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A TRINARY RELATION ARISING FROM A MATCHED PAIR OF
R-DISCRETE GROUPOIDS
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Abstract. We introduce a notion of a matched pair of r-discrete groupoids and that of a
trinary relation associated with a matched pair. We construct three C∗-algebras from a trinary
relation and study properties of these algebras. The above results are applied to an action of a
countable discrete semidirect product group on a topological space with an invariant measure.

1 Introduction A matched pair of groups has been studied in the theory of quantum groups
(cf, [4], [5]) and in the theory of operator algebras (cf. [2]). The notion of a matched pair of groups
is a generalization of that of semidirect product groups. It is natural to study a matched pair of
groupoids as a generalization of an action of a semidirect product group on a space. In this paper,
we introduce a notion of a matched pair of r-discrete groupoids, which is a generalization of that
of an action of a discrete semidirect product group. A matched pair of r-discrete groupoid is an
r-discrete groupoid G and open and closed subgroupoids G1 and G2 which satisfy G = G1G2,
G1 ∩G2 = G(0) and other conditions.

On the other hand, a notion of multiplicative unitaries was introduced by S. Baaj and G.
Skandalis in [1] and a notion of pseudo-multiplicative unitaries was introduced by J. M. Vallin in [14]
(see also [3]). The author has studied pseudo-multiplicative unitaries in the setting of Hilbert C∗-
modules (cf. [6, 7, 8, 9]). Recently C∗-pseudo-multiplicative unitaries have been studied intensely
by T. Timmermann (cf. [13]). A notion of pseudo-multiplicative unitaries can be converted
naturally to a notion of maps on trinary relations satisfying pentagonal equations. The author has
studied a sort of these maps in [10]. In this paper, we introduce a trinary relation T and construct
a map W : T ∗q T −→ T ∗r T that satisfies a pentagonal equation. We use W to construct
C∗-algebras associated with a matched pair (G1, G2) of r-discrete groupoids. We construct a
C∗-algebra A � C∗

r (G) and C∗-subalgebra Ai � C∗
r (Gi) (i = 1, 2) such that A = spanA1A2 =

spanA2A1 and A1 ∩A2 � C0(G(0)).
The paper is organized as follows: In Section 2, we introduce a notion of a matched pair

(G1, G2) of r-discrete groupoids. In Section 3, we construct a trinary relation T associated with
(G1, G2) and construct C∗-algebras A1 and A2 using T when a matched pair has an invariant
system. In Section 4, we show that Ai is isomorphic to the reduced groupoid C∗-algebra C∗

r (Gi)
(i = 1, 2) when the induced action is preserving. In Section 5, we construct a map π of Cc(T ) to
B(H) for some Hilbert space H . Let A be the closed linear span of A1A2. Then we show that A is
also the closed linear span of A2A1 and it is the closure of π(Cc(T )). In Section 6, we introduce a
∗-algebraic structure on Cc(T ) using π and show that A is isomorphic to C∗

r (G). In Section 7, we
construct a conditional expectation Ei : A −→ Ai for i = 1, 2 and show that A1 ∩A2 is isomorphic
to C0(G(0)). In Section 8, we apply the above results to an action of a countable discrete semidirect
product group on a space with an invariant measure.
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2 A matched pair of groupoids Let G be a second countable locally compact Hausdorff r-
discrete groupoid. We denote by rG (resp. sG) the range (resp. source) map of G, by G(0) the unit
space of G and by G(2) the set of composable pairs. For details of groupoids, we refer the reader
to [11] and [12].

Definition 2.1. Let G1 and G2 be clopen subgroupoids of G. A pair (G1, G2) is called a matched
pair if G1G2 = G, G1 ∩G2 = G(0) and there exist continuous maps p1 : G→ G1 and p2 : G→ G2

such that g = p1(g)p2(g) for all g ∈ G.

Let (G1, G2) be a matched pair. For i = 1, 2, we have G(0)
i = G(0) and set Gi,x = s−1

G (x) ∩Gi

and Gx
i = r−1

G (x) ∩Gi for x ∈ G(0). Note that we have rG(g) = rG(p1(g)) and sG(g) = sG(p2(g))
for g ∈ G. For (g2, g1) ∈ G(2) ∩ (G2 ×G1), set g2 � g1 = p1(g2g1) and g2 � g1 = p2(g2g1).

Lemma 2.2. (1) For g2 ∈ G2, g1 ∈ G
sG(g2)
1 and h2 ∈ G2,rG(g2), the following equations hold:

g−1
2 � (g2 � g1) = g1, (g−1

2 h−1
2 ) � (h2 � (g2 � g1)) = g1.

(2) For g1 ∈ G1, g2 ∈ G2,rG(g1) and h1 ∈ G
sG(g1)
1 , the following equations hold:

(g2 � g1) � g−1
1 = g2, ((g2 � g1) � h1) � (h−1

1 g−1
1 ) = g2.

Proof. (1) Since we have g−1
2 p1(g2g1)p2(g2g1) = g−1

2 (g2g1) = g1, we have

p1(g−1
2 p1(g2g1)) = p1(g1p2(g2g1)−1) = g1.

Therefore the first statement of (1) follows.
Set g̃1 = g2 � g1. It follows from the above argument that we have g−1

2 g̃1 = g1p2(g2g1)−1. Since
we have

(g−1
2 h−1

2 )p1(h2g̃1)p2(h2g̃1) = g−1
2 g̃1 = g1p2(g2g1)−1,

we have
(g−1

2 h−1
2 )p1(h2g̃1) = g1p2(g2g1)−1p2(h2g̃1)−1.

Thus we have p1((g−1
2 h−1

2 )p1(h2g̃1)) = g1. Therefore the second statement of (1) follows.
We can prove the statements of (2) similarly.

The following proposition is an immediate consequence of the above lemma.

Proposition 2.3. (1) For every g2 ∈ G2, the map g1 ∈ G
sG(g2)
1 �→ g2 � g1 ∈ G

rG(g2)
1 is a bijection.

(2) For every g1 ∈ G1, the map g2 ∈ G2,rG(g1) �→ g2 � g1 ∈ G2,sG(g1) is a bijection.

