared inequality ensures that

M= (MP — Mmp~—1)
M—m

_ el m%mp(h”—h)
B m(h—1)

MP —mP

.
> -

@) -)TT miEwr(e - )

g7t (h— 1)qi_1(hp —h)
(q—1) (kP = 1)7T (mP)7T

qﬁ (h_l)qzilmq%l

~en (=)

o)

m(h —1)

as desired. If we put p = ¢ in (2.1), then it follows that M (MP~1—mP~1) > C
0 for all p > 1. Hence we have lim,_,; C(m, M, p,p) = C(m,M,1,1) = 0.

(m, M, p,p) >
0
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Now we show the following two Kantorovich type inequalities for the difference with two
negative parameters, which characterize the usual order A > B:

Theorem 2.4. Let A and B be positive invertible operators on H such that MI > A > mlil
for some positive numbers M > m > 0. Then the usual order A > B is equivalent to

1 1
(2.2) Bq+C<M,—,—p, —q>I>Ap for all p,q < —1.
m

Proof. Since B! > A~! and %I > A1 > %I, we have

1 1
(B~Ha + C(M’ a,pl,(h)f > (AYPr for p;,q1 >1 by Theorem A .

Put g1 = —q (> 1),p1 = —p (> 1) for p = ¢ — —1. Then it follows that

1 1
Bq+C<M,—,—p,—q>I>Ap for p, g < —1.
m

Conversely, suppose (2.2). Since C ﬁ, -p, —q) — 0 as p=¢g — —1 by Lemma 2.3, the
inequality (2.2) implies B~! > A~! ie., A > B. O

In particular, if we put ¢ = —2 in Theorem 2.4, then we have the following corollary
which is utilized well later:

Corollary 2.5. Let A and B be positive invertible operators on H such that M1 > A > ml
for some positive numbers M > m > 0. If A > B, then

M2m2(mP — MP)? + A(M — m)(MPT! — mp+1)

(2.3) B2+ 107 —m)?

1> AP for all p < —1.

Theorem 2.6. Let A and B be positive invertible operators on H such that MI > A > mlIl
for some positive numbers M > m > 0. Then the usual order A > B is equivalent to

(mP+! — MPHY(Mm ™1 — 1)
M—-—m

11

2.4 BY I>BItC(— = —p —qVI > AP

( ) + = + (M7m7 P, q) >
—1

for all p, q < —1 such that 57 < (%)—w <

1
prnl

Proof. Since B~! > A~! and %I > At > ﬁ], we have the following inequalities by

Lemma 2.3: )
_ _ m 91 -
m (mpll Mp11> o ZC Mam7p17q1

for all py, ¢ > 1 such that
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Taking g1 = —¢ (> 1) and p; = —p (> 1) for given p, ¢ < —1, it follows that

—

p+1 P+
Mm~™ e —1) 1 Mm(m™ a1 — M~1)
p+1 _ prptl ( — — (mptl _ pgprtl
(m ) M—-—m m(m ) M—-—m
1

1 1
>C|—,—,-p,—q ).
— (M’ m’ p7 q>
Therefore, we have (2.4) by Theorem 2.4.
Conversely, suppose (2.4). If p = ¢, then we have

mpPtl — Mp+1)

B”—I—( 1> AP for all p < —1.

m

Since mP+! — MPH! — 0 as p — —1, the inequality above implies B~' > A7, ie., A
B.

v

Theorem 2.4 is better than Corollary 2.2 by the following comparison:

Theorem 2.7. If M > m > 0 for positive numbers M and m, then

1 1
C(vaa_pa_Q)ZC<M7E7paQ) fO’f‘p7 q> 1.

Proof. For each s € R, G,(z) is an affine function corresponding to =* on an interval [a, b].

We define G_,(z),Gp(z) on [m, M] and [3, L], respectively. For any z € [m, M], there

exist positive numbers a and 3 such that z = 8m + aM and o+ 6 = 1. Then Gp(% + 1)
can be defined. Now the (weighted) arithmetic-harmonic mean inequality says that

ﬁ—i—g 71<[3m+aM
m M - ’

so that
g

« 1
—t—=> —
m M ~ Bm+aM

Since G,(x) is an increasing function, we have

1] Q 1
Gy (E+M) = Gy <6m+aM>'

Moreover it follows from the affinity of G(x) that

G () = G_p(Bm + aM) = §G_y(m) + aG_,(M)
() o) ) () - (2 5)

G- 2 6 ().

