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A TRINARY RELATION ARISING FROM A MATCHED PAIR OF
R-DISCRETE GROUPOIDS
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ABSTRACT. We introduce a notion of a matched pair of r-discrete groupoids and that of a
trinary relation associated with a matched pair. We construct three C*-algebras from a trinary
relation and study properties of these algebras. The above results are applied to an action of a
countable discrete semidirect product group on a topological space with an invariant measure.

1 Introduction A matched pair of groups has been studied in the theory of quantum groups
(cf, [4], [5]) and in the theory of operator algebras (cf. [2]). The notion of a matched pair of groups
is a generalization of that of semidirect product groups. It is natural to study a matched pair of
groupoids as a generalization of an action of a semidirect product group on a space. In this paper,
we introduce a notion of a matched pair of r-discrete groupoids, which is a generalization of that
of an action of a discrete semidirect product group. A matched pair of r-discrete groupoid is an
r-discrete groupoid G and open and closed subgroupoids G; and G5 which satisfy G = G1Ge,
G1 N Gy = GO and other conditions.

On the other hand, a notion of multiplicative unitaries was introduced by S. Baaj and G.
Skandalis in [1] and a notion of pseudo-multiplicative unitaries was introduced by J. M. Vallin in [14]
(see also [3]). The author has studied pseudo-multiplicative unitaries in the setting of Hilbert C*-
modules (cf. [6, 7, 8, 9]). Recently C*-pseudo-multiplicative unitaries have been studied intensely
by T. Timmermann (cf. [13]). A notion of pseudo-multiplicative unitaries can be converted
naturally to a notion of maps on trinary relations satisfying pentagonal equations. The author has
studied a sort of these maps in [10]. In this paper, we introduce a trinary relation 7 and construct
amap W : 7 %, 7 — 7T %, T that satisfies a pentagonal equation. We use W to construct
C*-algebras associated with a matched pair (G1,G32) of r-discrete groupoids. We construct a
C*-algebra A ~ C¥(G) and C*-subalgebra A; ~ C*(G;) (i = 1,2) such that A = spand;A; =
WAQAl and A1 N AQ ~ C()(G(O))

The paper is organized as follows: In Section 2, we introduce a notion of a matched pair
(G1,G2) of r-discrete groupoids. In Section 3, we construct a trinary relation 7 associated with
(G1,G2) and construct C*-algebras A; and As using 7 when a matched pair has an invariant
system. In Section 4, we show that A; is isomorphic to the reduced groupoid C*-algebra C*(G;)
(i = 1,2) when the induced action is preserving. In Section 5, we construct a map 7 of C.(7) to
B(H) for some Hilbert space H. Let A be the closed linear span of A; A;. Then we show that A is
also the closed linear span of A3 A; and it is the closure of 7(C.(7)). In Section 6, we introduce a
x-algebraic structure on C.(7) using 7 and show that A is isomorphic to C}(G). In Section 7, we
construct a conditional expectation E; : A — A; for ¢ = 1,2 and show that A; N A5 is isomorphic
to CO(G(O)). In Section 8, we apply the above results to an action of a countable discrete semidirect
product group on a space with an invariant measure.
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2 A matched pair of groupoids Let G be a second countable locally compact Hausdorff r-
discrete groupoid. We denote by rg (resp. sg) the range (resp. source) map of G, by G(®) the unit
space of G and by G the set of composable pairs. For details of groupoids, we refer the reader
to [11] and [12].

Definition 2.1. Let G; and G2 be clopen subgroupoids of G. A pair (G1, G2) is called a matched

pair if G1G2 =G, G1 NGy = G and there exist continuous maps p1 : G — G1 and p2 : G — Go
such that g = p1(g)p2(g) for all g € G.

Let (G1,G2) be a matched pair. For i = 1,2, we have GEO) =GO and set Gig = sél(x) N G;
and G¥ = rg5' () NG, for z € G(). Note that we have r¢(g) = r¢(pi(g)) and sg(g) = sa(p2(g))
for g € G. For (g2,91) € GP N (G2 x G1), set g2 > g1 = p1(g201) and g2 < g1 = p2(g291)-

Lemma 2.2. (1) For g, € Ga, g1 € Gic(m) and hy € Gy ;¢ (gy), the following equations hold:
92 > (92> 91) =91, (g3 'h ") e (A2 (92> g1)) = g1.
(2) For g1 € G1, g2 € G2 (g,) and hy € Gig(gl), the following equations hold:

(92<91) <97 = g2, ((92<91)<h1)<(hy grt) = ga.
Proof. (1) Since we have g;lpl (9291)p2(g291) = gz_l(gggl) = g1, we have

p1(95 'p1(g291)) = p1(g1pa(geg1) ™) = g1.

