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Abstract. In this paper we constructed separately the algebras generated by the
idempotents operators, and by nilpotents operators, and prove the isomorphic theorems
between original algebras and algebras of symbols. In particular, Theorems 2.1, 2.2
prove that an operator is generalized invertible if and only if so its symbol is.

1 Introduction and preliminary In present paper, desire to have the criterion of the
invertibility of linear operators belonged to the algebras generated by the idempotent op-
erators or by the nilpotent operators is motivated by the relative studies as follows: the
Gohberg-Krupnik-Sarason symbol calculus for algebras of Toeplitz, Hakel, Cauchy, and Car-
leman operators on Lp-spaces, the isomorphism between algebras (or C∗-algebras) of Cauchy
singular integral operators with Carleman shift and algebras of symbols (or C∗-algebras in
certain sense) and the Nöetherian theory of Cauchy singular integral operators with Car-
leman shift, generalized invertibility of Wiener-Hopf operators and the cross factorization
of those operators. Many works dealing with the relationship between the invertibility of
elements in an algebra and that of so-called symbols in other algebra have been appeared
(see [6, 9, 13, 14, 15, 16, 17, 28, 29] and references therein). Namely, the aim of this paper is
devoted to the algebras (denoted by X̂ through the paper) generated by the system of the
complete orthogonal projectors, and by the system of the nilpotent operators defined in the
linear space. What we are interested in is criterion for generalized invertibility of operators
in X̂ . As the criterion should be well verifiable, we aim the following precision: whether or
not it is possible to associate with every operators M ∈ X̂ a certain-matrix function, called
the symbol of M , having the characterization that M is generalized invertible if and only if
so its symbol is. This is impossible in general cases as indicated in [5]. Fortunately, in the
frame of this work, the answer is positive.

The paper contains two sections and organized as follows. The followings of this section
are the well-known concepts concerning the generalized invertibility of linear operators.
In Section 2, we make separately two algebraic structures for the sets, by means of the
idempotents and nilpotent operators, so that these sets become the subalgebras (denoted
by the same notation as X̂) of the algebra L0(X). Hereafter, for given element K ∈ X̂ we
determine its symbol σK , and prove that X̂ is isomorphic to the algebra of all symbols of
elements in X̂ (through the paper this algebra is denoted by [[σ]]). Theorems 2.1, 2.3 show
that the element K ∈ X̂ is generalized invertible, generalized right invertible if and only
if so its symbol σK is, respectively. Furthermore, Theorems 2.2, 2.4 provide the necessary
sufficient conditions for the matrice being the symbol of an element in X̂.

Let X be a linear space over the scalar field F (F = R, or F = C). Denoted by L0(X)
the set of all operators whose domain is entire X. Obviously, L0(X) is the algebra with unit
being the identity operator I. Let X̂ be a subalgebra of L0(X).
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We recall some definitions.

Definition 1.1 ([23, 27]). An operator D ∈ X̂ is said to be right invertible (abbreviated
RI) in X̂ if there is an R ∈ X̂ such that DR = I.

The set of all RI-operators in X̂ is denoted by R̂(X̂).

Definition 1.2 ([23, 27]). An operator V ∈ X̂ is said to be generalized invertible (abbre-
viated GI) in X̂ if there is a W ∈ X̂ such that V WV = V. Then W is called a generalized
inverse of V.

The set of all GI-operators in X̂ is denoted by Ŵ (X̂).

Definition 1.3 ([18, 20]). An operator V ∈ X̂ is said to be generalized right invertible of
degree r in X̂ (abbreviated GRI-r) if there exists a W ∈ X̂ such that V WV = V, V r+1W =
V r, where V 0 := I. We call W a generalized right inverse of degree r of V (abbreviated
GRI-r of V ).

The set of all GRI-r operators is denoted by R̂r(X̂). It is clear that if r = 0, then the set
of all GRI-0 operators is identical with the set of RI operators, i.e R̂0(X̂) ≡ R̂(X̂). For any
V ∈ R̂r(X̂) let Rr

V denote the set of all GRI-r operators of V. Algebra X̂ can be classified
by means of the degrees of invertibility of elements in which R̂(X̂) is just the first class, i.e.