3 A trinary relation associated with a matched pair Let (G1, G2) be a matched pair. Set
T = {(g1, g2) ∈ G1 ×G2; sG(g1) = sG(g2)}. Define maps q, r, s : T → G(0) by q(g1, g2) = rG(g1),
r(g1, g2) = rG(g2) and s(g1, g2) = sG(g1) = sG(g2) respectively. We denote by T ∗q T the fibered
product {(u, v) ∈ T 2; s(u) = q(v)}. Define the fibered product T ∗r T similarly. We define a
continuous map W : T ∗q T → T ∗r T by

W((g1, g2), (h1, h2)) = ((p1(g2h1), h2p2(g2h1)−1), (g1h1, p2(g2h1))

for ((g1, g2), (h1, h2)) ∈ T ∗q T . Then W is a homeomorphism whose inverse is given by

W−1((g1, g2), (h1, h2)) = ((h1p1(h−1
2 g−1

1 ), p2(h−1
2 g−1

1 )−1), (p1(h−1
2 g−1

1 )−1, g2h2))

for ((g1, g2), (h1, h2)) ∈ T ∗r T . We call (T ,W) a trinary relation associated with (G1, G2).
If W(u, v) = (u′, v′), then we have q(u) = q(v′), r(u) = q(u′), r(v) = r(u′) and s(v) = s(v′).

We denote by T ∗q T ∗q T the fibered product {(u, v, w) ∈ T 3; s(u) = q(v), s(v) = q(w)}. Define
the fibered products T ∗r T ∗q T , T ∗q T ∗r T and T ∗r T ∗r T similarly. We also denote by
(T × T ) ∗ T the fibered product {(u, v, w) ∈ T 3; s(u) = q(w), s(v) = r(w)}. Then we can define a
map W∗q I : T ∗q T ∗q T → T ∗r T ∗q T by (W∗q I)(u, v, w) = (W(u, v), w). Similarly we can define
the following maps; I ∗r W : T ∗r T ∗q T → T ∗q T ∗r T , W ∗r I : T ∗q T ∗r T → T ∗r T ∗r T and
I ∗q W : T ∗q T ∗q T → (T × T ) ∗ T . We can also define a map W(13) : (T × T ) ∗ T → T ∗r T ∗r T
by W(13)(u, v, w) = (v,W(u,w)).
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Theorem 3.1. The homeomorphism W satisfies the following pentagonal equation;

(W ∗r I)(I ∗r W)(W ∗q I) = W(13)(I ∗q W).(PE)

Proof. For (u, v, w) ∈ T ∗q T ∗q T , put

(W ∗r I)(I ∗r W)(W ∗q I)(u, v, w) = (u′, v′, w′)
W(13)(I ∗q W)(u, v, w) = (u′′, v′′, w′′).

If u = (f1, f2), v = (g1, g2), w = (h1, h2), the first coordinate u′1 of u′ is

p1(g2p2(f2g1)−1p1(p2(f2g1)h1))

and the first coordinate u′′1 of u′′ is p1(g2h1). We have

g2p2(f2g1)−1p1(p2(f2g1)h1) = g2h1p2(p2(f2g1)h1)−1,

p1(g2h1p2(p2(f2g1)h1)−1) = p1(g2h1).

Therefore we have u′1 = u′′1 . Similarly we have u′2 = u′′2 and conclude that u′ = u′′. Similarly we
have v′ = v′′ and w′ = w′′.

The following map κ plays a role of an involution on T .

Lemma 3.2. Define maps κ, κ1, κ2 : T → T by κ(g1, g2) = (g2 � g−1
1 , (g2 � g−1

1 )−1), κ1(g1, g2) =
(g−1

1 , g2�g
−1
1 ) and κ2(g1, g2) = ((g2�g−1

1 )−1, g−1
2 ) respectively. Then κ2, κ2

1 and κ2
2 are the identity

maps, in particular, κ, κ1 and κ2 are homeomorphisms.

Proof. Since we have, for i = 1, 2 and (g1, g2) ∈ T ,

pi((p1(g2g−1
1 )p2(g2g−1

1 ))−1) = pi(g1g−1
2 ),

we have κ2(g1, g2) = (g1, g2). It follows from Lemma 2.2 that κ2
1 and κ2

2 are the identity maps.

Let {λ̃x;x ∈ G(0)} be a right Haar system on G such that λ̃x is a counting measure on Gx for
every x ∈ G(0). For i = 1, 2, we denote by {λ̃i,x;x ∈ G(0)} the right Haar system on Gi which is
the restriction of {λ̃x} to Gi. We denote by Cc(T ) the set of complex valued continuous functions
on T with compact supports. Define a measure λx on T by

∫
T
ξ(u) dλx(u) =

∫∫
G1×G2

ξ(g1, g2) dλ̃1,x(g1)dλ̃2,x(g2)

for ξ ∈ Cc(T ). Note that the support of λx is Tx = s−1(x) and that the map x ∈ G(0) �→∫
T ξ(u) dλx(u) is continuous for every ξ ∈ Cc(T ). We say that {λx} is W-invariant if it satisfies

the following equation:
∫∫

T ∗qT
ξ(W(u, v)) dλq(v)(u)dλx(v) =

∫∫
T ∗rT

ξ(u, v) dλr(v)(u)dλx(v)

for every ξ ∈ Cc(T ∗r T ) and x ∈ G(0).
For ξ, η ∈ Cc(T ), define a product ξ ∗ η in Cc(T ) by

(ξ ∗ η)(v) =
∫
T

(ξ ⊗ η)(W−1(u, v))dλr(v)(u)

and define a product ξ • η in Cc(T ) by

(ξ • η)(v) =
∫
T

(ξ ⊗ η)(W(u, v))dλq(v)(u).
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Proposition 3.3. Suppose that {λx} is W-invariant. The above products are associative, that is,
(ξ ∗ η) ∗ ζ = ξ ∗ (η ∗ ζ) and (ξ • η) • ζ = ξ • (η • ζ) for ξ, η, ζ ∈ Cc(T ).

Proof. Set W−1(u, v) = (Ψ1(u, v),Ψ2(u, v)). Then we have, for w ∈ T ,

((ξ ∗ η) ∗ ζ)(w)

=
∫∫

(ξ ⊗ η ⊗ ζ)(W−1(u,Ψ1(v,w)),Ψ2(v,w)) dλq(v)(u)dλr(w)(v)

=
∫∫

(ξ ⊗ η ⊗ ζ)((W ∗q I)−1(I ∗r W)−1(u, v, w)) dλq(v)(u)dλr(w)(v)

=
∫∫

(ξ ⊗ η ⊗ ζ)((W ∗q I)−1(I ∗r W)−1(W ∗r I)−1(u, v, w)) dλr(v)(u)dλr(w)(v).