Therefore the first statement of (1) follows.
Set g1 = ga>¢g1. It follows from the above argument that we have g;lgl = g1p2(g291) L. Since

we have

(95 'hy )1 (hagy)p2(hady) = g3 ' 91 = g1p2(g291) ",

we have
(92 'ha p1(hadn) = g1p2(9201) " p2(hagn)
Thus we have py((g5 *hy *)p1(hegi)) = g1. Therefore the second statement of (1) follows.
We can prove the statements of (2) similarly. O

The following proposition is an immediate consequence of the above lemma.

92) c(92)

Proposition 2.3. (1) For every go € Ga, the map g1 € GTG( — gab g1 € Gy is a bijection.
(2) For every g1 € G, the map g2 € Garg(g) > 92991 € Ga s5(q1) 5 @ bijection.

3 A trinary relation associated with a matched pair Let (G1,G2) be a matched pair. Set
T ={(91,92) € G1 x G2;56(g1) = sG(g2)}. Define maps ¢, 7, s : T — G by q(g1,92) = rc(g1),
(g1, 92) = ra(g2) and s(g1,92) = sa(91) = sa(g2) respectively. We denote by 7 4, 7 the fibered
product {(u,v) € 72; s(u) = q(v)}. Define the fibered product 7T *, 7 similarly. We define a
continuous map W:7 %, 7 — T %, T by

W((91,92), (h1, ha)) = ((p1(92h1), hop2(g2h1) ™), (9171, pa(g2ha))
for ((g1,92), (h1,h2)) € T %, T. Then W is a homeomorphism whose inverse is given by

W (g1, 92), (ha, he)) = ((hapr(hy ' g ), p2(ha gy ) ™), (p1(hy P )71 g2ha))

for ((g1,92), (h1,h2)) € T %, T. We call (7,V) a trinary relation associated with (G1, G2).

If W(u,v) = (v/,v"), then we have ¢q(u) = q(v'), r(u) = q(u'), r(v) = r(v’) and s(v) = s(v').
We denote by 7 *, T %, 7T the fibered product {(u,v,w) € T3; s(u) = q(v), s(v) = g(w)}. Define
the fibered products T %, 7 xq T, T ¢ T %, T and 7 *, T %, T similarly. We also denote by
(T x T)* T the fibered product {(u,v,w) € T3; s(u) = q(w), s(v) = r(w)}. Then we can define a
map Wg I : T T xqT — T, T %, T by Wy I)(u,v,w) = W(u,v), w). Similarly we can define
the following maps; I« W : T %, T % T — T % T %, T, W, I : T %, T %, T — T %, T %, T and
IxgW:TxqT T — (T xT)*T. We can also define a map W3y : (T xT)*T — T+, T %, T
by Was) (u, v,w) = (v, W(u,w)).
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Theorem 3.1. The homeomorphism W satisfies the following pentagonal equation;
(PE) (W K I)(I *p W)(W *q I) = W(lg) (I *q W)
Proof. For (u,v,w) € T %4 T %, T, put

(W *p I)(I *oe W)(W *q I)(u, ’U,’u)) = (u/’vl, w/)
Weas) (I % W), v,w0) = (u”, 0", "),

If u=(f1, f2), v = (91,92), w = (h1, ha), the first coordinate u} of u’ is

p1(g2p2(f291) " p1(p2(f291) 1))
and the first coordinate uf of u” is pi(g2h1). We have
9202(f291) "1 (p2(fag1)h1) = g2hip2(p2(fagi)ha) ™",
p1(g2h1p2(p2(f291)h1) ") = p1(gaha).

Therefore we have u} = uf. Similarly we have v, = uj and conclude that «' = u”. Similarly we
have v' = v" and w' = w". O

The following map « plays a role of an involution on 7.

Lemma 3.2. Define maps k, r1, k2 : T — T by r(g1,92) = (92> 97 5 (92997 )Y, k11, 92) =
(97", 92997 ") and ka(g1, g2) = ((ga>g7 1)1, g5 1) respectively. Then k%, k3 and k3 are the identity
maps, in particular, k, k1 and Ko are homeomorphisms.

Proof. Since we have, for i = 1,2 and (g1,92) € 7,
pi((p1(g291 p2(g207 1)) Y) = pilgr92 1),
we have k2(g1,g2) = (g1, 92). It follows from Lemma 2.2 that x? and x3 are the identity maps. O

Let {A\.;z € GO} be a right Haar system on G such that X, is a counting measure on G, for
every © € G, For i = 1,2, we denote by {S\M, x € GO} the right Haar system on G; which is
the restriction of {\,} to G;. We denote by C.(T) the set of complex valued continuous functions
on 7 with compact supports. Define a measure A, on 7 by

/T £(u) dAo (u) = / / o) o) (o)

for € € C,(T). Note that the support of A\, is 7, = s *(z) and that the map =z € G —
J7 &(u) dry(u) is continuous for every & € Ce(T). We say that {)\,} is W-invariant if it satisfies
the following equation:

