THE ABU-MUHANNA CONJECTURE ON SUPPORT POINTS

K. T. HALLENBECK

Received October 30, 2009

ABSTRACT. We determine support points of the subordination family of an arbitrary bounded analyltic function, thereby proving the Abu-Muhanna conjecture [J. London Math. Soc. (2), 29 (1984)].

1 Introduction In 1984, Abu-Muhanna conjectured that the support points of a subordination family of any bounded analyltic function F are exactly all compositions of Fwith the finite Blashke products that are null at zero [1]. We shall prove this conjecture exploiting the membership of f(z) = z among the family of convex mappings, as well as the fact that any bounded function, after a proper normalization, can be considered an element of the subordination family s(z).

The main result, from which the Abu-Muhanna conjecture will follow, shall deal with the support points of the subordination family s(F), where F belongs to the closed convex hull of the family of convex univalent mappings

We begin with an overview of definitions and known results. As usual, let $\Delta = \{z \in C : |z| < 1\}$. $A(\Delta)$ denotes the linear space of functions analytic in Δ with the topology of uniform convergence on compact sets. $A(\Delta)$ is locally convex. Let $A(\Delta)^*$ be the space of continuous linear functionals on $A(\Delta)$.

The Krein-Milman theorem holds for every compact subset F of $A(\Delta)$. If HF denotes the closed convex hull of F and EHF denotes the set of its extreme points then HF = HEHF. Furthermore, $F \supset EHF$ and for every functional $J \in A(\Delta)^*$

$$\max_{\substack{f \in F}} \operatorname{Re}J(f) = \max_{\substack{f \in EHF}} \operatorname{Re}J(f).$$

Let B_0 denote the class of functions $\varphi \in A(\Delta)$ such that $|\varphi| < 1$, $z \in \Delta$, and $\varphi(0) = 0$. Let $f, F \in A(\Delta)$. Then f is said to be subordinate to F if and only if there exists a function $\varphi \in B_0$ such that $f = F \circ \varphi$. The class of functions subordinate to F is denoted by s(F) [9].

A function f is called a support point of a compact subset F of $A(\Delta)$ if $f \in A(\Delta)$ and there exists a functional $J \in A(\Delta)^*$ such that $\operatorname{Re} J(f) = \max\{\operatorname{Re} J(g) : g \in F\}$ and $\operatorname{Re} J$ is non-constant on F. The set of support points of F is denoted by supp F. Each $J \in A(\Delta)^*$ is uniquely represented by a sequence of complex numbers $\{b_n\}_{n=0}^{\infty}$ such that $\limsup_{n\to\infty} n\sqrt{|b_n|} < 1$ and $J(f) = \sum_{n=0}^{\infty} b_n a_n$, where $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is analytic in Δ [11, p.36].

The set supp B_0 consists of all finite Blashke products in B_0 [3].

²⁰⁰⁰ Mathematics Subject Classification. Primary 30D55, 30D50.

Key words and phrases. analytic function, continuous linear functional, H^P classes, support point, extreme point.

Abu-Muhanna proved in [1] that supp $s(F) \subset \{F \circ \varphi : \varphi \in \text{supp}B_0\}$ for any non-constant $F, F \in A(\Delta)$. There are a few known cases in which equality is attained. For example,

(1)
$$\operatorname{supp} s(F) = \{F \circ \varphi : \varphi \in \operatorname{supp} B_0\}$$

for $F \in K$, where K denotes the class of univalent convex mappings on Δ with F(0) = F'(0) - 1 = 0 [8]. The equality holds also for any non-constant function F analytic in the closed unit disc [1].

The class of bounded analytic functions is denoted by H^{∞} and

$$||f||^{\infty} = \lim_{r \to 1} \max_{0 \le \theta \le 2\pi} |f(re^{i\theta})|.$$

(See [9].)

2 Support points of the subordination families with majorants in the closed convex hull of the family of convex univalent mappings.

Let $s(K) = \{f \in A(\Delta) : \exists_{F \in K} f \in s(F)\}$. This is to say, each f in s(K) is subordinate to a univalent convex mapping on Δ , with the standard normalization at 0.

The set of extreme points of the closed convex hull EHs(K) of s(K) consists of the functions yz/(1-xz), where |x| = |y| = 1 [7]. We use this fact to prove that (1) occurs whenever $F \in Hs(K)$.

Theorem 1. If $F \in Hs(K)$ then supp $s(F) = \{F \circ \varphi \in \text{supp}B_0\}$.