The last equation follows from the invariance of {λx}. On the other hand, we have

(ξ ∗ (η ∗ ζ))(w)

=
∫∫

(ξ ⊗ η ⊗ ζ)(Ψ1(v,w),W−1(u,Ψ2(v,w))) dλr(v)(u)dλr(w)(v)

=
∫∫

(ξ ⊗ η ⊗ ζ)((I ∗q W)−1(Ψ1(v,w), u,Ψ2(v,w))) dλr(v)(u)dλr(w)(v)

=
∫∫

(ξ ⊗ η ⊗ ζ)((I ∗q W)−1W−1
(13)(u, v, w)) dλr(v)(u)dλr(w)(v).

Since W satisfies (PE), we have (ξ ∗ η) ∗ ζ = ξ ∗ (η ∗ ζ).
Set W(u, v) = (Φ1(u, v),Φ2(u, v)). Then we have, for w ∈ T ,

((ξ • η) • ζ)(w)

=
∫∫

(ξ ⊗ η ⊗ ζ)(W(u,Φ1(v,w)),Φ2(v,w)) dλr(v)(u)dλq(w)(v)

=
∫∫

(ξ ⊗ η ⊗ ζ)((W ∗r I)(I ∗r W)(u, v, w)) dλr(v)(u)dλq(w)(v)

=
∫∫

(ξ ⊗ η ⊗ ζ)((W ∗r I)(I ∗r W)(W ∗q I)(u, v, w)) dλq(v)(u)dλq(w)(v).

The last equation follows from the invariance of {λx}. On the other hand, we have

(ξ • (η • ζ))(w)

=
∫∫

(ξ ⊗ η ⊗ ζ)(Φ1(v,w),W(u,Φ2(v,w))) dλq(v)(u)dλq(w)(v)

=
∫∫

(ξ ⊗ η ⊗ ζ)(W(13)(u,Φ1(v,w),Φ2(v,w))) dλq(v)(u)dλq(w)(v)

=
∫∫

(ξ ⊗ η ⊗ ζ)(W(13)(I ∗q W)(u, v, w)) dλq(v)(u)dλq(w)(v).

Since W satisfies (PE), we have (ξ • η) • ζ = ξ • (η • ζ).

We denote by A1 the opposite algebra of (Cc(T ), ∗), that is, A1 = Cc(T ) is an associative
algebra over C whose product is defined by ξη = η ∗ ξ and we denote by A2 the opposite algebra
of (Cc(T ), •), that is, A2 = Cc(T ) is an associative algebra over C whose product is defined by
ξη = η • ξ. Let µ be a positive regular Radon measure on G(0) whose support is G(0). For i = 1, 2,
define a measure λ̃i on Gi by λ̃i =

∫
G(0) λ̃i,x dµ(x). We say that µ is Gi-invariant if it satisfies the

following equation ∫
Gi

ξ(g−1
i ) dλ̃i(gi) =

∫
Gi

ξ(gi) dλ̃i(gi)
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for every ξ ∈ Cc(Gi). Define a measure λ on T by λ =
∫

G(0) λx dµ(x). We denote by H the Hilbert
space L2(T , λ).

Let ρ1 : T → G1 be a Borel map such that sG(ρ1(g1, g2)) = rG(g2). We say that ρ1 satisfies
the condition (A1) if it holds the equation

∫
G2

ξ(p1(g2g1), p2(g2g1)−1) dλ̃2,rG(g1)(g2)(A1)

=
∫

G2

ξ(ρ1(g1, g2), g−1
2 ) dλ̃2,sG(g1)(g2)

for every g1 ∈ G1 and every positive Borel function ξ on T and we say that ρ1 satisfies the condition
(B1) if it holds the equation

∫
G1

ξ(ρ1(g1, g2)) dλ̃1,sG(g2)(g1) =
∫

G1

ξ(g1) dλ̃1,rG(g2)(g1)(B1)

for every g2 ∈ G2 and every positive Borel function ξ on G1. Let ρ2 : T → G2 be a Borel map such
that sG(ρ2(g1, g2)) = rG(g1). We say that ρ2 satisfies the condition (A2) if it holds the equation

∫
G1

ξ(p1(g−1
2 g−1

1 ), p2(g−1
2 g−1

1 )−1) dλ̃1,rG(g2)(g1)(A2)

=
∫

G1

ξ(g−1
1 , ρ2(g1, g2)) dλ̃1,sG(g2)(g1)

for every g2 ∈ G2 and every positive Borel function ξ on T and we say that ρ2 satisfies the equation
(B2) if it holds the equation

∫
G2

ξ(ρ2(g1, g2)) dλ̃2,sG(g1)(g2) =
∫

G2

ξ(g2) dλ̃2,rG(g1)(g2)(B2)

for every g1 ∈ G1 and every positive Borel function ξ on G2. The existence of ρ1 that satisfies the
conditions (A1) and (B1) implies that {λx} is W-invariant and the existence of ρ2 that satisfies
the conditions (A2) and (B2) also implies that {λx} is W-invariant.

Theorem 3.4. (1) Suppose that µ is G1-invariant and that there exists a map ρ2 which satisfies
conditions (A2) and (B2). Then, for every ξ ∈ Cc(T ), there exists a positive number M such that
‖η ∗ ξ‖H ≤M‖η‖H for every η ∈ Cc(T ).

(2) Suppose that µ is G2-invariant and that there exists a map ρ1 which satisfies conditions (A1)
and (B1). Then, for every ξ ∈ Cc(T ), there exists a positive number M such that ‖η•ξ‖H ≤M‖η‖H

for every η ∈ Cc(T ).

Proof. (1) For i = 1, 2, let Ki be a compact set in Gi such that the support of ξ is contained in
K1 ×K2. We denote by χKi the characteristic function of Ki. Set

χ(g1, g2, h2) = χK1(p1(h−1
2 g−1

1 )−1)χK2(g2h2)

for h2 ∈ G2 and (g1, g2) ∈ TrG(h2). For (h1, h2) ∈ T , set

F (h1, h2) =
∫
T
|η(h1p1(h−1

2 g−1
1 ), p2(h−1

2 g−1
1 )−1)|2χ(g1, g2, h2) dλrG(h2)(g1, g2),

χ̃(h2) =
∫
T
χ(g1, g2, h2) dλrG(h2)(g1, g2).