[],_ v dpeine = [[ - ao i)

for every £ € Co(T %, T) and x € GO,
For &, n € C.(T), define a product £ xn in C.(7T) by

(€ xm)(v) = /T (€ © )W~ (1, 0)) Ao (1)

and define a product £ e 5 in C.(7) by

(€ on)(v) = /T (€ © 1)W1, 0))dAg o) (1.
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Proposition 3.3. Suppose that {\;} is W-invariant. The above products are associative, that is,

(Exm)*C=Ex(nx() and (Een) e =Ee(ne() fors, n, ¢ € Ce(T).
Proof. Set W=t(u,v) = (¥1(u,v), ¥a(u,v)). Then we have, for w € T,

((§xm) * Q) (w)
— [[ €2 no QoY (w31 (0,w), Ba(o,0)) dhyi (WD (0)
= [[€0me OOV 17 (T )7 1 0)) Ay Wy 0)
— [[€@ne v D @4 W) V5 D7 0, w) ey (W) ()

The last equation follows from the invariance of {A;}. On the other hand, we have
(n Q) (w)
/ (60 ® )W (v,w), W (1, W (0,10))) Ay (W)dA ey (0)
= [[€@no 0 W) 0100, ¥a(0.0) dhygo) (WA ()
= [[ €@ 0 < W)W (0r0,0) dhso (W 0

Since W satisfies (PE), we have (£ xn) *x ( = £ x (1 ().
Set W(u,v) = (®1(u, v), ®2(u,v)). Then we have, for w € 7,

1) ¢ ¢)(w)
= / € ©n e QW (u, @1(v,w)), P2(v, w)) dAr(v) (W) dAgqw) (v)
= / (€ @n @ OOV D)1 W) (1, v,w)) dAy () (w)dAg(u) (V)

= / (§ XN C)((W *r I)(I *r W)(W *q I)(uv v, ’LU)) d)‘q(v) (u)d)‘q(w) (U)

The last equation follows from the invariance of {A;}. On the other hand, we have
O)(w)

_ / (€ @1 ® O)(@1(v,w), W(t, Ba(v,w))) dAg(e) () dAg(a) (0)
- / / (€ ©1© )W) (B2 (0, w), B (0, 0))) drg(o) (4)d gy (0)
- / / (€ ©1® )W) (g W) (1, 0, 1)) dAg(oy (1) g (0).

Since W satisfies (PE), we have ((en)e( = e (ne(). O

We denote by A; the opposite algebra of (C.(T), ), that is, A1 = C.(7) is an associative
algebra over C whose product is defined by £&n = % £ and we denote by As the opposite algebra
of (Cc(T),e), that is, Ay = C.(7T) is an associative algebra over C whose product is defined by
§n=mne&. Let u be a positive regular Radon measure on G whose support is G0, Fori=1,2,
define a measure \; on G; by \; = = Jow Aiw dp(z). We say that p is Gi-invariant if it satisfies the

following equation
| s dito) = [ <l diutan
G, G;
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for every ¢ € C(G;). Define a measure A on T by A = [, Az dpu(z). We denote by H the Hilbert
space L%(7, \).

Let p1 : T — G1 be a Borel map such that sg(p1(g1,92)) = ra(g2). We say that p; satisfies
the condition (A1) if it holds the equation

(A1) : €(p1(9291),p2(9291) ") dXar g (01) (92)

= o f(pl (917 92)’ ggl) dX?,SG(gl) (92)

for every g1 € G and every positive Borel function £ on 7 and we say that p; satisfies the condition
(B1) if it holds the equation

(B1) 5(101(91,92))d5\1,sc(g2)(91)=/ €(91) AN r (g0 (91)
Gl Gl

for every go € G2 and every positive Borel function £ on Gy. Let ps : 7 — (G2 be a Borel map such
that sg(p2(g1,92)) = ra(g1). We say that po satisfies the condition (A2) if it holds the equation

(A2) ]Q (050, P05 g ) ™Y) Ao (91)

=/ (g, p2(91,92)) AN s (g0 (91)
1

for every go € G2 and every positive Borel function £ on 7 and we say that ps satisfies the equation
(B2) if it holds the equation

(B2) €(p2(91,92)) dAa 56 (g1 (92) =/ €(92) dhar (g0 (92)
Go G2

for every g1 € (G1 and every positive Borel function £ on Ga. The existence of p; that satisfies the
conditions (A1) and (B1) implies that {\,} is W-invariant and the existence of p that satisfies
the conditions (A2) and (B2) also implies that {\,} is W-invariant.

Theorem 3.4. (1) Suppose that p is G1-invariant and that there exists a map py which satisfies
conditions (A2) and (B2). Then, for every £ € C.(T), there exists a positive number M such that
In* &l < Mllnllm for every n € Ce(T).