T

Thus,
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Hence we have the desired inequality as follows:

C LI =max{ G 1) - lq'xé[mM] by Lemma 2.1
Mamapvq - X P T x . ) y .
1 1\
=Gp|— |- |— for some x¢ € [m, M]

< Gp(xo) =m0~ 1
<max{G_p(x) —z7?: xz € [m, M|}

O
Remark 1. By Theorem 2.7, it follows that A > B > 0 with MI > A > mlI > 0 implies

1 1
Bq+c(maM7p7q)I 2 Bq+C(M7E7_p7 —Q)IZ A;D fOTp,q < —1.

As a generalization of Theorem 2.4, we shall show the following theorem:

Theorem 2.8. Let A and B be positive invertible operators on H such that MI > A > mlIl
for some positive numbers M > m > 0. Then the usual order A > B is equivalent to

1 1 r—p r—gq
MM it L4’ 14

(2.5) Bq+MT-C< )IZA” for all r >0 and p,q < —1.
Proof. By the Furuta inequality [3], [5, Chapter 7], it follows that A > B ensures that

AT > (AEB‘IAE) atr forall g > 1, r > 0.

For p,q¢ > 1 and r > 0, put A4y = A", By = (A2B%A2)"" p = —Ifi: < —1, and
q = —(lli: < —1 in Theorem 2.4. Since A; > By and M™"T > A; > m!'*7I, then we have
1 1 r+p r4+q
B(h C I>A;D1
rr (Ml”’ml”’l—i—r’l—f—r =1

and hence

1 1 r+4+p r+gq
MY mHr L4 L4

(A2B9A%) " +C ( ) I>A7

Multiply A2 on both sides and replace p and ¢ by —p and —q respectively, we have (2.5).
Conversely, suppose (2.5). If we put r — 0 and p = ¢ — —1 in (2.5), then we have

B~1> A1 O

Corollary 2.9. Let A and B be positive invertible operators on H such that M1 > A > ml
for some positive numbers M > m > 0. If A > B, then

4mq+1Mq+1(mq+1 _ Mq+1)(Mp+1 _ mp+1) + (mq+p+2 _ Mq+p+2)2

q
B+ 4Mq+2(mq+1 — Mq+1)2

1> AP

forallp < —1,q < —2.
Proof. If we put r = —¢—2in (2.5) of Theorem 2.8, then we have the desired inequality. O
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3 Characterizations of chaotic order. In this section, as an application of Kan-
torovich type inequalities for the difference with two negative parameters, we give char-
acterizations of the chaotic order. For positive invertible operators A and B, the order
defined by log A > log B is called the chaotic order. We shall show a chaotic order version
of Theorem 2.4.

Theorem 3.1. Let A and B be positive invertible operators on H such that MI > A > mlI
for some positive numbers M > m > 0. Iflog A > log B, then

1 1
(3.1) Bq+M.C<M,—,1—p,1—q)I>A” for all p,q < 0.
m

Proof. Put p,q > 0. By the chaotic Furuta inequality [2], [5, Chapter 7], it follows that
log A > log B ensures that A > (AY/2BIAY2)1/1*a. Since —(q + 1), —(p + 1) < —1, we
apply Theorem 2.4 to obtain

(A2 BIAZ)" + C(%, p+1Lg+ I > APt

1
m
and hence

1 1
qu-l—C(M,E,p-i—l,q—l—l)AZA’p.

Replacing p and ¢ by —p and —q respectively, we have

1 1
Bq+M-C<M,—,1—p71—q)I>A” for all p,q < 0.
m

O

Though (2.2) in Theorem 2.4 characterizes the usual order, it follows that (3.1) in
Theorem 3.1 does not characterize the usual order, because C(1/M,1/m,1 —p)/p # 0 as
p — 0. By using (2.3) in Corollary 2.5, we show the following characterization of the chaotic
order.

Theorem 3.2. Let A and B be positive invertible operators on H such that MI > A > mlI
for some positive numbers M > m > 0. Then the chaotic order log A > log B is equivalent
to

mPTe — MPT9)2 4 AMImI(mI — M9)(MP — mP)
4AMa(m3 — M9)?

Bq—i—( 1> A° for all p,q < 0.