R̂(X̂) ≡ R̂0(X̂) ⊆ R̂1(X̂) ⊆ R̂2(X̂) ⊆ . . .

⊆ R̂n(X̂) ⊆ . . . ⊆ Ŵ (X̂) ⊆ X̂ ⊆ L0(X).

It is easy to check that if W is a generalized inverse of V , then so W1 := WV W is, and the fol-
lowing identity yeilds: W1V W1 = W1. The term generalized inverse, actually, is sometimes
used as a synonym for pseudoinverse, or Moore-Penrose inverse, which was independently
described in the works of Moore [21] and Penrose [22]. The class of generalized invertible
operators is a natural generalization of the class of invertible, and one-sided invertible oper-
ators that attracts attention of many authors (see [1, 2, 3, 4, 7, 8, 10, 11, 12, 23, 24, 25, 26]).
In our view, the class of generalized invertible operators deserves the interest.

What folowed in this paper is focused on the second class R̂1(X̂). It is worth saying
that the class R̂1(X̂) really contains not only some well-known operators in analysis such
as projectors, integral-differential operators but also a class of algebraic operators (see
[18, 19, 20, 30]).

2 Main results

2.1 Algebra generated by the orthogonal projectors Let l(X) denote the subalge-
bra in L0(X), and let {Pi}i=1,n be the complete system of orthogonal projectors in L0(X),
i.e. ⎧⎨⎩ PiPj = δijPj , i, j = 1, . . . , n

n∑
i=1

Pi = I,
(2.1)

where δij is the Kronecker symbol. Assume that the system {Pi}i=1,n is linear independent

on algebra l(X), i.e. if
n∑

k=1

AkPk = 0 (Ak ∈ l(X), k = 1, . . . , n), then Ak = 0 for every
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k = 1, . . . , n. Obviously, if A ∈ l(X) and if APk = 0, then A = 0. We now set

X̂ =

{
B =

n∑
i=1

BiPi : Bi ∈ l(X)

}
.(2.2)

Loosely speaking, X̂ is generated by {Pi}i=1,n with respect to l(X). Assume that for any
M ∈ l(X) and for each of Pi (i = 1, . . . , n), there exists a unique system {Mk}k=1,n ∈ l(X)

such that PiM =
n∑

k=1

MkPk. Then, for M =
n∑

j=1

MjPj ∈ l(X), we have

(2.3) M =
n∑

i=1

Pi

n∑
j=1

MjPj =
n∑

i=1

n∑
j=1

PiMjPj

=
n∑

j=1

n∑
i=1

n∑
k=1

MijkPkPj =
n∑

j=1

( n∑
i=1

Mijj

)
Pj ,

where {Mijk}k=1,n ∈ l(X). In the sequel, we write Mij := Mijj (i, j = 1, . . . , n) as there
is no danger of confusion, and set σM = [Mij ]i,j=1,n. Clearly, σM is the square-matrix of
order n. We call σM the symbol of M. Let [[σ]] denote the set of all symbols of operators
in X̂.

Theorem 2.1. M ∈ X̂ is GI, GRI-1 in X̂ if and only if so σM is in [[σ]], respectively.

To prove Theorem 2.1 we need the following lemmas.

Lemma 2.1. X̂ is the subalgebra of L0(X).

Proof. Obviously, X̂ is the linear space. Let A =
n∑

i=1

AiPi, B =
n∑

i=1

BiPi, where Ai, Bi ∈
l(X). We have

AB =
n∑

i=1

n∑
j=1

AiPiBjPj =
n∑

i=1

n∑
j=1

n∑
k=1

AiBijkPkPj

=
n∑

i=1

n∑
j=1

AiBijjPj =
n∑

j=1

( n∑
i=1

AiBijj

)
Pj =

n∑
j=1

CjPj ,(2.4)

where Cj =
n∑

i=1

AiBijj ∈ l(X), j = 1, . . . n. This implies AB ∈ X̂. Thus, X̂ is an algebra.

The lemma is proved.

Remark 2.1. l(X) is the subalgebra of X̂ as A =
n∑

i=1

APi for A ∈ l(X).

Lemma 2.2. [[σ]] has an algebraic structure.