(2) Suppose that i is Ga-invariant and that there exists a map p1 which satisfies conditions (A1)
and (B1). Then, for every £ € C.(T), there exists a positive number M such that |ne&||g < M||n|| g
for every n € C.(T).

Proof. (1) For i = 1,2, let K; be a compact set in G; such that the support of £ is contained in
K x Ky. We denote by xx, the characteristic function of K;. Set

x(g1, 92, h2) = X5, (p1(h3 97" ) " ) XK, (g2ha)

for hy € G2 and (g1, 92) € Ty (hy)- For (hi,h2) € T, set

F(hy,hy) = /T In(hapi(hy ' g1 ) pa(hy 'gr ) T H1Px (915 92, ha) A (ha) (91, 92),

)Z(hQ):/TX(917927h2)d)‘rg(h2)(gla.92)'

Then we have
M%%SM&LH%MW%MW%M-
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Set M; = sup{\;i »(K;); z € GO}, Tt follows from the condition (A2) that we have X (hy) < M; M,
and that we have

F(hy, ha) < Mo / n(hagi s pa(gn h2))Pxs (91) o wcscinn) (91)-

1

It follows from the condition (B2) that we have, for g1 € Gy 4,

[f n(hagy ™, pa(gn, ho)) 2 dXa (o, ho) = [f ()2 vy (o) (1)-

Set ||17]12 = [ |n(uw)|? dA\s(u) and set M} = sup{ i (K;'); © € GO}, Since u is Gy-invariant, we
have

L (o) disto) = [ 1l e o) dhi (o)
1 1

< M|l

Therefore we have || &||z < M2 MM My||¢||so |7l -
(2) We keep the notations in the proof of (1). Set

X'(91, 92, h1) = xx, (9101) X K, (P2(g2h1))
for hy € G1 and (91792) S ZG(hl)' For (hl,hQ) S T, set

F/(hlth):/T|77(p1(92h1)7h2p2(92h1)_1)|2xl(917927hl)d)‘rc(fn)(glng))

X/(hl)=[IX’(917927hl)dArG(hl)(gl,gz)-
Then we have
el < ||§||c2>o/ F'(h1, ho)X'(hy) dA(ha, ha).
T

It follows from the condition (A1) that we have x'(h1) < M;Ms and that we have

F'(h1,hg) < M1/ In(p1(h1,s g2), hags )P XKz (92) A2 s (hr) (92)-

G2

It follows from the condition (B1) that we have, for g2 € G 4,

/T (o1 (s g2). hags D) Ay, ha) = /T ()2 vy () (1)-

Since p is Ga-invariant, we have

s ) () = [ ) ()

< Myl

Therefore we have ||n e &||g < M1M21/2M§1/2H§HOOH77HH. O

A triplet (p1,p2, 1) is called an invariant system for (Gp,G2) if p; satisfies conditions (Ai)
and (Bi) for ¢ = 1,2 and p is G1- and Ga-invariant. Let (G1,G2) be a matched pair with an
invariant system (p1, p2, 1). It follows from Theorem 3.4 (1) that there exists a homomorphism
m1 A1 — B(H) as algebras over C such that m1(§)n = n ¢ for £, n € C.(7T). We denote by Ay
the C*-subalgebra of B(H) generated by m1(A1). It follows from Theorem 3.4 (2) that there exists
a homomorphism 72 : Ay — B(H) as algebras over C such that mo(§)n =ne¢ for £, n € C.(7).
We denote by Ay the C*-subalgebra of B(H) generated by mo(Asz).
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4  Preserving actions induced by a matched pair

Definition 4.1. Let (G1,G2) be a matched pair with an invariant system (p1, p2, ). Then the
induced action > (resp. <) of (G1,Gs) is said to be preserving if p1(g1,92) = (g2 > g7 ") ~" (resp.
p2(g1:92) = g2 < g1 ') for every (g1,92) € T.

If > (resp. <) is preserving, then p; (resp. p2) always satisfies (B1) (resp. (B2)).
For i = 1,2, C.(G;) is a x-algebra with the following product and involution;

(@8)(9) = [ algh™ (1) s (),
@*(9) = alg )

for a, b € C.(G;) and g € G;. For x € GO set Hi,z = L*(Gi 4, ;\m) Define a *-representation

ﬁi,m : CC(Gl) — B(Hl7r) by

(Fra(a)C)(g) = / a(gh™)C(h) d; . (h)

G

for a € C.(G;), ¢ € H;, and g € G . Define the reduced norm |ja|| by ||a|| = sup{||7;(a)|;
r € GO}, The reduced groupoid C*-algebra C(G;) is the completion of C,(G;) by the reduced
norm. We can extend 7; , to the s-representation of C*(G;) on H; ,, which we denote again by
i

In this section, we will prove the following theorem.

Theorem 4.2. Let (G1,G3) be a matched pair with an invariant system (p1, p2, ) and suppose
that the actions > and < are preserving. Then, Ay and Aa are x-isomorphic to the reduced groupoid
C*-algebras C;(G1) and C}(G2) respectively.

