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ABSTRACT. In this paper, we obtain common fixed point theorems of Caristi type
mappings [2] by using the concept of w-distance, which is introduced by Kada, Suzuki
and Takahashi [4]. Our results generalize theorems of Bhakta and Basu [1].

1 Introduction and Preliminaries In 1981, Bhakta and Basu [1] proved a common
fixed point theorem of Caristi type mappings in a complete metric space. A mapping T’
from a metric space X to X is said to be orbitally continuous if for every z, zo € X, T™ 1
converges to T'rg whenever T™ x converges to xg.

Theorem 1. ([1]) Let (X,d) be a complete metric space and let S, T be two orbitally
continuous mappings of X into itself. Suppose that there are two functions ¢, of X into
[0, 00) satisfying the following condition: For any two points z,y € X,

d(Sz, Ty) < () — p(Sz) +¢(y) — »(Ty).
Then S and T have a unique common fixed point.

On the other hand, in 1996, Kada, Suzuki and Takahashi [4] introduced the concept of
w-distance on a metric space.

Definition 1. ([4]) Let (X, d) be a metric space. Then a function p : X x X — [0,00) is
called a w-distance on X if the following are satisfied:

(1) p(x,2) < p(z,y) + p(y, 2) for any z,y,z € X;
(2) for any z € X, p(x,-) : X — [0,00) is lower semicontinuous;

(3) for any e > 0, there exists § > 0 such that for any z,y,z € X, p(z,2) < § and
p(z,y) < 6 imply d(z,y) <e.

They generalized Caristi’s fixed point theorem [2], Ekeland’s variational principle [3]
and Takahashi’s nonconvex minimization theorem [6] by using w-distance ([4], [5]).

In this paper, using the concept of w-distance, we obtain common fixed point theorems
on complete metric spaces. Our results generalize theorems of Bhakta and Basu [1].

The following lemma is very important in the proofs of our results.

Lemma 1. ([4]) Let (X, d) be a metric space and let p be a w-distance on X. Let {x,,} and
{yn} be sequences in X, let {a,} and {8,} be sequences in [0, 00) converging to 0, and let
x,y,z € X. Then the following hold:

(i) If p(xn,y) < ap, and p(z,,2) < G, for any n € N, then y = z. In particular, if
p(z,y) =0 and p(x, z) =0, then y = z;
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(ii) if p(zn, yn) < ap and p(x,,z) < B, for any n € N, then {y,} converges to z;
(iii) if p(zp, m) < @, for any n,m € N with m > n, then {z,,} is a Cauchy sequence;
(iv) if p(y,xn) < ay, for any n € N, then {z,} is a Cauchy sequence.

2 Generalized common fixed point theorems of Bhakta and Basu In this section,
we generalize results of Bhakta and Basu by using w-distance.

Theorem 2. Let (X, d) be a complete metric space and let p be a w-distance on X. Let S, T
be two orbitally continuous mappings of X into itself. Suppose that there are two functions
v, of X into [0, 00) satisfying the following condition: For any two points z,y € X,

max{p(Sz,Ty), p(Ty, Sx)} < (x) — ©(Sz) + Y (y) — V(Ty).
Then S and T have a unique common fixed point.
Proof. Let xy and yo be any two points of X. We consider the following sequences
Tn = S"x0, Yn =T yo (n € N).
Then we have

p(zi,yi) = p(Swi—1,Tyi1)
o(xi—1) — @(Swi—1) +h(yi—1) — V(Tyi—1)
= p@i—1) — (@) + (Y1) — Y(vi)

for alli e {1,2,...,n}. So,

IN

n

Zp(wi,yi) < Z{QO zi-1) — @(@i) + V(yi-1) — ¥(vi)}
= ( 0) = @(@n) + ¥(vo) — ¥(yn)
< o(xo) + ¥(yo)-
Again,
pYi,xiv1) = p(Tyi-1,5%;)
< o) — o(Sz) + Y(yim1) — P(Tyi-1)
= (@) — p(@it1) + Y(yi-1) — Y(vi)
foralli € {1,2,...,n}. So,
D o) <Y {p(@) = (@ina) + 9(yio1) — i)}
i=1 =1
= (1) = p(@nt1) +¥(Yo) — ¥ (yn)
< (1) +¥(yo).