Then we have
‖η ∗ ξ‖2

H ≤ ‖ξ‖2
∞

∫
T
F (h1, h2)χ̃(h2) dλ(h1, h2).
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Set Mi = sup{λ̃i,x(Ki); x ∈ G(0)}. It follows from the condition (A2) that we have χ̃(h2) ≤M1M2

and that we have

F (h1, h2) ≤M2

∫
G1

|η(h1g
−1
1 , ρ2(g1, h2))|2χK1(g1) dλ̃1,sG(h2)(g1).

It follows from the condition (B2) that we have, for g1 ∈ G1,x,
∫
T
|η(h1g

−1
1 , ρ2(g1, h2))|2 dλx(h1, h2) =

∫
T
|η(u)|2 dλrG(g1)(u).

Set ‖η‖2
x =

∫
|η(u)|2 dλx(u) and set M ′

i = sup{λ̃i,x(K−1
i ); x ∈ G(0)}. Since µ is G1-invariant, we

have ∫
G1

‖η‖2
rG(g1)

χK1(g1) dλ̃1(g1) =
∫

G1

‖η‖2
sG(g1)χK−1

1
(g1) dλ̃1(g1)

≤M ′
1‖η‖2

H .

Therefore we have ‖η ∗ ξ‖H ≤M
1/2
1 M ′

1
1/2
M2‖ξ‖∞‖η‖H .

(2) We keep the notations in the proof of (1). Set

χ′(g1, g2, h1) = χK1(g1h1)χK2(p2(g2h1))

for h1 ∈ G1 and (g1, g2) ∈ TrG(h1). For (h1, h2) ∈ T , set

F ′(h1, h2) =
∫
T
|η(p1(g2h1), h2p2(g2h1)−1)|2χ′(g1, g2, h1) dλrG(h1)(g1, g2),

χ̃′(h1) =
∫
T
χ′(g1, g2, h1) dλrG(h1)(g1, g2).

Then we have
‖η • ξ‖2

H ≤ ‖ξ‖2
∞

∫
T
F ′(h1, h2)χ̃′(h1) dλ(h1, h2).

It follows from the condition (A1) that we have χ̃′(h1) ≤M1M2 and that we have

F ′(h1, h2) ≤M1

∫
G2

|η(ρ1(h1, g2), h2g
−1
2 )|2χK2(g2) dλ̃2,sG(h1)(g2).

It follows from the condition (B1) that we have, for g2 ∈ G2,x,
∫
T
|η(ρ1(h1, g2), h2g

−1
2 )|2 dλx(h1, h2) =

∫
T
|η(u)|2 dλrG(g2)(u).

Since µ is G2-invariant, we have
∫

G2

‖η‖2
rG(g2)

χK2(g2) dλ̃2(g2) =
∫

G2

‖η‖2
sG(g2)χK−1

2
(g2) dλ̃2(g2)

≤M ′
2‖η‖2

H .

Therefore we have ‖η • ξ‖H ≤M1M
1/2
2 M ′

2
1/2‖ξ‖∞‖η‖H .

A triplet (ρ1, ρ2, µ) is called an invariant system for (G1, G2) if ρi satisfies conditions (Ai)
and (Bi) for i = 1, 2 and µ is G1- and G2-invariant. Let (G1, G2) be a matched pair with an
invariant system (ρ1, ρ2, µ). It follows from Theorem 3.4 (1) that there exists a homomorphism
π1 : A1 → B(H) as algebras over C such that π1(ξ)η = η ∗ ξ for ξ, η ∈ Cc(T ). We denote by A1

the C∗-subalgebra of B(H) generated by π1(A1). It follows from Theorem 3.4 (2) that there exists
a homomorphism π2 : A2 → B(H) as algebras over C such that π2(ξ)η = η • ξ for ξ, η ∈ Cc(T ).
We denote by A2 the C∗-subalgebra of B(H) generated by π2(A2).
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4 Preserving actions induced by a matched pair

Definition 4.1. Let (G1, G2) be a matched pair with an invariant system (ρ1, ρ2, µ). Then the
induced action � (resp. �) of (G1, G2) is said to be preserving if ρ1(g1, g2) = (g2 � g−1

1 )−1 (resp.
ρ2(g1, g2) = g2 � g

−1
1 ) for every (g1, g2) ∈ T .

If � (resp. �) is preserving, then ρ1 (resp. ρ2) always satisfies (B1) (resp. (B2)).
For i = 1, 2, Cc(Gi) is a ∗-algebra with the following product and involution;

(ab)(g) =
∫

Gi

a(gh−1)b(h) dλ̃i,sG(g)(h),

a∗(g) = a(g−1)

for a, b ∈ Cc(Gi) and g ∈ Gi. For x ∈ G(0), set H̃i,x = L2(Gi,x, λ̃i,x). Define a ∗-representation
π̃i,x : Cc(Gi) → B(H̃i,x) by

(π̃i,x(a)ζ)(g) =
∫

Gi

a(gh−1)ζ(h) dλ̃i,x(h)

for a ∈ Cc(Gi), ζ ∈ H̃i,x and g ∈ Gi,x. Define the reduced norm ‖a‖ by ‖a‖ = sup{‖π̃i,x(a)‖ ;
x ∈ G(0)}. The reduced groupoid C∗-algebra C∗

r (Gi) is the completion of Cc(Gi) by the reduced
norm. We can extend π̃i,x to the ∗-representation of C∗

r (Gi) on H̃i,x, which we denote again by
π̃i,x.

In this section, we will prove the following theorem.

Theorem 4.2. Let (G1, G2) be a matched pair with an invariant system (ρ1, ρ2, µ) and suppose
that the actions � and � are preserving. Then, A1 and A2 are ∗-isomorphic to the reduced groupoid
C∗-algebras C∗

r (G1) and C∗
r (G2) respectively.