Proof. Obviously, [[σ]] is a linear space. Let σA, σB denote the symbols of A =
n∑

i=1

AiPi, B =
n∑

i=1

BiPi ∈ X̂ in X̂ respectively. We then have σA = [Aikk]i,k=1,n, σB = [Bikk]i,k=1,n, where
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Aikk, Bikk, i, k = 1, 2, . . . , n are determined as in (2.3). We shall prove that σAσB = σAB ∈
[[σ]]. Indeed, suppose that σAσB = [Cik]i,k=1,n. Due to conditions (2.3), we have

Cik =
n∑

j=1

AijjBjkk, i, k = 1, 2, . . . , n.(2.5)

On the other hand,

AB =
n∑

j=1

n∑
k=1

AjPjBkPk =
n∑

i=1

n∑
j=1

n∑
k=1

PiAjPjBkPk

=
n∑

i=1

n∑
j=1

n∑
k=1

n∑
l=1

AijlPlPjBkPk =
n∑

i=1

n∑
j=1

n∑
k=1

AijjPjBkPk

=
n∑

i=1

n∑
j=1

n∑
k=1

n∑
l=1

AijjBjklPlPk =
n∑

i=1

n∑
j=1

n∑
k=1

AijjBjkkPk

=
n∑

k=1

n∑
i=1

( n∑
j=1

AijjBjkk

)
Pk =

n∑
k=1

( n∑
i=1

C∗
ik

)
Pk,

where

C∗
ik =

n∑
j=1

AijjBjkk .(2.6)

This implies Cik = C∗
ik, i, k = 1, 2, . . . , n. Hence, [Cik]i,k=1,n = [A][B] is the symbol of

AB ∈ l(X). The lemma is proved.

Corollary 2.1. Algebra X̂ is isomorphic to [[σ]].

Proof. Consider the map

δ :X̂−−−−−−−−−→[[σ]]
A−−−−−−−−−→σA.

By the definition of [[σ]], δ is the linear map from X̂ onto [[σ]]. Obviously, if δ(A) = 0, i.e.
σA = 0, then A = 0. Hence, δ is the linear isomorphism beetwen X̂ and [[σ]]. Thanks to
the proof of Lemma 2.2, δ(AB) = σAσB = δ(A)δ(B). Thus, δ is the algebraic isomorphism.
The corollary is proved.

Let [Aij ]i,j=1,n be a matrix of order n whose elements belong to l(X). Put A∗
j =

n∑
i=1

Aij , j = 1, . . . , n. Suppose that

PiA
∗
j =

n∑
k=1

A∗
ijkPk, i, j = 1, . . . , n.(2.7)

Theorem 2.2 below gives the necessary and sufficient condition for the square-matrix
being symbol of an operator in X̂.

Theorem 2.2. Matrix [Aij ]i,j=1,n is the symbol of an operator in X̂ if and only if A∗
ijj =

Aij for every i, j = 1, . . . , n, where A∗
ijj are defined as in (2.7).
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Proof. Necessity. Suppose that [Aij ]i,j=1,n is the symbol of A =
n∑

j=1

KjPj . We have

A =
n∑

i=1

Pi

n∑
j=1

KjPj =
n∑

i=1

n∑
j=1

PiKjPj

=
n∑

i=1

n∑
j=1

n∑
k=1

KijkPkPj =
n∑

j=1

( n∑
i=1

Kijj

)
Pj .

It follows that σA = [Kijj ]i,j=1,n = [Aij ]i,j=1,n. Hence, Aij = Kijj (i, j = 1, . . . , n).
Furthermore,

A =
n∑

j=1

( n∑
i=1

Kijj

)
Pj =

n∑
j=1

( n∑
i=1

Aij

)
Pj =

n∑
j=1

A∗
jPj

=
n∑

i=1

Pi

n∑
j=1

A∗
jPj =

n∑
i=1

n∑
j=1

n∑
k=1

A∗
ijkPkPj =

n∑
j=1

( n∑
i=1

A∗
ijj

)
Pj .

It implies that σA = [A∗
ijj ]i,j=1,n = [Aij ]i,j=1,n. Thus, Aij = A∗

ijj , (i, j = 1, . . . , n).