Proof. By the chaotic Furuta inequality [2], [5, Chapter 7], it follows that log A > log B
ensures that A7 > (AY/2B1A9/2)1/2 for all ¢ > 0. Put A; = A9, B; = (AY/2BIAY2)1/2
p1 = —%(< —-1), @ = =2, M1 = M? and m; = m¥? in Corollary 2.5. Then we have

M2qm2q(mfpfq _ prfq)2 +4(M9 —m9)(M~P —m™P)

fpagsy-1 —p—q
(AzB A2) + 4(Mq—mq)2 I>A
and hence
24y29 (yy—P—q _ —p—q)2 q _ 4 —P _ 4P
B4 4 M. M?29m24(m M )2+ 4(M9—m)(M m )IZA*”

4(Me — ma)?
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for all p, ¢ > 0. Replacing p and g by —p and —gq, we have

M72qu2q(mp+q _ Mp+q)2 +4(M~9—m~9)(MP — mp)I

Bq qu .
+ A9 —m-9)?

> AP

for all p, ¢ < 0 and hence we have the desired inequality.
Conversely, if we put p = ¢, then we have

(m2P — M?P)2 + AMPmP(mP — MP)(MP — mP)

BP I>A?
- NP (P — M2 =
for all p < 0 and hence
(m? — MY
P P
B? + YT I1>A for all p < 0.
This implies that
BP — T  (mP— MP)? AP — |
I< for all 0
» ApMP < » or all p <
and as p — 0 we have log B < log A. O

As a generalization of Theorem 3.1, we shall show the following theorem. Comparing
Theorem 2.8 with Theorem 3.3 in the below, we observe that variables p,q and r in the
Kantorovich constant change to p—1,¢— 1 and r — 1 respectively. This is explained by the
fact that lim,_.g tprl = logt for t > 0, as used in above, that is, the exponent of logt¢ can
be regarded as O.

Theorem 3.3. Let A and B be positive invertible operators on H such that MI > A > ml
for some positive numbers M > m > 0. Then the chaotic order log A > log B is equivalent
to

1 1 r—pr—gq

T 7_>IZAP for allT >0 and p,q < 0.
mr’or r

(3.2) Bq+M'“.c<

Proof. (=) By the chaotic Furuta inequality [2], [5, Chapter 7], it follows that log A > log B
ensures that A” > (A2 BYA2)7r forall ¢, 7 > 0. Put A} = A", B; = (A2 B1A3)7a,
p1 = —%(< -1),q1 = —TTW(< —1),M; = M" and my; = m” in Theorem 2.4. Then we
have

1 1
T+p M)IZA_T_I’ for all p, ¢ > 0,

(A2B1A2)"' 4 C (

Mmoo
so that
1 1
Bq+C< 7_r+p,m>Ar>A” for all p, ¢ > 0.
M™ mr r r

Since M"I > A" > m"I, we have

1 1 r—p r—gq
Mmoo

Bq+M7"-C< )IEA” for all p, ¢ < 0.
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(<) Put p=¢ = —r(r > 0) in the assuming inequality. Then we have

1 1

B7T+MT’C (W’W’2>I>AT forallr>0

and
(11 (M"™ —m")? . 11
M C<W7W, > :W by the definition of C<W,W,2>

Since B T (M e n s

—r _ 1 T _m" —r _

- for all
r +r 4Am2rMT - r orallr >0

and

(M™ —m")? (M™—1)— (m" —1) M’ —m"

im-~————~ = . =0
r—0 4rm?2rMT r—0 r Am?2rMr ’

we have log B~! > log A71, i.e., log A > log B.
([l

Corollary 3.4. Let A and B be positive invertible operators such that MI > A > mI >

1> 0 for some positive numbers M > m > 0. Iflog A > log B, then

(M™m~7 —1)
MT’ _ m?"

1 1 r—p r—gq

B+ M"(mP — M? =
+ (m ) Mrr.)mrr.) r Y r

I>B‘1+M”"C< >12A”

B3

for all p, q <0 such that A/}T < (Tmr(;/;‘?n(g[_;%z_r)) < L.