Proof. Since p is G1- and Ga-invariant, we have

JRCE R Y B R SCARRCALZE

= / / 5(917 951) dj‘l,rg(gg)(gl)j‘lw (gg)d/i(if)
ao Jas Ja,
for £ € C.(T). Then we can define unitary operators Ty and Ts in B(H) by

(T16) (g1, 92) = £ 0 k1(g1, 92) = (91", p2(91, 92))

and

(T2€) (g1, 92) = € © Ka(g1,92) = £(pr(91,92),95 )
for ¢ € H and (g1,92) € 7T respectively. It follows from Lemma 3.2 that we have T? = I for
i =1,2. Thus we have T} = Tj.

For z € GO, set H, = L?(T,)\;). Note that we have H, = ﬁlﬁm ®IA{2J and H = f@ H, du(z).
Define a #-representation 71 , ® ¢ : C/(G1) — B(H,) by (71,2 ®¢)(a) = T1,,(a) ® I for a € C}(Gy)
and define a s-representation 7, : C¥(G1) — B(H) by 711 = f® (71,5 ® ¢)dp(x). Similarly define
s-representations ¢ ® o 5 : CX(G2) — B(H,) and 72 : C}(G2) — B(H). Since the support of p is
GO, 7, and 7, are faithful. Define a linear map ¢, : Co(T) — C.(G1) by

©1(§)(g1) = /5(9;1,@)&2“(91)(92)

for £ € Co(T) and g1 € G1 and define a linear map @9 : C.(7) — C.(G3) by

02(6)(g2) = / £(91,95 ") s o (o) (91)
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for £ € C.(T) and g2 € Go. Using the conditions (Al) and (A2), we have, for £ € C.(T), n € H
and (g1,92) € 7,

(m1(&)n) (91, 92)
- /GG E(ha, ha)n(gihy ™, pa(h, 92)) g (ga) () o o (g) (R2),
(m2(&)n)(91, 92)
N /Gl><G2 E(ha, h2)n(p1(grs ha), g2y ') A g g1) (1) dAs s (1) ().

It follows from Lemma 2.2 that we have T;m; (§)T; = 7;(p;(€)) for i = 1,2 and £ € C.(T). Therefore
T; A;T; is contained in 7;(C}(G;)) for i =1, 2.

We denote by X the characteristic function of GO in G. Since G is r-discrete, XG0
is a continuous function on G. For f; € C.(G;), define an element ¢1(f1) (resp. 2(f2)) of

Co(T) by ¥1(f1)(91,92) = f1(g7 Ixao (g2) (resp. ¥2(f2)(g1.92) = X (91)f2(95")). We have
0i(¥i(fi)) = fi- Therefore we have T;m;(¢;(fi))T; = 7:i(fi). This implies that 7;(C*(G;)) is
contained in T; A;T; for i = 1, 2. O
Corollary 4.3. Fori=1,2, A; is the closure of the set of elements m;(1;(f)) with f € C.(G;).

5 (C*-algebras arising from C.(7) Let (G1,G2) be a matched pair with an invariant system
(p1, p2, ). Moreover, suppose that the actions > and < are preserving. In this section, we define a
map 7 : C(T) — B(H) and show that the closure of m(C.(7)) is a C*-algebra.

For ¢ € C.(T), define ¢(§) € Ce(T %, T) by

D(€)((91,92), (h1, h2)) = (91, 73 ) xgo (h1) xgo (g2)-

For &, n € Co(T), define w(&)n € Co(T) by

(n(€)n)(w) = /T /T (1 © )W 50 1)~ Wiasy (110, 1)) dAy ) (0)d gy ()

for w € 7. Then we will show the following proposition.

Proposition 5.1. For every £ € C.(T), there exists a positive number M such that |7(&)n||lg <
M|nllz for every n € C.(T).

The above proposition implies that we can extend 7(£) to a bounded linear operator on H,
which we denote again by w(£). Therefore we have a linear map 7 : C.(7) — B(H). From the
proof of theorem 4.2, we have the following lemma.

Lemma 5.2. For f; € C.(G;) (i=1,2),n € H and (¢1,92) € T, the following equations hold;
(m1 (1 (1)) (g1, 92) = /G Fr(hym(gih " pa(g2hi ) d s (g0) (1),
(w2 (Y2 (f2))n) (91, 92) = /G Fo(hy V(o (hagi )™ g2hs ) dXa e (g0 (h2)-

For (g1,92) € T, h1 € G1 55(g5) and h2 € G g (ny), S€t

01(g1, 923 h1, ho) = (p1(hahigy ') ™, p2(ga(hahi) ™)) € 7,

and for (g1,92) € T, ha € Ga s5(g,) and hy € G2y (ny), Set

02(g1, 92: b1, ha) = (pr(hihagy ') " p2(g2(hihe) ™)) € T.
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Proof of Proposition 5.1. By using the conditions (A1) and (A2) and the fact that the induced
actions are preserving, we have

(5-1) 91,92)

/G ; E(ha, by " )n(02(g1, 923 has h2)) A1 g (ha) (h1)dAs 56 (g1) (2).