Sufficiency. Suppose that A∗
ijj = Aij , i, j = 1, . . . , n. Set A =

n∑
j=1

A∗
jPj . We have

A =
n∑

i=1

n∑
j=1

PiA
∗
jPj

n∑
i=1

n∑
j=1

n∑
k=1

A∗
ijkPkPj =

n∑
i=1

n∑
j=1

A∗
ijjPj

=
n∑

i=1

n∑
j=1

AijPj =
n∑

j=1

( n∑
i=1

Aij

)
Pj .

Thus, [Aij ]i,j=1,n is the symbol of A. The theorem is proved.

PROOF OF THEOREM 2.1.

Necessity. Suppose that MWM = M . By Corollary 2.1,

σM = δ(M) = δ(MWM) = δ(M)δ(W )δ(M) = σMσW σM .

Moreover, if M2W = M, then

σM = δ(M) = δ(M2W ) = δ(M)δ(M)δ(W ) = σ2
MσM .

Sufficiency. Suppose that σM is the symbol of M , and σM is GI in [[σ]]. There exists
σW := [Wkl]k,l=1,n ∈ [[σ]] such that σMσW σM = σM . By Corollary 2.1, we have

M = δ−1(σM ) = δ−1(σMσW σM ) = δ−1(σM )δ−1(σW )δ−1(σM ) = MWM.

Moreover, if σ2
MσW = σM , then

M = δ−1(σM ) = δ−1(σ2
MσW ) = δ−1(σM )δ−1(σM )δ−1(σW ) = M2W.

Theorem 2.1 is proved.
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2.2 Algebra generated by the nilpotent operators Let
{
Qi

k

}i=0,ri−1

k=1,n
be the N (=

r1 + r2 + r3 + · · · + rn) operators in L0(X) satisfying the following condition⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

QiQj = δijQ
2
j ,

Qri

i = 0, (if ri > 1),
Q0

i Q
0
j = δijQ

0
j ,

n∑
j=1

Q0
j = I

(2.8)

(note that the Q0
j denotes the element in L0(X), not the power of zero-order of Qj , j =

1, . . . , n, see [27, p. 65]). Assume that the system
{
Qi

k

}i=0,ri−1

k=1,n
are independent on l(X).

We now set

X̂ =

{
A =

n∑
k=1

rk−1∑
i=0

AkiQ
i
k : Aki ∈ l(X)

}
.(2.9)

Roughly speaking, X̂ is generated by {Qi
k}i=0,rk−1

k=1,n
with respect to l(X). Suppose that for

any T ∈ l(X) and for k = 1, . . . , n, j = 0, 1, . . . , rk − 1 there exist a unique system of
operators {T (m,µ)

ki }µ=0,rm−1

m=1,n
∈ l(X) such that

Qi
kT =

n∑
m=1

rm−1∑
µ=0

T
(m,µ)
ki Qµ

m.(2.10)

By this assumption, if T =
n∑

k=1

rk−1∑
j=0

TkjQ
j
k ∈ l(X), then there exist T

(m,µ)
kilj ∈ X̂ such that

Qi
kTlj =

n∑
m=1

rm−1∑
µ=0

T
(m,µ)
kilj Qµ

m. Put T̂
(k,l)
i,ν =

ν∑
j=0

T
(l,ν−j)
kilj , k, l = 1, . . . , n; i = 0, 1, . . . , rk −

1; ν = 0, 1, . . . , rl − 1. Write

T̂ (k,l) =
[
T̂

(k,l)
i,ν

]ν=0,rl−1

i=0,rk−1
, k, l = 1, . . . n.

It is clear that T̂ (k,l) is the matrix of order rk × rl whose elements belong to X̂. We denote

σT :=
[
T̂ (k,l)

]
k,l=1,n

=
[
T

(k,l)
i,ν

] l=1,... ,n

ν=0,rl−1
k=1,... ,n

i=0,rk−1
.

Obviously, σT is the square-matrix of order N whose elements belong to X̂. We call σT the
symbol of T. Let [[σ]] denote the set of symbols of all operators in X̂.

Theorem 2.3. T ∈ X̂ is GI, GRI-1 in X̂ if and only if so is σT in [[σ]], respectively.

We need the following lemmas.

