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THE ABU-MUHANNA CONJECTURE ON SUPPORT POINTS
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Abstract. We determine support points of the subordination family of an arbitrary
bounded analyltic function, thereby proving the Abu-Muhanna conjecture [J. London
Math. Soc. (2), 29 (1984)].

1 Introduction In 1984, Abu-Muhanna conjectured that the support points of a sub-
ordination family of any bounded analyltic function F are exactly all compositions of F
with the finite Blashke products that are null at zero [1]. We shall prove this conjecture
exploiting the membership of f(z) = z among the family of convex mappings, as well as the
fact that any bounded function, after a proper normalization, can be considered an element
of the subordination family s(z).

The main result, from which the Abu-Muhanna conjecture will follow, shall deal with
the support points of the subordination family s(F ), where F belongs to the closed convex
hull of the family of convex univalent mappings

We begin with an overview of definitions and known results. As usual, let ∆ = {z ∈
C : |z| < 1}. A(∆) denotes the linear space of functions analytic in ∆ with the topology of
uniform convergence on compact sets. A(∆) is locally convex. Let A(∆)∗ be the space of
continuous linear functionals on A(∆).

The Krein-Milman theorem holds for every compact subset F of A(∆). IfHF denotes the
closed convex hull of F and EHF denotes the set of its extreme points then HF = HEHF.
Furthermore, F ⊃ EHF and for every functional J ∈ A(∆)∗

maxReJ(f) = maxReJ(f).
f ∈ F f ∈ EHF

Let B0 denote the class of functions ϕ ∈ A(∆) such that |ϕ| < 1, z ∈ ∆, and ϕ(0) = 0.
Let f, F ∈ A(∆). Then f is said to be subordinate to F if and only if there exists a function
ϕ ∈ B0 such that f = F ◦ϕ. The class of functions subordinate to F is denoted by s(F ) [9].

A function f is called a support point of a compact subset F of A(∆) if f ∈ A(∆)
and there exists a functional J ∈ A(∆)∗ such that Re J(f) = max{ReJ(g) : g ∈ F} and
ReJ is non-constant on F. The set of support points of F is denoted by supp F. Each
J ∈ A(∆)∗ is uniquely represented by a sequence of complex numbers {bn}∞n=0 such that
lim supn→∞ n

√|bn| < 1 and J(f) =
∑∞

n=0 bnan, where f(z) =
∑∞

n=0 anz
n is analytic in ∆

[11, p.36].

The set supp B0 consists of all finite Blashke products in B0 [3].
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Abu-Muhanna proved in [1] that supp s(F ) ⊂ {F ◦ϕ : ϕ ∈ suppB0} for any non-constant
F, F ∈ A(∆). There are a few known cases in which equality is attained. For example,

(1) supp s(F ) = {F ◦ ϕ : ϕ ∈ supp B0}
for F ∈ K, where K denotes the class of univalent convex mappings on ∆ with F (0) =

F ′(0) − 1 = 0 [8]. The equality holds also for any non-constant function F analytic in the
closed unit disc [1].

The class of bounded analytic functions is denoted by H∞ and

‖f‖∞ = lim
r→1

max
0≤θ≤2π

|f(reiθ)|.

(See [9].)

2 Support points of the subordination families with majorants in the closed
convex hull of the family of convex univalent mappings.

Let s(K) = {f ∈ A(∆) : ∃F∈Kf ∈ s(F )}. This is to say, each f in s(K) is subordinate
to a univalent convex mapping on ∆, with the standard normalization at 0.

The set of extreme points of the closed convex hull EHs(K) of s(K) consists of the
functions yz/(1 − xz), where |x| = |y| = 1 [7]. We use this fact to prove that (1) occurs
whenever F ∈ Hs(K).

Theorem 1.If F ∈ Hs(K) then supp s(F ) = {F ◦ ϕ ∈ suppB0}.
Proof. We need only prove that if ϕ ∈ supp B0 then F ◦ ϕ ∈ supp s(F ). Let ϕ̄(z) = ϕ(z̄)
and let J ∈ [A(∆)]∗ be given by coefficients of ϕ̄. Then

J(f) =
1
2π

∫ 2π

0

f(reiθ)ϕ̄
(
e−iθ

r

)
dθ

for r < 1 sufficiently close to 1. It is easy to see that

J(ϕ) =
1
2π

∫ 2π

0

ϕ(eiθ)ϕ(eiθ)dθ = 1.

Lemma 7.18 in [6] implies that J(ϕn) = 0 for n = 2, 3, ....