For i =1, 2, let K; be a compact subset of G; such that the support of £ is contained in K7 x Ks.
We can define 7;(¢;(xxk,)) € B(H) by a similar formula to that in Lemma 5.2. Then we have

I (x| < MMM where M; = sup{X; (K;); 2 € GO} and M! = sup{\; (K, "); z €
G}, Since we have, for u € T,

(7 (©)m) ()] < [[€]loc (2 (v Ocre N1 (81 (X g 1)) I (w),

we have

[m(©nlla < lI€lloollm (D1 Ot D2 (2 Ocre ) ]| -
O

For f; € C.(G;) (i = 1,2), define f; € C.(G;) by fi(g:) = fi(g; ). We denote by f1 ® fo the
restriction of f1 ® fo € C.(G1 x G2) to T by abuse of notation. Recall that k : 7 — 7 is the
homeomorphism introduced in Lemma 3.2. Then we have the following proposition.

Proposition 5.3. For f; € C.(G;) (i =1,2), the following equations hold;
mo (V2 (f2))m (1 (1)) = (L ® fa),
m1 (1 (f1))m2(V2(f2)) = 7((f1 @ f2) o k).

Proof. By Lemma 5.2, we have
(ma (1 (F2))ma (s (£2))) g1, 2)
-/ R 01012 B ) (B ),
(ma(a(£2))ms (V1 (F1)0) g1 92)
-/ 2 /| T8 (91,92t 1) B ()b ()

Note that we have (hy > hy ')~ hy thyt = hy' byt By using the conditions (A1) and (B1) and
the fact that > is preserving, we have

(m1 (1 (f1) 7T2(¢2(f2)) )(91,92)
/ fi(h ) fa(hyt < hy n(02(g1, 923 ha, h2)) AN re (hy) (h1) 2 56 (g0 (h2).

Using (5.1), we have the equations in the proposition. O

We denote by A;As the set of elements ajas with a; € A; (i = 1,2) and by Span A; Ay the
closed linear span of Ay As. Set A = span A;As.

Theorem 5.4. The closed linear space A is a C*-algebra.
The above theorem is an immediate consequence of the following proposition.

Proposition 5.5. span A; A; = span A2 A;.
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Proof. For f; € C.(G;) (i =1,2), F = (f1 ® f2) o s is an element of C¢(T). For every ¢ > 0, there
exist fi; € Ce(Gy) (i =1,2,j =1,---n) such that [|[F — )" f1,; ® f2,j]lec < € and the supports of
F and ) f1,; ® fo; are contained in some compact set K of Gy X Ga. It follows from Proposition
5.3 and the proof of Proposition 5.1 that we have

71 (¥1(f1))m2(2(f2)) Z (2 (f2,5))m (Y1 (i)l < eM,

where M is a constant that depends only on K. This implies that span A; As C span AxA;. B
taking adjoint, we have the reverse inclusion. O

It is easy to show that A; is contained in Ay Ay (i = 1,2). In particular A; is a C*-subalgebra
of A. By Proposition 5.3 we have the following corollary.

Corollary 5.6. The C*-algebra A is the closure of m(C.(T)).

6 A x-algebraic structure for C.(7) In this section, we prove that A is isomorphic to the
groupoid C*-algebra C*(G). To prove this fact, we introduce a x-algebraic structure for C.(7).

Let S be a closed subset of (G x G2)? consisting of elements (g1, g2, h1, h2) such that sg(g1) =
sa(92), ra(g2) = sq(h2) and sg(h1) = rg(hs). Let S8’ be a closed subset of 72 consisting of
elements (u,v) such that g(u) = r(v). Define a homeomorphism « : § — &' by

a(gr, g2, h1,h2) = (h1,hy ' pi(gigs (hihe) "), pa(g1gs *(hihe) ™) 7h).