Lemma 2.3. X̂ is an subalgebra of L0(X).
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Proof. Let A =
n∑

k=1

rk−1∑
i=0

AkiQ
i
k, B =

n∑
l=1

rl−1∑
j=0

BljQ
j
l . We have

AB =
n∑

k=1

rk−1∑
i=0

n∑
l=1

rl−1∑
j=0

AkiQ
i
kBljQ

j
l =

n∑
k=1

rk−1∑
i=0

n∑
l=1

rl−1∑
j=0

n∑
m=1

rm−1∑
µ=0

AkiB
(m,µ)
kilj Qµ

mQj
l

=
n∑

l=1

rl−1∑
j=0

( n∑
k=1

rk−1∑
i=0

rl−1∑
µ=0

AkiB
(l,µ)
kilj

)
Qj

l .

Hence, AB ∈ X̂. The lemma is proved.

Lemma 2.4. Let T =
n∑

k=1

rk−1∑
j=0

TkjQ
j
k, and let σT =

[
T

(k,l)
i,ν

]l=1,2,... ,n
ν=0,rl−1

k=1,2,... ,n
i=0,rk−1

be the symbol of

T. Then T can be represented of the form

T =
n∑

k=1

rk−1∑
µ=0

( n∑
j=1

T̂
(j,k)
0,µ

)
Qµ

k .

Proof. We have

T =
n∑

k=1

rk−1∑
i=0

TkiQ
i
k =

n∑
j=1

n∑
k=1

rk−1∑
i=0

Q0
jTkiQ

i
k =

n∑
j=1

n∑
k=1

rk−1∑
i=0

n∑
l=1

rl−1∑
s=0

T
(l,s)
j0ki Qs

l Q
i
k

=
n∑

j=1

n∑
k=1

rk−1∑
i=0

rk−1∑
s=0

T
(k,s)
j0ki Qs+i

k =
n∑

k=1

rk−1∑
µ=0

n∑
j=1

( µ∑
i=0

T
(k,µ−i)
j0ki

)
Qµ

k

=
n∑

k=1

rk−1∑
µ=0

n∑
j=1

T̂
(j,k)
0,µ Qµ

k .

The lemma is proved.

Let M =

[
M

(k,l)
i,ν

]l=1,2,... ,n
ν=0,rl−1

k=1,2,... ,n
i=0,rk−1

be the square-matrix of order N whose elements belong to X̂.

Put M∗
lj =

n∑
i=1

M
(i,l)
0,j . Suppose that

Qi
kM∗

lj =
n∑

m=1

rm−1∑
µ=0

(M∗)(m,µ)
kilj Qµ

m, (̂M∗)
(k,l)

i,ν =
ν∑

j=0

(M∗)(l,ν−j)
kilj .

Theorem 2.4. M is the symbol of T ∈ X̂ if and only if (̂M∗)
(k,l)

i,ν = M
(k,l)
i,ν , k, l =

1, . . . , n; i = 0, 1, . . . , rk − 1; ν = 0, 1, . . . , rl − 1.

Proof. Necessity. Suppose that M is the symbol of T ∈ X. By Lemma 2.4,

T =
n∑

l=1

rl−1∑
j=0

( n∑
i=0

M
(i,l)
0,j

)
Qj

l =
n∑

l=1

rl−1∑
j=0

M∗
ljQ

j
l .
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Then σT =

[
(̂M∗)

(k,l)

i,ν

]l=1,2,... ,n
ν=0,rl−1

k=1,2,... ,n
i=0,rk−1

. Hence, (̂M∗)
(k,l)

i,ν = M
(k,l)
i,ν , k, l = 1, . . . , n; i = 0, 1, . . . , rk−

1; ν = 0, 1, . . . , rl − 1.

Sufficiency. Consider T =
n∑

l=1

rl−1∑
j=0

M∗
ljQ

j
l . We then have

σT =

[
(̂M∗)

(k,l)

i,ν

]l=1,2,... ,n
ν=0,rl−1

k=1,2... ,n
i=0,rk−1

.

As (̂M∗)
(k,l)

i,ν = M
(k,l)
i,ν , k, l = 1, . . . , n; i = 0, 1, . . . , rk − 1; ν = 0, 1, . . . , rl − 1, M is the

symbol of T. The theorem is proved.

Lemma 2.5. [[σ]] has an algebraic structure.