Proof. We need only prove that if $\varphi \in \text{supp } B_0$ then $F \circ \varphi \in \text{supp } s(F)$. Let $\overline{\varphi}(z) = \overline{\varphi(\overline{z})}$ and let $J \in [A(\Delta)]^*$ be given by coefficients of $\overline{\varphi}$. Then

$$J(f) = \frac{1}{2\pi} \int_0^{2\pi} f(re^{i\theta})\bar{\varphi}\left(\frac{e^{-i\theta}}{r}\right) d\theta$$

for r < 1 sufficiently close to 1. It is easy to see that

$$J(\varphi) = \frac{1}{2\pi} \int_0^{2\pi} \varphi(e^{i\theta}) \overline{\varphi(e^{i\theta})} d\theta = 1.$$

Lemma 7.18 in [6] implies that $J(\varphi^n) = 0$ for n = 2, 3, ...

Hence, $J(F \circ \varphi) = J(\varphi) = 1$. We also have

$$\max_{f \in s(F)} \operatorname{Re}J(f) \le \max_{f \in s(K)} \operatorname{Re}J(f) \le \max_{f \in Hs(K)} \operatorname{Re}J(f) =$$
$$\max_{f \in EHs(K)} \operatorname{Re}J(f) = \max_{x,y \in \partial\Delta} \operatorname{Re}J\left(\frac{yz}{1-xz}\right).$$

Assume now that $\psi \in A(\overline{\Delta})$. Then, for r < 1 and sufficiently close to 1 and for $x \in \partial \Delta$,

$$\psi(x) = \frac{1}{2\pi i} \int_{|\xi|=1/r} \frac{\psi(\xi)}{\xi - x} d\xi = \frac{1}{2\pi i} \int_{2\pi}^{0} \frac{\psi\left(\frac{e^{-i\theta}}{r}\right)}{\frac{e^{-i\theta}}{r} - x} \left(\frac{-ie^{-i\theta}}{r}\right) d\theta$$
$$= \frac{1}{2\pi} \int_{0}^{2\pi} \frac{\psi\left(\frac{e^{-i\theta}}{r}\right) \frac{e^{-i\theta}}{r}}{\frac{e^{-i\theta}}{r} - x} d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{\psi\left(\frac{e^{-i\theta}}{r}\right)}{1 - xre^{i\theta}} d\theta.$$

Let $\psi(z) = \frac{\bar{\varphi}(z)}{z}$. Since $\bar{\varphi}(0) = 0$ and $\bar{\varphi} \in A(\bar{\Delta})$ also $\psi \in A(\bar{\Delta})$. Hence,

$$\begin{split} J\bigg(\frac{yz}{1-xz}\bigg) &= \frac{1}{2\pi} \int_0^{2\pi} \frac{yre^{i\theta}}{1-xre^{i\theta}} \bar{\varphi}\bigg(\frac{e^{-i\theta}}{r}\bigg) d\theta = y\frac{1}{2\pi} \int_0^{2\pi} \frac{re^{i\theta}\bar{\varphi}\bigg(\frac{e^{-i\theta}}{r}\bigg)}{1-xre^{i\theta}} d\theta \\ &= y\frac{1}{2\pi} \int_0^{2\pi} \frac{\bigg(\frac{e^{-i\theta}}{r}\bigg)}{1-xre^{i\theta}} d\theta = y\psi(x) = y\frac{\bar{\varphi}(x)}{x}. \end{split}$$

It follows that $\max_{x,y\in\partial\Delta} \operatorname{Re}J(\frac{yz}{1-xz}) = \max_{x,y\in\partial\Delta} \operatorname{Re}(y\frac{\bar{\varphi}(x)}{x}) \le \max_{x,y\in\partial\Delta} \left|\frac{y\bar{\varphi}(x)}{x}\right| = 1.$ Therefore, $\max_{f\in s(F)} \operatorname{Re}J(f) \le 1.$

Finally, since $F \circ \varphi^2 \in s(F)$ and $J(F \circ \varphi^2) = J(\varphi^2) = 0$,

Re $J \neq \text{const} \text{ on } s(F)$. Hence $F \circ \varphi \in \text{supp } s(F)$.

Theorem 2. If F is a bounded function, non-constant and analytic in Δ , then supp $s(F) = \{F \circ \varphi : \varphi \in \text{supp } B_0\}.$

Proof. Let $F \in H^{\infty}$, and define G in Δ as follows:

$$G(z) = \frac{F(z) - F(0)}{\|F\|^{\infty}}$$

Note that $G \in s(z)$.