Proof. Since µ is G1- and G2-invariant, we have
∫
T
ξ(u) dλ(u) =

∫
G(0)

∫
G1

∫
G2

ξ(g−1
1 , g2) dλ̃2,rG(g1)(g2)λ̃1,x(g1)dµ(x)

=
∫

G(0)

∫
G2

∫
G1

ξ(g1, g−1
2 ) dλ̃1,rG(g2)(g1)λ̃2,x(g2)dµ(x)

for ξ ∈ Cc(T ). Then we can define unitary operators T1 and T2 in B(H) by

(T1ξ)(g1, g2) = ξ ◦ κ1(g1, g2) = ξ(g−1
1 , ρ2(g1, g2))

and
(T2ξ)(g1, g2) = ξ ◦ κ2(g1, g2) = ξ(ρ1(g1, g2), g−1

2 )

for ξ ∈ H and (g1, g2) ∈ T respectively. It follows from Lemma 3.2 that we have T 2
i = I for

i = 1, 2. Thus we have T ∗
i = Ti.

For x ∈ G(0), set Hx = L2(T , λx). Note that we have Hx = H̃1,x ⊗ H̃2,x and H =
∫ ⊕

Hx dµ(x).
Define a ∗-representation π̃1,x ⊗ ι : C∗

r (G1) → B(Hx) by (π̃1,x ⊗ ι)(a) = π̃1,x(a)⊗ I for a ∈ C∗
r (G1)

and define a ∗-representation π̃1 : C∗
r (G1) → B(H) by π̃1 =

∫ ⊕(π̃1,x ⊗ ι) dµ(x). Similarly define
∗-representations ι ⊗ π̃2,x : C∗

r (G2) → B(Hx) and π̃2 : C∗
r (G2) → B(H). Since the support of µ is

G(0), π̃1 and π̃2 are faithful. Define a linear map ϕ1 : Cc(T ) → Cc(G1) by

ϕ1(ξ)(g1) =
∫
ξ(g−1

1 , g2) dλ̃2,rG(g1)(g2)

for ξ ∈ Cc(T ) and g1 ∈ G1 and define a linear map ϕ2 : Cc(T ) → Cc(G2) by

ϕ2(ξ)(g2) =
∫
ξ(g1, g−1

2 ) dλ̃1,rG(g2)(g1)
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for ξ ∈ Cc(T ) and g2 ∈ G2. Using the conditions (A1) and (A2), we have, for ξ ∈ Cc(T ), η ∈ H
and (g1, g2) ∈ T ,

(π1(ξ)η)(g1, g2)

=
∫

G1×G2

ξ(h1, h2)η(g1h−1
1 , ρ2(h1, g2)) dλ̃1,sG(g2)(h1)dλ̃2,sG(g2)(h2),

(π2(ξ)η)(g1, g2)

=
∫

G1×G2

ξ(h1, h2)η(ρ1(g1, h2), g2h−1
2 ) dλ̃1,sG(g1)(h1)dλ̃2,sG(g1)(h2).

It follows from Lemma 2.2 that we have Tiπi(ξ)Ti = π̃i(ϕi(ξ)) for i = 1, 2 and ξ ∈ Cc(T ). Therefore
TiAiTi is contained in π̃i(C∗

r (Gi)) for i = 1, 2.
We denote by χG(0) the characteristic function of G(0) in G. Since G is r-discrete, χG(0)

is a continuous function on G. For fi ∈ Cc(Gi), define an element ψ1(f1) (resp. ψ2(f2)) of
Cc(T ) by ψ1(f1)(g1, g2) = f1(g−1

1 )χG(0)(g2) (resp. ψ2(f2)(g1, g2) = χG(0)(g1)f2(g−1
2 )). We have

ϕi(ψi(fi)) = fi. Therefore we have Tiπi(ψi(fi))Ti = π̃i(fi). This implies that π̃i(C∗
r (Gi)) is

contained in TiAiTi for i = 1, 2.

Corollary 4.3. For i = 1, 2, Ai is the closure of the set of elements πi(ψi(f)) with f ∈ Cc(Gi).

5 C∗-algebras arising from Cc(T ) Let (G1, G2) be a matched pair with an invariant system
(ρ1, ρ2, µ). Moreover, suppose that the actions � and � are preserving. In this section, we define a
map π : Cc(T ) → B(H) and show that the closure of π(Cc(T )) is a C∗-algebra.

For ξ ∈ Cc(T ), define ψ(ξ) ∈ Cc(T ∗r T ) by

ψ(ξ)((g1, g2), (h1, h2)) = ξ(g1, h−1
2 )χG(0)(h1)χG(0)(g2).

For ξ, η ∈ Cc(T ), define π(ξ)η ∈ Cc(T ) by

(π(ξ)η)(w) =
∫
T

∫
T

(η ⊗ ψ(ξ))((W ∗r I)−1W(13)(u, v, w)) dλr(w)(v)dλq(w)(u)

for w ∈ T . Then we will show the following proposition.

Proposition 5.1. For every ξ ∈ Cc(T ), there exists a positive number M such that ‖π(ξ)η‖H ≤
M‖η‖H for every η ∈ Cc(T ).

The above proposition implies that we can extend π(ξ) to a bounded linear operator on H ,
which we denote again by π(ξ). Therefore we have a linear map π : Cc(T ) → B(H). From the
proof of theorem 4.2, we have the following lemma.

Lemma 5.2. For fi ∈ Cc(Gi) (i = 1, 2), η ∈ H and (g1, g2) ∈ T , the following equations hold;

(π1(ψ1(f1))η)(g1, g2) =
∫

G1

f1(h−1
1 )η(g1h−1

1 , p2(g2h−1
1 )) dλ̃1,sG(g2)(h1),

(π2(ψ2(f2))η)(g1, g2) =
∫

G2

f2(h−1
2 )η(p1(h2g

−1
1 )−1, g2h

−1
2 ) dλ̃2,sG(g1)(h2).

For (g1, g2) ∈ T , h1 ∈ G1,sG(g2) and h2 ∈ G2,rG(h1), set

θ1(g1, g2;h1, h2) = (p1(h2h1g
−1
1 )−1, p2(g2(h2h1)−1)) ∈ T ,

and for (g1, g2) ∈ T , h2 ∈ G2,sG(g1) and h1 ∈ G2,rG(h2), set

θ2(g1, g2;h1, h2) = (p1(h1h2g
−1
1 )−1, p2(g2(h1h2)−1)) ∈ T .
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Proof of Proposition 5.1. By using the conditions (A1) and (A2) and the fact that the induced
actions are preserving, we have

(π(ξ)η)(g1, g2)(5.1)

=
∫

G2

∫
G1

ξ(h1, h
−1
2 )η(θ2(g1, g2;h1, h2)) dλ̃1,rG(h2)(h1)dλ̃2,sG(g1)(h2).