Since, p(zs, zi+1) < p(@i, yi) + p(Yi, Tit1), we have

n

D p@iwi) <Y {p(@iyi) + p(yi i)}

i=1 i=1

e(x0) + @(1) + 2¢(yo)-

IA
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This gives that series Z p(x;, xiy1) is convergent. Let n and m be any two positive integers

i=1
with m > n. Then

m—1

(T, Tm) < Z p(i,xi11) — 0 as n — oo.

i=n

By Lemma 1(iii), {z,} is a Cauchy sequence.

Similarly, we have

(i1, Yit1)

for all i € {1,2,...,n}. So,

n

D (@i yin

=1

)

= p(Szi, Ty;)

< p(@i) — o(Szi) +(yi) — v(Tys)

= (i) = p(@iv1) +P(vi) — Y(Yir1)
< Z{w(xi) —p(wiv1) +Y(yi) — V(yir1)}
= ¢(x1) — p(Tnt1) + (Y1) — Y(Yn+1)
< (1) + YY)

Since, P(yi, yi-‘,—l) < P(yi, $i+1) + P(l’i+1, yi+1)7 we have

Zp(ym Yit1)
i=1

< Z{P(ym Tig1) +d(Tir1,Yiv1)}
i=1

< 2¢(x1) +(yo) + (y1)-

o]
This gives that series Zp(yi,yu_l) is convergent. In the same way, {y,} is a Cauchy

i=1
sequence.

Since X is complete, each of them is convergent, that is,

T =T, Yn =Y

as n — oo for some T, § € X. Since S and T are orbitally continuous, Sz, — Sz, Ty, —

Ty, that is,

Tyl — ST, Yny1 — TY

as n — o0o. This gives that ST =7 and Ty = .

Now,

p(Z,2)

and

IN

IN

Hence, by Lemma 1(i), Z = 3.

p(Z,9) + p(y, )
p(Sz,Ty) + p(Ty, ST)
2[p(2) — @(Sz) + (7)) —¢(Ty) =0

p(52,TYy)
@(z) — p(S2) + P(y) — »(Ty) = 0.
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Let z € X satisfying Sz = Z. Then

p(z,2) < p(z.2)+ p(z,2)
= p(Sz,Tz)+ p(Tz,SZ)
< 2[p(2) = ¢(8%) + ¥() — Y(TT)] =0

and

p(z,2) = p(Sz,Tx)
< p(2) —9(52) +(2) —¢(T'z) = 0.

So, Z = Z. Thus Z is the only fixed point of S. Similarly, we can show that Z is the only
fixed point of T'. This proves the theorem. O

Corollary 1. Let (X,d) be a complete metric space and let p be a w-distance on X. Let
F ={S4 | @ € A} be a family of orbitally continuous mappings of X into itself. Suppose
that for each mapping S € F, there is a function ¢g of X into [0, co) satisfying the following
condition: For any two mappings S, T € F and for any =,y € X,

max{p(Sz,Ty), p(Ty, Sx)} < @s(x) — ps(Sz) + pr(y) — or(TY).
Then the family F have a unique common fixed point.

Proof. Let S and T be two mappings of F. Then S,T and g, o1 satisfy the conditions
of Theorem 2. Hence S and T have a unique common fixed point xg. Let S’ be any other
mapping of . Again by using Theorem 2, S and S’ have a unique common fixed point ;.
As xg is the unique fixed point of S, zo = z1. Hence z( is a unique common fixed point of
S, T and S’. As S’ is an arbitrary mapping of F, it follows that z( is a unique common
fixed point of the mappings of F. O

Next we consider common fixed point theorems for set-valued maps. A set-valued map-
ping S from a metric space X into 2% is said to be upper semicontinuous if for every z € X
and every open set V with Sx C V, there exists a neighborhood U of z such that Sz € V
for all z € U. See [7].

Lemma 2. Let (X, d) be a metric space and let .S be an upper semicontinuous mapping of
X into 2%. For any x € X, Sz is nonempty and closed. Let zo € X and {x,} is a sequence
in X. Then,

{ Tn+1 S an (n € N) = X9 = SJJ().

Ty — X

Proof. Assume that z,41 € Sz, and z, — xg. Suppose that zg ¢ Sxg. Since X is a metric
space and Sxg is a closed set, there exists two open sets (G; and G5 such that

T € Gl, S.IQ C Gy and G NGy = 0.
(From upper semicontinuity of S, there exists a neighborhood Uy, of z¢ such that
Sx C Gy for any x € Uy,.