Proof. Put my = 3, My = %, p1 = =2(>1),and ¢ = =4 (> 1) for p, ¢ < 0in
Lemma 2.3. Then we have

1 [/ 1\ L\ @) - (i) 1 1 r—pr—g
w \\mr) ~\ar L1 29wy )

Moreover, since the left hand side of the above coincides with

P
r

1 m-T — M (M™m™7 —1)
e

it follows that

rp

(M™m™a —1) 1 1 r—pr—gq
Pyt ) s o —, — .
(m ) Mr—mr = Mmoo

Therefore we have

(M™m™7 —1) 1 1 r—pr—gq
~ I >B1T+M"C —
Mr —mr =50 M mr’ o

by Theorem 3.3. |

BY + M"(mP — MP)

)iz

Remark 2. Theorem 8.3 will give an alternative proof to the first half of a proof of Theorem
3.2: As a matter of fact, if we put r = —q in (5.2) of Theorem 3.3, then we have

B+ M~1C(M?,m9, 29 o)1 > av.
q

This is just the required inequality.
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4 Complementary inequalities. In this final section, we consider complementary in-
equalities to results with respect to the usual order in §2. For this, we prepare some
notations. For 0 < m < M and p,q € R with pg > 0,p # ¢,

ﬁl(maMapv q) = max{mp — mq,Mp — Mq}

and
_1
mP — m4 if %) < m,
P P _1
2 q—p 2 q—p 2 q—p
solm Mpgy = (8)77 = (8)77 itms(2)7T <
1
MP — M4 if M < (g)“’.

We here recall the following result proved in [6]:

Lemma 4.1. Let A and B be positive operators on H such that MyI > A > m11 > 0 and
Mol > B > mol > 0 for some scalars M1 > mq > 0 and My > mo > 0. If A > B, then
the following inequalities hold:

(1) 0<g<p<1l= A%+ Bi(m1, M1,p,q)] > B,

2)p>1,0<qg<1= A%+ B1(m2, Ma2,p,q)] > BP,

(3)0<p<1,p<q= A+ [Ba(m, M, p,q) > BP.

Based on Lemma 4.1, we give complementary inequalities:

Theorem 4.2. Let A and B be as in above. Then the following inequalities hold:
(1) =1 <p<q<0= BT+ B1(ma, M2,p,q)1 > AP,

(1) =1 <qg<p<0= BP+ pi(m2, M2,q,p)I > AT,

(2) 1< q< Oap <-1= B4 +ﬂ1(m17M1;p7Q)I Z Ap’

(2) =1 <p<0,g<—1= BP+ pBi(m1, Mi,q,p)I > A,
(3)-1<p<0,9<p= B+ fa(ma, Mz, p,q)I > AP,
(3)-1<qg<0,p<q= BP+ f2(ma, Ma,q,p)I > A1

Proof. (1) Since Bt > A=! > 0 and mizl > Bl > Mizf, it follows from (1) of Lemma 4.1
that

_ 1 1 _
(B™H" + B <E, m_27p17q1> I> (A for0<q<p <L

Putting g1 = —q and p; = —p, we have
1 1
Bq+ﬂ1 P, —(q IZAP f01"—1<p<q<0.
M2 mao
Since
3 1 1 1\ P 1\ ¢ 1\°? 1\ ¢
—  ——  —p —g) = max - N - S
1 M27m25 P, —q a. M2 M2 ) mo mo

= InaX{Mgp — ng,mgp — mgq}

= 51(m27M2;p7 q)a
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we have the desired inequality as follows:

Bq+61(m2)M27paq)IzAp for —1<p<q<0

(2) Since B! > A™! > 0 and - 1> MLI it follows from (2) of Lemma 4.1 that

> A~
(B~ H)% + 5 <—7 ,p1,ql) P forpr > 1, 0< qp < 1.

Putting ¢1 = —¢q, p1 = —p, then

1 1
Bq+61<ﬁ7m_;_pa_q>1214p fOrp<—1, —1<q<0
1 1

Hence we have

B+ B1(mq, Mq,p,q)] > AP forp< —1, —1 < ¢ <0.

(3) Since B™! > A™! > 0 and =1 > B~ > -1, it follows from (3) of Lemma 4.1
that

1 1
(B™H9 4 3 ( 7—,p1,Q1) I>(AHP for 0<pi <1, p1 <aqi.

E mo
Putting p1 = —p, ¢1 = —¢q, then
E’ ma

1 1
Bq+b’2( —,—p,—q)I>Ap for —1<p<0, ¢g<p.

Since [ (MLQ, me —p, —q) = [a(ma, Ma,p, q) by the definition of B2, we have

B+ Ba(ma, Ma,p,q)] > AP for —1<p<0, g <p.

Proofs of (1’), (2’) and (3’) are given by replacing p and ¢ by ¢ and p in (1), (2) and (3),
respectively.
|
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