For i = 1, 2, let Ki be a compact subset of Gi such that the support of ξ is contained in K1 ×K2.
We can define πi(ψi(χKi)) ∈ B(H) by a similar formula to that in Lemma 5.2. Then we have
‖πi(ψ(χKi))‖ ≤ M

1/2
i M ′

i
1/2, where Mi = sup{λ̃i,x(Ki); x ∈ G(0)} and M ′

i = sup{λ̃i,x(K−1
i ); x ∈

G(0)}. Since we have, for u ∈ T ,

|(π(ξ)η)(u)| ≤ ‖ξ‖∞(π2(ψ(χK2))π1(ψ1(χK−1
1

))|η|)(u),

we have
‖π(ξ)η‖H ≤ ‖ξ‖∞‖π1(ψ1(χK−1

1
))‖‖π2(ψ2(χK2))‖‖η‖H .

For fi ∈ Cc(Gi) (i = 1, 2), define f̌i ∈ Cc(Gi) by f̌i(gi) = fi(g−1
i ). We denote by f1 ⊗ f2 the

restriction of f1 ⊗ f2 ∈ Cc(G1 × G2) to T by abuse of notation. Recall that κ : T → T is the
homeomorphism introduced in Lemma 3.2. Then we have the following proposition.

Proposition 5.3. For fi ∈ Cc(Gi) (i = 1, 2), the following equations hold;

π2(ψ2(f2))π1(ψ1(f1)) = π(f̌1 ⊗ f2),

π1(ψ1(f1))π2(ψ2(f2)) = π((f1 ⊗ f̌2) ◦ κ).

Proof. By Lemma 5.2, we have

(π1(ψ1(f1))π2(ψ2(f2))η)(g1, g2)

=
∫

G1

∫
G2

f1(h−1
1 )f2(h−1

2 )η(θ1(g1, g2;h1, h2)) dλ̃2,rG(h1)(h2)dλ̃1,sG(g2)(h1),

(π2(ψ2(f2))π1(ψ1(f1))η)(g1, g2)

=
∫

G2

∫
G1

f1(h−1
1 )f2(h−1

2 )η(θ2(g1, g2;h1, h2)) dλ̃1,rG(h2)(h1)dλ̃2,sG(g1)(h2).

Note that we have (h−1
2 � h−1

1 )−1h−1
2 h−1

1 = h−1
2 � h−1

1 . By using the conditions (A1) and (B1) and
the fact that � is preserving, we have

(π1(ψ1(f1))π2(ψ2(f2))η)(g1, g2)

=
∫∫

f1(h−1
2 � h−1

1 )f2(h−1
2 � h−1

1 )η(θ2(g1, g2;h1, h2)) dλ̃1,rG(h2)(h1)dλ̃2,sG(g1)(h2).

Using (5.1), we have the equations in the proposition.

We denote by A1A2 the set of elements a1a2 with ai ∈ Ai (i = 1, 2) and by spanA1A2 the
closed linear span of A1A2. Set A = spanA1A2.

Theorem 5.4. The closed linear space A is a C∗-algebra.

The above theorem is an immediate consequence of the following proposition.

Proposition 5.5. spanA1A2 = spanA2A1.
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Proof. For fi ∈ Cc(Gi) (i = 1, 2), F = (f1 ⊗ f̌2) ◦ κ is an element of Cc(T ). For every ε > 0, there
exist fij ∈ Cc(Gi) (i = 1, 2, j = 1, · · ·n) such that ‖F −

∑
f1,j ⊗ f2,j‖∞ < ε and the supports of

F and
∑
f1,j ⊗ f2,j are contained in some compact set K of G1 ×G2. It follows from Proposition

5.3 and the proof of Proposition 5.1 that we have

‖π1(ψ1(f1))π2(ψ2(f2)) −
n∑

j=1

π2(ψ2(f2,j))π1(ψ1(f̌1,j))‖ ≤ εM,

where M is a constant that depends only on K. This implies that spanA1A2 ⊂ spanA2A1. By
taking adjoint, we have the reverse inclusion.

It is easy to show that Ai is contained in A1A2 (i = 1, 2). In particular Ai is a C∗-subalgebra
of A. By Proposition 5.3 we have the following corollary.

Corollary 5.6. The C∗-algebra A is the closure of π(Cc(T )).

6 A ∗-algebraic structure for Cc(T ) In this section, we prove that A is isomorphic to the
groupoid C∗-algebra C∗

r (G). To prove this fact, we introduce a ∗-algebraic structure for Cc(T ).
Let S be a closed subset of (G1 ×G2)2 consisting of elements (g1, g2, h1, h2) such that sG(g1) =

sG(g2), rG(g2) = sG(h2) and sG(h1) = rG(h2). Let S′ be a closed subset of T 2 consisting of
elements (u, v) such that q(u) = r(v). Define a homeomorphism α : S → S′ by

α(g1, g2, h1, h2) = (h1, h
−1
2 , p1(g1g−1

2 (h1h2)−1), p2(g1g−1
2 (h1h2)−1)−1).

The inverse of α is given by

α−1(g1, g2, h1, h2) = (p1(h1h
−1
2 g1g

−1
2 ), p2(h1h

−1
2 g1g

−1
2 )−1, g1, g

−1
2 ).

For ξ, η ∈ Cc(T ), define an element ξη ∈ Cc(T ) by

(ξη)(g1, g2) =
∫∫

(ξ ⊗ η)(α(g1, g2, h1, h2)) dλ̃1,rG(h2)(h1)dλ̃2,rG(g2)(h2).

For ξ ∈ Cc(T ), define an element ξ∗ ∈ Cc(T ) by ξ∗ = ξ̄ ◦κ. We will show that Cc(T ) is a ∗-algebra
with respect to the product ξη and the involution ξ∗ defined above.

Lemma 6.1. For ξ, η ∈ Cc(T ), the following equation holds; π(ξ)π(η) = π(ξη).