The inverse of « is given by

a~' (91,92, h1,h2) = (pr(hahy 9195 1), pa(Pahs ' 9195 )~ 91,95 1)
For &, n € Co(T), define an element {n € C.(7) by

(€m(g1,92) = / (& @ m)(algr, g2, 1y ha)) Ay (hg) (7)Ao, (g2 (h2)-
For ¢ € C.(T), define an element £* € C.(T) by £€* = £ox. We will show that C.(7) is a *-algebra
with respect to the product £n and the involution £* defined above.
Lemma 6.1. For &, n e C.(T), the following equation holds; w(&§)m(n) = w(&n).
Proof. For f; € Co(G;) (i=1,2) and ¢ € C.(T), define f;¢ € Cc(T) b

(f1¢0)(g1,92) / F1(hyHC(h1g1. g2) dM rg (1) (h1),

(f2¢) (g1, 92) / fa(h3M)C(g1, hag2) dXa v (g0) ().
Then we have m (¢1(f1))7(() = 7((f1(C o k)) o k) and w2 (W2(f2))7(¢) = w(f2(). It follows from

Proposition 5.3 that we have

m(f1 @ fo)w(n) = m(fo(fi(n oK) o k) = w((fr @ f2)n)-
For {1, & € Cc(T), we have 16200 < M|€1][ool[€2]lc0, Where M is a constant that depends only

on the supports of §&; and &. For every ¢ > 0, there exist f;; € C.(G;) (i=1,2,j =1,--- ,n) such
that [|€ =" f1; ® faj]lec < € and the supports of £ and > f1,; ® f2; are contamed in some compact
set K of G1 x G2. It follows from the proof of Proposition 5.1 that we have

I (&)m(n) = (€)oo
< Nm(@m(n) = - w(f1y © foi)mm)lloe + 1Y w((f15 © fag)n) —(€mlso
< eM'||nl,

where M’ depends only on K and the support of . This implies that 7(&)w(n) = 7(&n). O
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Lemma 6.2. For ¢ € C.(T), the following equation holds; mw(&)* = w(£*).

Proof. Let f; € C.(G;), (i = 1,2). In the proof of Theorem 4.2, we show that T;7(v;(f:))T; =
7;(fi). Since 7; is a *-representation, we have 7((f;))* = w(¢;(fF)). It follows from Proposition
5.3 that we have 7(f1 ® f2)* = 7((f1 ® f2)*). As in the proof of Lemma 6.1, we can show that
w(&)* = (&) for every £ € C.(T). O

Proposition 6.3. The map 7 : C.(T) — A is injective.

Proof. Let £ € C.(T). Suppose that () = 0. It follows from Lemmas 6.1 and 6.2 that we have
m(€°¢) = w(€)*m(€) = 0. Take n € C.(7) whose support is contained in G(® x G(©). Then we
have (m(£*6)n)(z, z) = (£*€)(x, z)n(x, z) for every x € G, Therefore we have (£*¢)(z,z) = 0 for
z € GO, Since we have

(€°€)(x,2) = /Ifonhl, D27y e (hay () ko e (),

we have £ o k = 0. This implies that £ =0 O

Theorem 6.4. The set C.(T) is a x-algebra with respect to the product £n and the involution &*
and T becomes an injective x-homomorphism.

Proof. The statement follows from Lemmas 6.1 and 6.2 and Proposition 6.3. O
Theorem 6.5. The C*-algebra A is isomorphic to C}(G).

Proof. For i = 1,2, define a Hllbert space H; by H; = f H; . du(z) and define a faithful -
representation 7 : Cr(G;) — B(H;) by TGy = @frm dp(x). Define a measure A on G by

A = [ A du(x) and define a Hilbert space K by K = L?(G, \). We denote by g : C*(G) — B(K)
a faithful representation such that wa(f)n = fn for f,n € C.(G), where fn is a convolution
product in C;(G). Note that we have

/ 1(9) di( /G [ 019 @0 ()5 2)

for f € C.(G) and z € GO, Since 1 is G1- and Ga-invariant, we can show that p is G-invariant
using the conditions (A1) and (B1).

Define a homeomorphism w:G — T by w(g) = (p1(g7"),p2(g7")~1). The inverse of w is
given by w=(g1,92) = g2g7 ' Define a map w, : Co(G) — Co(T) by wi(f) = fow™". Then w,

is a *-isomorphism. Define a unitary operator @ € B(K, H) by &(n) = now~!. Since we have
(m(€)(n 0 K2)) 0 ko = & for &, 1 € Ce(T), we have (Tow)me(f)(Tow) ™! = n(wi(f)) for f € Ce(G).
Then the theorem follows from Corollary 5.6. O

7 Conditional expectations Define P, € B(H, H,) (resp. P € B(H, Hs)) by Pi(£)(g1) =
£(g1,56(g1)) (resp. P2(§)(g2) = &(sc(92),92)) for £ € H and g1 € Gy (resp. g2 € G2). Note
that we have (Pn1)(g1,92) = m(91)xgw© (92) and (P312)(91,92) = X (91)m2(g2). For i = 1,2,
recall that T} is a unitary operator defined in the proof of Theorem 4.2 and that 7;) is the faithful
w-representation of C}(G;) defined in the proof of Theorem 6.5. Note that we have T;A;,T; =
7;(Cr(G;)) by the proof of Theorem 4.2. Then we have the following lemma.