Suppose now that $f \in \text{supp } s(F)$. There exists $\psi \in B_0$ and a functional $J \in A(\Delta)^*$, with $\text{Re}J \neq \text{const}$ on s(F), such that $f = F \circ \psi$ and

$$\forall \varphi \in B_0 \quad \operatorname{Re} J(F \circ \varphi) \leq \operatorname{Re} J(F \circ \psi).$$

We shall show that $g = G \circ \psi$ is a support point of s(G). Indeed,

$$\operatorname{Re} J(g) = \operatorname{Re} J(G \circ \psi) = \operatorname{Re} J\left(\frac{F(\psi(z)) - F(0)}{\|F\|^{\infty}}\right)$$
$$= \frac{1}{\|F\|^{\infty}} [\operatorname{Re} J(F(\psi(z) - \operatorname{Re} J(F(0)))] \ge \frac{1}{\|F\|^{\infty}} [\operatorname{Re} J(F(\varphi(z) - \operatorname{Re} J(F(0)))] \quad \forall \varphi \in B_0$$

Since the latter equals Re $J(G \circ \varphi)$, we have

$$\forall \varphi \in B_0 \quad \operatorname{Re} J(g) \ge \operatorname{Re} J(G \circ \varphi).$$

Hence, $g \in \text{supp } s(G)$. Since $G \in s(z)$ and $z \in K$, it follows that $G \in Hs(K)$ and, by Theorem 1, supp $s(G) = \{G \circ \varphi : \varphi \in \text{supp } B_0\}$.

Therefore, $\psi \in \text{supp } (B_0)$.

Conversely, if $\psi \in \text{supp}B_0$, then, by Theorem 1, $g = G \circ \psi \in \text{supp } s(G)$. Hence, there is a functional $J \in A(\Delta)^*$, with Re $J \neq \text{const}$ on s(G), such that

$$\forall \varphi \in B_0 \quad \operatorname{Re} J(G \circ \varphi) \leq \operatorname{Re} J(g).$$

Furthermore,

$$\operatorname{Re} J(F \circ \psi) = \|F\|^{\infty} \operatorname{Re} J(G \circ \psi) + \operatorname{Re} J(F(0)) \ge \|F\|^{\infty} \operatorname{Re} J(G \circ \varphi) + \operatorname{Re} J(F(0)) \quad \forall \varphi \in B_0$$

Since $\|F\|^{\infty} \operatorname{Re} J(G \circ \varphi) + \operatorname{Re} J(F(0)) = \operatorname{Re} J(F \circ \varphi)$, we have shown that $F \circ \psi \in \operatorname{supp} s(F)$

References

- Yusuf Abu-Muhanna, Variability regions and support points of subordinate families, J. London Math. Soc. (2), 29 (1984), 477-484.
- [2] D.P. Bellamy and Katarzyna Tkaczynska, Extreme points of some classes of analytic function with positive real part and a prescribed set of coefficients, Complex Variables, vol. 17 (1991), 49-55.
- [3] P. Cochrane and T. H. MacGregor, Frechet differentiable functionals and support points for families of analytic functions, Trans. Amer. Math. Soc. 236 (1978), 75-92.
- [4] D.J. Hallenbeck and K.T. Hallenbeck, Extreme points and support points of subordination families, Journal of Mathematical Analysis and Applications 251 (2000), 157-166.
- [5] D.J. Hallenbeck and K.T. Hallenbeck, Classes of analytic functions subordinate to convex functions and extreme points, Journal of Mathematical Analysis and Applications 282 (2003), 792-800.
- [6] D. J. Hallenbeck and A. E. Livingston, Applications of extreme point theory to classes of multivalent functions, Trans. Amer. Math. Soc. 221 (1976), 339-359.
- D. J. Hallenbeck and T. H. MacGregor, Subordination and extreme point theory, Pacific Math. J. 50 (1974), 455-468.
- [8] D. J. Hallenbeck and T. H. MacGregor, Support points of families of analytic functions described by subordination, Trans. Amer. Math. Soc. 278 (1983), 523-546.
- [9] D. J. Hallenbeck and T. H. MacGregor, "Linear Problems and Convexity Techniques in Geometric Function Theory, Monographs and Studies in Mathematics" Vol. 22, Pitman, New York, 1984
- [10] D. J. Hallenbeck and Katarzyna Tkaczynska, Extreme points and support points of subordination families with p-valent majorants, Annales Polonici Mathematici L (1989), 93-115.
- [11] G. Schober, Univalent functions selected topics, Lecture Notes in Math., vol. 478, Springer-Verlag, Berlin, Heidelberg, New York, 1975.
- [12] Katarzyna Tkaczynska, On extreme points of subordination families with a convex majorant, Journal of Mathematical Analysis and Applications, vol. 145, no. 1 (1990), 216-231.
- [13] Katarzyna Tkaczynska, Extreme points of classes of analytic functions with positive real part and restricted second coefficient, Mathematica Japonica, vol. 36, no. 2 (1991), 221-223.
- [14] Katarzyna Tkaczynska-Hallenbeck, On properties of extreme points of subordination families with a convex majorant, Mathematica Japonica, vol. 41, no. 3 (1995), 537-543.

DEPARTMENT OF MATHEMATICS WIDENER UNIVERSITY CHESTER, PA 19013 hall@maths.widener.edu