Proof. It is sufficient to prove that σAσB = σAB for any A,B ∈ X̂. Let us first prove
the following identities for the basic elements Q0

p, Qp and an arbitray element A ∈ l(X).
Namely, we shall prove two identities:

σAσQp = σAQp , p = 1, . . . , n.(2.11)
σAσQ0

p
= σAQ0

p
, p = 1, . . . , n.(2.12)

Proof of (2.11). We determine the symbols of three elements AQp, A,Qp. We have

AQp =
n∑

l=1

rl−1∑
j=0

δlpδj1AQj
l , Qi

k(δlpδj1A) =
n∑

m=1

rm−1∑
µ=0

δlpδj1A
(m,µ)
ki Qµ

m,

(̂AQp)
(k,l)

i,ν =
ν∑

j=0

δlpδj1A
(l,ν−j)
ki = δlpA

(l,ν−1)
ki .

where we admit A
(l,0−1)
ki = 0. Hence, σAQp =

[
δlpA

(l,ν−1)
ki

]l=1,2,...,n
ν=0,rl−1

k=1,2,...,n
i=0,rk−1

. Similarly,

A =
n∑

l=1

rl−1∑
j=0

δj0AQj
l , Qi

k(δj0A) =
n∑

m=1

rm−1∑
µ=0

δj0A
(m,µ)
ki Qµ

m,

Â
(k,l)
i,ν =

ν∑
j=0

δj0A
(l,ν−1)
ki = A

(l,ν)
ki .

We then have σA =

[
A

(l,ν)
ki

]l=1,2,...,n
ν=0,rl−1

k=1,2,...,n
i=0,rk−1

. Finally,

Qp =
n∑

l=1

rl−1∑
j=0

δlpδj1Q
j
l , Qi

k(δlpδj1) =
n∑

m=1

rl−1∑
µ=0

δlpδj1δmkδµiQ
µ
m

(̂Qp)
(k,l)

i,ν =
ν∑

j=0

δlpδj1δlkδ(ν−j)i = δlpδlk

ν∑
j=0

δj1δ(ν−j)i = δlpδlkδ(ν−1)i,
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where we admit δ(0−1)i ≡ δ−1i = 0. Thus, σQp =

[
δlpδlkδ(ν−1)i

] l=1,... ,n
ν=0,rl−1

k=1,... ,n
i=0,rk−1

. By the role of

multiplication of two matrices, and by

n∑
m=1

rm−1∑
µ=0

A
(m,µ)
ki δlpδlmδ(ν−1)µ = δlpA

(l,ν−1)
ki ,

we have σAσQp = σAQp .
Proof of (2.12). Replacing δj1 with δj0 in above identities, we get

σAQ0
p

=

[
δlpA

(l,ν)
ki

]l=1,2,... ,n
ν=0,rl−1

k=1,2,... ,n
i=0,rk−1

, σQ0
p

=

[
δlpδlkδνi

] l=1,... ,n
ν=0,rl−1

k=1,... ,n
i=0,rk−1

.

Since
n∑

m=1

rm−1∑
µ=0

A
(m,µ)
ki δlpδlmδνµ = δlpA

(l,ν)
ki , we get σAQ0

p
= σAσQ0

p
.

The identity σAσB = σAB for every A,B ∈ X̂ now is an immediate consequence of
(2.9), (2.11), (2.12). The lemma is proved.

Corollary 2.2. Algebra X̂ is isomorphic to the algebra [[σ]].

Proof. By the natural multiplication of matrices and Lemma 2.5, we have σAσB = σAB ∈
[[σ]]. Consider the map

δ :X̂−−−−−−−−−→[[σ]]
A−−−−−−−−−→σA,

where σA is the symbol of A ∈ X̂.
Obviously, δ is the linear map from X̂ onto [[σ]], and δ(A) = 0 if and only if A = 0.

Moreover, it is clearly that δ(AB) = δ(A)δ(B) for every A,B ∈ X̂.

PROOF OF THEOREM 2.3

The proof follows immediately from Lemma 2.5. Indeed, since the map

δ :X̂−−−−−−−−−→[[σ]]
A−−−−−−−−−→σA

is the morphism, we have

1. TMT = T if and only if σT σMσT = σT .

2. T 2M = T if and only if σ2
T σM = σT .

Theorem 2.3 is proved.
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