Proof. For fi ∈ Cc(Gi) (i = 1, 2) and ζ ∈ Cc(T ), define fiζ ∈ Cc(T ) by

(f1ζ)(g1, g2) =
∫

G1

f1(h−1
1 )ζ(h1g1, g2) dλ̃1,rG(g1)(h1),

(f2ζ)(g1, g2) =
∫

G2

f2(h−1
2 )ζ(g1, h2g2) dλ̃2,rG(g2)(h2).

Then we have π1(ψ1(f1))π(ζ) = π((f1(ζ ◦ κ)) ◦ κ) and π2(ψ2(f2))π(ζ) = π(f2ζ). It follows from
Proposition 5.3 that we have

π(f1 ⊗ f2)π(η) = π(f2(f̌1(η ◦ κ)) ◦ κ) = π((f1 ⊗ f2)η).

For ξ1, ξ2 ∈ Cc(T ), we have ‖ξ1ξ2‖∞ ≤M‖ξ1‖∞‖ξ2‖∞, where M is a constant that depends only
on the supports of ξ1 and ξ2. For every ε > 0, there exist fij ∈ Cc(Gi) (i = 1, 2, j = 1, · · · , n) such
that ‖ξ−

∑
f1j ⊗f2j‖∞ < ε and the supports of ξ and

∑
f1j ⊗f2,j are contained in some compact

set K of G1 ×G2. It follows from the proof of Proposition 5.1 that we have

‖π(ξ)π(η) − π(ξη)‖∞
≤ ‖π(ξ)π(η) −

∑
π(f1j ⊗ f2,j)π(η)‖∞ + ‖

∑
π((f1j ⊗ f2,j)η) − π(ξη)‖∞

≤ εM ′‖η‖∞,

where M ′ depends only on K and the support of η. This implies that π(ξ)π(η) = π(ξη).
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Lemma 6.2. For ξ ∈ Cc(T ), the following equation holds; π(ξ)∗ = π(ξ∗).

Proof. Let fi ∈ Cc(Gi), (i = 1, 2). In the proof of Theorem 4.2, we show that Tiπ(ψi(fi))Ti =
π̃i(fi). Since π̃i is a ∗-representation, we have π(ψ(fi))∗ = π(ψi(f∗i )). It follows from Proposition
5.3 that we have π(f1 ⊗ f2)∗ = π((f1 ⊗ f2)∗). As in the proof of Lemma 6.1, we can show that
π(ξ)∗ = π(ξ∗) for every ξ ∈ Cc(T ).

Proposition 6.3. The map π : Cc(T ) → A is injective.

Proof. Let ξ ∈ Cc(T ). Suppose that π(ξ) = 0. It follows from Lemmas 6.1 and 6.2 that we have
π(ξ∗ξ) = π(ξ)∗π(ξ) = 0. Take η ∈ Cc(T ) whose support is contained in G(0) × G(0). Then we
have (π(ξ∗ξ)η)(x, x) = (ξ∗ξ)(x, x)η(x, x) for every x ∈ G(0). Therefore we have (ξ∗ξ)(x, x) = 0 for
x ∈ G(0). Since we have

(ξ∗ξ)(x, x) =
∫∫

|ξ ◦ κ(h1, h
−1
2 )|2 dλ̃1,rG(h2)(h1)dλ̃2,x(h2),

we have ξ ◦ κ = 0. This implies that ξ = 0

Theorem 6.4. The set Cc(T ) is a ∗-algebra with respect to the product ξη and the involution ξ∗

and π becomes an injective ∗-homomorphism.

Proof. The statement follows from Lemmas 6.1 and 6.2 and Proposition 6.3.

Theorem 6.5. The C∗-algebra A is isomorphic to C∗
r (G).

Proof. For i = 1, 2, define a Hilbert space H̃i by H̃i =
∫ ⊕

H̃i,x dµ(x) and define a faithful ∗-
representation π̃(i) : C∗

r (Gi) → B(H̃i) by π̃(i) =
∫ ⊕

π̃i,x dµ(x). Define a measure λ̃ on G by
λ̃ =

∫
λ̃x dµ(x) and define a Hilbert space K by K = L2(G, λ̃). We denote by πG : C∗

r (G) → B(K)
a faithful representation such that πG(f)η = fη for f, η ∈ Cc(G), where fη is a convolution
product in Cc(G). Note that we have

∫
G

f(g) dλ̃x(g) =
∫

G2

∫
G1

f(g1g2) dλ̃1,rG(g2)(g1)dλ̃2,x(g2)

for f ∈ Cc(G) and x ∈ G(0). Since µ is G1- and G2-invariant, we can show that µ is G-invariant
using the conditions (A1) and (B1).

Define a homeomorphism ω : G → T by ω(g) = (p1(g−1), p2(g−1)−1). The inverse of ω is
given by ω−1(g1, g2) = g2g

−1
1 . Define a map ω∗ : Cc(G) → Cc(T ) by ω∗(f) = f ◦ ω−1. Then ω∗

is a ∗-isomorphism. Define a unitary operator ω̃ ∈ B(K,H) by ω̃(η) = η ◦ ω−1. Since we have
(π(ξ)(η ◦ κ2)) ◦ κ2 = ξη for ξ, η ∈ Cc(T ), we have (T2ω̃)πG(f)(T2ω̃)−1 = π(ω∗(f)) for f ∈ Cc(G).
Then the theorem follows from Corollary 5.6.

7 Conditional expectations Define P1 ∈ B(H, H̃1) (resp. P2 ∈ B(H, H̃2)) by P1(ξ)(g1) =
ξ(g1, sG(g1)) (resp. P2(ξ)(g2) = ξ(sG(g2), g2)) for ξ ∈ H and g1 ∈ G1 (resp. g2 ∈ G2). Note
that we have (P ∗

1 η1)(g1, g2) = η1(g1)χG(0)(g2) and (P ∗
2 η2)(g1, g2) = χG(0)(g1)η2(g2). For i = 1, 2,

recall that Ti is a unitary operator defined in the proof of Theorem 4.2 and that π̃(i) is the faithful
∗-representation of C∗

r (Gi) defined in the proof of Theorem 6.5. Note that we have TiAiTi =
π̃i(C∗

r (Gi)) by the proof of Theorem 4.2. Then we have the following lemma.

Lemma 7.1. The image of π̃(i) is PiTiATiP
∗
i for i = 1, 2.