Since x, — xo, xn € Uy, for large enough n, therefore x,41 € Sz, C G2, and we have
zo € clGy. This is a contradiction. O
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Theorem 3. Let (X, d) be a complete metric space and let p be a w-distance on X. Let
S, T be two upper semicontinuous mappings of X into 2X. For any = € X, Sz and Tz are
nonempty and closed. Suppose that there are two functions ¢, 1 of X into [0, c0) satisfying
the following condition: For any two points z,y € X and for any v € Sz, v € Ty,

max{p(u,v), p(v,u)} < @(x) —(u) +1(y) —P(v).
Then S and T have a unique common fixed point.
Proof. Let xy and yy be any two points of X and {z,,} and {y,} be sequences satisfying
Ty € STy—1, Yn € Tyn—1 (n € N).

Then we have
p(xi,yi) < o(wio1) — (@) +P(yim1) — Y(wi),
pWis Tir1) < @(xi) — @(@it1) + Y(yi-1) — ¥ (yi)
and
P(Tiv1, Yir1) < o(wi) — p(Tit1) + ¥(yi) — Y (Yiv1)

for all ¢ € N. In similar way to proof of Theorem 2, {z,} and {y,} are Cauchy sequences.
Since X is complete, each of them is convergent, that is,

Tp =%y, Yn — Y

as n — oo for some 7, § € X. By Lemma 2, we have that Z € ST and § € T'y.
Now,

o(#,7)

IN A
IS
5

and
p(Z,9) < o(Z) — o(Z) + ¢ (y) — () = 0.
Hence, by Lemma 1(i), Z = . We obtain & € ST N TZ.
Let z € X satisfying z € SZ. Then
p(z,T) + p(Z, 2)
2[p(2) = ¢(2) + ¥(2) — (7)) =0

p(z.7)

IN A

and
p(z,2) < @(z) —p(2) +¢(@) —¢(2) = 0.

So, Zz = Z. Thus Z is the only fixed point of S. Similarly, we can show that Z is the only
fixed point of T'. This proves the theorem. O

Corollary 2. Let (X,d) be a complete metric space and let p be a w-distance on X. Let
F = {8, | @ € A} be a family of upper semicontinuous mappings of X into 2%. For any
xz € X and S € F, Sz is nonempty and closed. Suppose that there is a family {pg | S € F}
of functions of X into [0,00) satisfying the following condition: For any two mappings
S, T € F and for any z,y € X and v € Sz, v € Ty,

max{p(u,v), p(v,u)} < ps(z) — ps(u) + or(y) — pr(v).

Then the family F have a unique common fixed point.
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3 More common fixed point theorems Let (X,d) be a metric space and let p be
w-distance on X. In this section, we consider the following condition

max{p(z,y), p(y, )} + p(z, S) + p(y, Ty) < p(x) — ¢(Sz) +P(y) — ¥(Ty)
instead of
max{p(Sz,Ty), p(Ty, Sx)} < o(x) — ¢(Sz) + ¢ (y) — ¥(Ty)
for orbitally continuous mappings S and T of X into itself. The inequality
max{p(5z,Ty), p(Ty, Sz)} < max{p(z,y), p(y, )} + p(z, Sx) + p(y, Ty)

does not hold in general. For example, let X = {a,b,c}, d(z,y) = 1 if © # y, d(z,y) =0
if x =y, pla,b) =3, p(x,y) = d(x,y) whenever (z,y) # (b,a), Sa = Sb = a, Sc = b and
Ta=Tc=a, Tb=c. If (z,y) = (¢, a),

max{p(Sz,Ty), p(Ty, Sx)} > max{p(z,y), p(y,z)} + p(z, Sx) + p(y, Ty).

Theorem 4. Let (X, d) be a complete metric space and let p be a w-distance on X. Let S, T'
be two orbitally continuous mappings of X into itself. Suppose that there are two functions
©, 1 of X into [0, 00) satisfying the following condition: For any two points z,y € X,

max{p(z,y), p(y, )} + p(x, Sz) + p(y, Ty) < o(x) = 9(Sz) + % (y) — »(Ty).
Then S and T have a unique common fixed point.
Proof. Let g and yo be any two points of X. We consider the following sequences
Tp = S"x0, Yn =T"yo (n € N).
Then we have

max{p(zi_1,Yi-1), P(Yi—1,Ti—1)} + p(®i—1, ;) + p(Yi=1,Y:)
o(wi1) — (i) + Y(Yyi-1) — (i)

for all 7 € {1,2,...,n}. So,

p(zio1,2;)

IAIA

{e(@iz1) —@(zi) + Y(yi-1) — ¥(yi)}

¢
=
&

AN

A
NE

IN
BS)

This gives that series Z p(x;—1,x;) is convergent, and {x,} is a Cauchy sequence in similar
i=1
way to proof of Theorem 2. Also we have {y,} is a Cauchy sequence.
Since X is complete, each of them is convergent, that is,

xn - i‘? y"L - g
as n — oo for some Z, § € X. Since S and T are orbitally continuous, Sz, — Sz, Ty, —

T, that is,
Tn+l1 — Sjv Yn4+1 — T?
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as n — o0o. This gives that ST =7 and Ty = .