Lemma 7.1. The image of 7y is BT, AT, P} fori=1,2.
Proof. For i = 1,2, Define a linear map ¢; : C.(7) — C.(G;) by €1(€)(g1) = £(91,5¢(91)) and by
€2(£)(g2) = &€(sc(g2), g2) respectively. Then we have

PTim()T Py =7qy(e1(§)) and RTom(§)TaP;y = )(e2(8))

for £ € Co(T). These imply that P, T; AT; P C 7;y(Cy:(G;)) fori = 1,2. Since we have €1 (¢1(f1))

f1 for f1 € C.(G1) and ex(p2(f2)) = fa for fo € C.(Gy), the reverse inclusions hold. O
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Define a #-isomorphism ¢; : A; — C(G;) by t;(a) = 7; }(T;aT;) for a € A; and define a map
E;,:A— A; by Ei(a) = L;l o 7?(;)1 (P, T;aT; Py) for a € A.

Theorem 7.2. Fori=1,2, E; is a faithful conditional expectation.

Proof. For fi;, fl € C.(G;) (i =1,2), set a; = m;(¢i(fi)) and a) = m; (¢ (f!)). Then we have
PlTlagalallTle = PlTlagalTlpfﬁ(l)(f{),
PQTgaéagalTQP; = 7~T(2) (fé)PQTQCLQalTQPQ*.

Since we have T;a[T; = 7;(f!) by the proof of Theorem 4.2, we have E;(aza1a)) = E1(aza1)a) and
Es(abasayr) = ah,Fa(azaq). This implies that Ey(aay) = E1(a)a; and Es(asa) = agFs(a) for every
a € A and a; € A;. Since we have E;(a*) = E;(a)* (i = 1,2), we have Fy(a1a) = a1E1(a) and
Es(aaz) = Es(a)as for every a € A and a; € A;. It is easy to show that F;(a;) = a; for a; € A;
and that E;(a*a) > 0.

We show that E; is faithful. Note that elements of C*(G) can be viewed as elements of
Co(G) ([12], Proposition 4.2) and that the restriction map E : C*(G) — Co(G?) is a faithful
conditional expectation (cf. [12], Proposition 4.8). It follows from the proof of Theorem 6.5 that
we can define a *-isomorphism ¢ : A — C*(G) by t(a) = 75" ((Re®) 'a(k2@)). Then we have
Euv = 1,E1Ey = 12E,E;. This implies that E; is faithful. O

Since we have F;(Az) = 17 (Co(G®)) and Fy (A1) = 15 1(Co(G®)), we have the following
Corollary.

Corollary 7.3. A; N Ay = 17 (Co(G®)) = 151 (Co(G®)).

8 An action of a semi-direct product group Let I'y and I's be countable discrete groups
and let o : T's — Aut(T';) be a homomorphism. We denote by T' the semidirect product group
'y Xy I's. Then T'; and T’y are subgroups of I' and we have T' = I'1T's and T'; N Ty = {e}. Note
that we have 271 = 04,(71)72. Let X be a second countable locally compact Hausdorff space
and let o : I' — Homeo(X) be an action of I" on X by homeomorphisms. We set a,(z) =7 -z
for v € T and x € X. We denote by G the r-discrete groupoid I' x X. The source (rep. range)
map is defined by sg(7y,x) = = (resp. rq(7y,x) = - x) and the product and inverse are defined by
(v, v-2)(y,z) = (v, 2) and (y,2)"! = (y71,v-2) respectively. Let G; =Ty x X and Gy = o x X
be clopen subgroupoids of G. Then (G1,G2) is a matched pair in the sense of Definition 2.1. For
g1 = (711,7) € G1 and g2 = (72,71 - x) € G2, we have ga> g1 = (0, (1), 72 2) and g2 < g1 = (72, 7).
We identify ((y1,x), (v2,2)) € T with (71,2, ) and identify 7 with T’y x I's x X. The map W is
given by
W((’71, Y2, Py{ : x), (’717 Pyg’ {IT)) = ((0—72 (’71)77572_1’ Y2 - x)v (’7171’ Y2, {IT))

and the inverse is given by

W (1,92, 7 - 2), (7 ¥8: ) = (™ 8.7 - @), (7, 7295, ),
where v = 07! (71). Define p1 : T — G1 by pi(71,72,2) = (04, (71),72 - ) and define p> : T — G2

by p2(71,72, %) = (y2,71 - ). Let p be a positive regular Radon measure on G(®) whose support is
X. We assume that p is invariant under the action . Then (p1, p2, pt) is an invariant system for
(G1,G3). Moreover the induced actions > and < are preserving.

The representations 71, m and 7 satisfy the following equations: for &, € C.(7). With
respect to the x-algebraic structure for C.(7) introduced in Section 6, the product satisfies the
following equations;

—1 _
M rzx) = D > 0wy v mmtny s,y o),
RS RIS B

where v = 0;,1 (71) and the involution satisfies the following equations;
2

E (1,72, 2) = &lon, (v 1), 73 Y (rem) - ).
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