Hence, J(F ◦ ϕ) = J(ϕ) = 1. We also have

max
f∈s(F )

ReJ(f) ≤ max
f∈s(K)

ReJ(f) ≤ max
f∈Hs(K)

ReJ(f) =

max
f∈EHs(K)

ReJ(f) = max
x,y∈∂∆

ReJ
(

yz

1 − xz

)
.

Assume now that ψ ∈ A(∆̄). Then, for r < 1 and sufficiently close to 1 and for x ∈ ∂∆,

ψ(x) =
1

2πi

∫
|ξ|=1/r

ψ(ξ)
ξ − x

dξ =
1

2πi

∫ 0

2π

ψ

(
e−iθ

r

)

e−iθ

r − x

(−ie−iθ

r

)
dθ

=
1
2π

∫ 2π

0

ψ

(
e−iθ

r

)
e−iθ

r

e−iθ

r − x
dθ =

1
2π

∫ 2π

0

ψ

(
e−iθ

r

)

1 − xreiθ
dθ.
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Let ψ(z) = ϕ̄(z)
z . Since ϕ̄(0) = 0 and ϕ̄ ∈ A(∆̄) also ψ ∈ A(∆̄).

Hence,

J

(
yz

1 − xz

)
=

1
2π

∫ 2π

0

yreiθ

1 − xreiθ
ϕ̄

(
e−iθ

r

)
dθ = y

1
2π

∫ 2π

0

reiθϕ̄

(
e−iθ

r

)

1 − xreiθ
dθ

= y
1
2π

∫ 2π

0

(
e−iθ

r

)

1 − xreiθ
dθ = yψ(x) = y

ϕ̄(x)
x

.

It follows that maxx,y∈∂∆ ReJ( yz
1−xz ) = maxx,y∈∂∆ Re(y ϕ̄(x)

x ) ≤ maxx,y∈∂∆

∣∣∣∣yϕ̄(x)
x

∣∣∣∣= 1.

Therefore, maxf∈s(F ) ReJ(f) ≤ 1.
Finally, since F ◦ ϕ2 ∈ s(F ) and J(F ◦ ϕ2) = J(ϕ2) = 0,

ReJ �= const on s(F ). Hence F ◦ ϕ ∈ supp s(F ). �

Theorem 2. If F is a bounded function, non-constant and analytic in ∆, then supp s(F ) =
{F ◦ ϕ : ϕ ∈ supp B0}.
Proof. LetF ∈ H∞, and define G in ∆ as follows:

G(z) =
F (z) − F (0)

‖F‖∞
Note that G ∈ s(z).

Suppose now that f ∈ supp s(F ). There exists ψ ∈ B0 and a functional J ∈ A(∆)∗,
with ReJ �= const on s(F ), such that f = F ◦ ψ and

∀ϕ ∈ B0 ReJ(F ◦ ϕ) ≤ ReJ(F ◦ ψ).

We shall show that g = G ◦ ψ is a support point of s(G).
Indeed,

ReJ(g) = ReJ(G ◦ ψ) = ReJ
(
F (ψ(z)) − F (0)

‖F‖∞
)

=
1

‖F‖∞ [ReJ(F (ψ(z) − ReJ(F (0))] ≥ 1
‖F‖∞ [ReJ(F (ϕ(z) − ReJ(F (0))] ∀ϕ ∈ B0

Since the latter equals Re J(G ◦ ϕ), we have

∀ϕ ∈ B0 ReJ(g) ≥ ReJ(G ◦ ϕ).

Hence, g ∈ supp s(G). Since G ∈ s(z) and z ∈ K, it follows that G ∈ Hs(K) and, by
Theorem 1, supp s(G) = {G ◦ ϕ : ϕ ∈ supp B0}.

Therefore, ψ ∈ supp (B0).

Conversely, if ψ ∈ suppB0, then, by Theorem 1, g = G ◦ ψ ∈ supp s(G). Hence, there is
a functional J ∈ A(∆)∗, with Re J �= const on s(G), such that

∀ϕ ∈ B0 ReJ(G ◦ ϕ) ≤ ReJ(g).

Furthermore,



132 K. T. HALLENBECK

ReJ(F ◦ ψ) = ‖F‖∞ReJ(G ◦ ψ) + ReJ(F (0)) ≥ ‖F‖∞ReJ(G ◦ ϕ) + ReJ(F (0)) ∀ϕ ∈ B0

Since ‖F‖∞ReJ(G◦ϕ)+ReJ(F (0)) = ReJ(F ◦ϕ), we have shown that F ◦ψ ∈ supp s(F )
�
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