Now,
max{p(z, ), p(y, %)} + p(T, 57) + p(9, TY)
o(z) — o(52) +9(y) —»(Ty) =0,

max{p(z,y), p(y,z)}

IAIA

then p(Z,7) = p(g,z) = 0. And also
p(z,2) < p(z,9) + p(y,2) =0,

hence p(Z,9) = p(z,Z) = 0. By Lemma 1(i), Z = g.
Let z € X satisfying Sz = z. Then

max{p(%,7),p(%,2)} < max{p(z z),p(7,2)} + p(%,5%) + p(z, 1)
< (2) —9(Sz) + () —¥(T'2) = 0.

In the same way, we have z = Z. Thus Z is the only fixed point of S. Similarly, we can
show that z is the only fixed point of T'. This proves the theorem. O

Corollary 3. Let (X,d) be a complete metric space and let p be a w-distance on X. Let
F ={S4 | @ € A} be a family of orbitally continuous mappings of X into itself. Suppose
that there is a family {pgs | S € F} of functions of X into [0, 00) satisfying the following
condition: For any two mappings S,7T € F and for any x,y € X,

max{p(z,y), p(y, )} + p(x, Sz) + p(y, Ty) < ps(x) — s(Sz) + r(y) — pr(Ty).
Then the family F have a unique common fixed point.
The proof is similar to Corollary 1, and omitted.

Theorem 5. Let (X, d) be a complete metric space and let p be a w-distance on X. Let
S, T be two upper semicontinuous mappings of X into 2%. For any € X, Sz and Tz are
nonempty and closed. Suppose that there are two functions ¢, ¥ of X into [0, oo) satisfying
the following condition: For any two points z,y € X and for any v € Sz, v € Ty,

max{p(z,y), p(y, )} + p(z,u) + p(y,v) < () = p(u) +P(y) — P (v).
Then S and T have a unique common fixed point.
Proof. Let xy and yo be any two points of X and {x,} and {y,} be sequences satisfying
Tn € STy—1, Yn € Tyn—1 (n € N).

Then we have
p(@i—1,2i) < o(wiz1) — (i) + P (yi-1) — P(yi)
and
P(Yi-1,¥i) < p(@i1) — o(x:) + Y(yi-1) — P (y:)
for all ¢ € N. In similar way to proof of Theorem 4, {z,} and {y,} are Cauchy sequences.
Since X is complete, each of them is convergent, that is,

Tp =T, Yn =Y

as n — oo for some 7, § € X. By Lemma 2, we have that £ € ST and y € T'y.
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Now,

max{p(z, v), p(¥,Z)} max{p(z,9), p(¥, )} + p(T, ) + p(¥, 7)

(@) — () +(y) — () =0,

IAIA

then p(z,9) = p(y,Z) = 0. And also
p(z,7) < p(z,9) + p(y, ) = 0,
hence p(Z,9) = p(Z,Z) = 0. By Lemma 1(i), Z = §. We obtain z € STNTZ.
Let z € X satisfying z € Sz. Then
max{p(z,2), p(Z,2)} < max{p(z,2),p(Z,2)} + p(%, 2) + p(Z,2)
©(2) — ¢(2) + (7) —(x) = 0.
In the same way, we have Z = Z. Thus Z is the only fixed point of S. Similarly, we can
show that T is the only fixed point of 7. This proves the theorem. O

IN

Corollary 4. Let (X,d) be a complete metric space and let p be a w-distance on X. Let
F ={S. | @ € A} be a family of upper semicontinuous mappings of X into 2X. For any
xz € X and S € F, Sz is nonempty and closed. Suppose that there is a family {pg | S € F}
of functions of X into [0,00) satisfying the following condition: For any two mappings
S, T € F and for any x,y € X and u € Sz, v € Ty,

max{p(z,y), p(y, ©)} + p(z, u) + p(y,v) < @s(z) — ps(u) + or(y) — ¢7(v).
Then the mappings of F have a unique common fixed point.
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