Proof. For i = 1, 2, Define a linear map εi : Cc(T ) → Cc(Gi) by ε1(ξ)(g1) = ξ(g1, sG(g1)) and by
ε2(ξ)(g2) = ξ(sG(g2), g2) respectively. Then we have

P1T1π(ξ)T1P
∗
1 = π̃(1)(ε1(ξ)̌) and P2T2π(ξ)T2P

∗
2 = π̃(2)(ε2(ξ))

for ξ ∈ Cc(T ). These imply that PiTiATiP
∗
i ⊂ π̃(i)(C∗

r (Gi)) for i = 1, 2. Since we have ε1(ψ1(f1))̌ =
f1 for f1 ∈ Cc(G1) and ε2(ψ2(f̌2)) = f2 for f2 ∈ Cc(G2), the reverse inclusions hold.
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Define a ∗-isomorphism ιi : Ai → C∗
r (Gi) by ιi(a) = π̃−1

i (TiaTi) for a ∈ Ai and define a map
Ei : A→ Ai by Ei(a) = ι−1

i ◦ π̃−1
(i) (PiTiaTiP

∗
i ) for a ∈ A.

Theorem 7.2. For i = 1, 2, Ei is a faithful conditional expectation.

Proof. For fi, f
′
i ∈ Cc(Gi) (i = 1, 2), set ai = πi(ψi(fi)) and a′i = πi(ψi(f ′i)). Then we have

P1T1a2a1a
′
1T1P

∗
1 = P1T1a2a1T1P

∗
1 π̃(1)(f ′1),

P2T2a
′
2a2a1T2P

∗
2 = π̃(2)(f ′2)P2T2a2a1T2P

∗
2 .

Since we have Tia
′
iTi = π̃i(f ′i) by the proof of Theorem 4.2, we have E1(a2a1a

′
1) = E1(a2a1)a′1 and

E2(a′2a2a1) = a′2E2(a2a1). This implies that E1(aa1) = E1(a)a1 and E2(a2a) = a2E2(a) for every
a ∈ A and ai ∈ Ai. Since we have Ei(a∗) = Ei(a)∗ (i = 1, 2), we have E1(a1a) = a1E1(a) and
E2(aa2) = E2(a)a2 for every a ∈ A and ai ∈ Ai. It is easy to show that Ei(ai) = ai for ai ∈ Ai

and that Ei(a∗a) ≥ 0.
We show that Ei is faithful. Note that elements of C∗

r (G) can be viewed as elements of
C0(G) ([12], Proposition 4.2) and that the restriction map Ẽ : C∗

r (G) → C0(G(0)) is a faithful
conditional expectation (cf. [12], Proposition 4.8). It follows from the proof of Theorem 6.5 that
we can define a ∗-isomorphism ι : A → C∗

r (G) by ι(a) = π−1
G ((κ̃2ω̃)−1a(κ̃2ω̃)). Then we have

Ẽι = ι1E1E2 = ι2E2E1. This implies that Ei is faithful.

Since we have E1(A2) = ι−1
1 (C0(G(0))) and E2(A1) = ι−1

2 (C0(G(0))), we have the following
Corollary.

Corollary 7.3. A1 ∩A2 = ι−1
1 (C0(G(0))) = ι−1

2 (C0(G(0))).

8 An action of a semi-direct product group Let Γ1 and Γ2 be countable discrete groups
and let σ : Γ2 → Aut(Γ1) be a homomorphism. We denote by Γ the semidirect product group
Γ1 ×σ Γ2. Then Γ1 and Γ2 are subgroups of Γ and we have Γ = Γ1Γ2 and Γ1 ∩ Γ2 = {e}. Note
that we have γ2γ1 = σγ2(γ1)γ2. Let X be a second countable locally compact Hausdorff space
and let α : Γ → Homeo(X) be an action of Γ on X by homeomorphisms. We set αγ(x) = γ · x
for γ ∈ Γ and x ∈ X . We denote by G the r-discrete groupoid Γ × X . The source (rep. range)
map is defined by sG(γ, x) = x (resp. rG(γ, x) = γ · x) and the product and inverse are defined by
(γ′, γ ·x)(γ, x) = (γ′γ, x) and (γ, x)−1 = (γ−1, γ ·x) respectively. Let G1 = Γ1×X and G2 = Γ2×X
be clopen subgroupoids of G. Then (G1, G2) is a matched pair in the sense of Definition 2.1. For
g1 = (γ1, x) ∈ G1 and g2 = (γ2, γ1 ·x) ∈ G2, we have g2 � g1 = (σγ2 (γ1), γ2 ·x) and g2 � g1 = (γ2, x).
We identify ((γ1, x), (γ2, x)) ∈ T with (γ1, γ2, x) and identify T with Γ1 × Γ2 ×X . The map W is
given by

W((γ1, γ2, γ
′
1 · x), (γ′1, γ′2, x)) = ((σγ2(γ

′
1), γ

′
2γ

−1
2 , γ2 · x), (γ1γ

′
1, γ2, x))

and the inverse is given by

W−1((γ1, γ2, γ
′
2 · x), (γ′1, γ′2, x)) = ((γ′1γ

−1, γ′2, γ · x), (γ, γ2γ
′
2, x)),

where γ = σ−1
γ′
2

(γ1). Define ρ1 : T → G1 by ρ1(γ1, γ2, x) = (σγ2(γ1), γ2 · x) and define ρ2 : T → G2

by ρ2(γ1, γ2, x) = (γ2, γ1 · x). Let µ be a positive regular Radon measure on G(0) whose support is
X . We assume that µ is invariant under the action α. Then (ρ1, ρ2, µ) is an invariant system for
(G1, G2). Moreover the induced actions � and � are preserving.

The representations π1, π2 and π satisfy the following equations: for ξ, η ∈ Cc(T ). With
respect to the ∗-algebraic structure for Cc(T ) introduced in Section 6, the product satisfies the
following equations;

(ξη)(γ1, γ2, x) =
∑

γ′
1∈Γ1

∑
γ′
2∈Γ2

ξ(γ′1, γ2γ
′
2
−1
, γ′2 · x)η(γ1γ

−1, γ′2, γ · x),

where γ = σ−1
γ′
2

(γ′1) and the involution satisfies the following equations;

ξ∗(γ1, γ2, x) = ξ(σγ2(γ
−1
1 ), γ−1

2 , (γ2γ1) · x).
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