A TRINARY RELATION ARISING FROM A MATCHED PAIR OF *R*-DISCRETE GROUPOIDS

Мото О'исні

Received June 18, 2008; revised September 17, 2008

ABSTRACT. We introduce a notion of a matched pair of r-discrete groupoids and that of a trinary relation associated with a matched pair. We construct three C^* -algebras from a trinary relation and study properties of these algebras. The above results are applied to an action of a countable discrete semidirect product group on a topological space with an invariant measure.

1 Introduction A matched pair of groups has been studied in the theory of quantum groups (cf, [4], [5]) and in the theory of operator algebras (cf. [2]). The notion of a matched pair of groups is a generalization of that of semidirect product groups. It is natural to study a matched pair of groupoids as a generalization of an action of a semidirect product group on a space. In this paper, we introduce a notion of a matched pair of *r*-discrete groupoids, which is a generalization of that of semidirect product group. A matched pair of *r*-discrete groupoid is an *r*-discrete groupoid *G* and open and closed subgroupoids G_1 and G_2 which satisfy $G = G_1G_2$, $G_1 \cap G_2 = G^{(0)}$ and other conditions.

On the other hand, a notion of multiplicative unitaries was introduced by S. Baaj and G. Skandalis in [1] and a notion of pseudo-multiplicative unitaries was introduced by J. M. Vallin in [14] (see also [3]). The author has studied pseudo-multiplicative unitaries in the setting of Hilbert C^* -modules (cf. [6, 7, 8, 9]). Recently C^* -pseudo-multiplicative unitaries have been studied intensely by T. Timmermann (cf. [13]). A notion of pseudo-multiplicative unitaries can be converted naturally to a notion of maps on trinary relations satisfying pentagonal equations. The author has studied a sort of these maps in [10]. In this paper, we introduce a trinary relation \mathcal{T} and construct a map $\mathcal{W}: \mathcal{T} *_q \mathcal{T} \longrightarrow \mathcal{T} *_r \mathcal{T}$ that satisfies a pentagonal equation. We use \mathcal{W} to construct C^* -algebras associated with a matched pair (G_1, G_2) of r-discrete groupoids. We construct a C^* -algebra $A \simeq C_r^*(G)$ and C^* -subalgebra $A_i \simeq C_r^*(G_i)$ (i = 1, 2) such that $A = \overline{\text{span}}A_1A_2 = \overline{\text{span}}A_2A_1$ and $A_1 \cap A_2 \simeq C_0(G^{(0)})$.

The paper is organized as follows: In Section 2, we introduce a notion of a matched pair (G_1, G_2) of r-discrete groupoids. In Section 3, we construct a trinary relation \mathcal{T} associated with (G_1, G_2) and construct C^* -algebras A_1 and A_2 using \mathcal{T} when a matched pair has an invariant system. In Section 4, we show that A_i is isomorphic to the reduced groupoid C^* -algebra $C_r^*(G_i)$ (i = 1, 2) when the induced action is preserving. In Section 5, we construct a map π of $C_c(\mathcal{T})$ to $\mathcal{B}(H)$ for some Hilbert space H. Let A be the closed linear span of A_1A_2 . Then we show that A is also the closed linear span of A_2A_1 and it is the closure of $\pi(C_c(\mathcal{T}))$. In Section 6, we introduce a *-algebraic structure on $C_c(\mathcal{T})$ using π and show that A is isomorphic to $C_r^*(G)$. In Section 7, we construct a conditional expectation $E_i: A \longrightarrow A_i$ for i = 1, 2 and show that $A_1 \cap A_2$ is isomorphic to $C_0(G^{(0)})$. In Section 8, we apply the above results to an action of a countable discrete semidirect product group on a space with an invariant measure.

²⁰⁰⁰ Mathematics Subject Classification. 46L89.

Key words and phrases. r-discrete groupoid, groupoid C^* -algebra, trinary relation, pentagonal equation, matched pair .

2 A matched pair of groupoids Let G be a second countable locally compact Hausdorff rdiscrete groupoid. We denote by r_G (resp. s_G) the range (resp. source) map of G, by $G^{(0)}$ the unit space of G and by $G^{(2)}$ the set of composable pairs. For details of groupoids, we refer the reader to [11] and [12].

Definition 2.1. Let G_1 and G_2 be clopen subgroupoids of G. A pair (G_1, G_2) is called a matched pair if $G_1G_2 = G$, $G_1 \cap G_2 = G^{(0)}$ and there exist continuous maps $p_1 : G \to G_1$ and $p_2 : G \to G_2$ such that $g = p_1(g)p_2(g)$ for all $g \in G$.

Let (G_1, G_2) be a matched pair. For i = 1, 2, we have $G_i^{(0)} = G^{(0)}$ and set $G_{i,x} = s_G^{-1}(x) \cap G_i$ and $G_i^x = r_G^{-1}(x) \cap G_i$ for $x \in G^{(0)}$. Note that we have $r_G(g) = r_G(p_1(g))$ and $s_G(g) = s_G(p_2(g))$ for $g \in G$. For $(g_2, g_1) \in G^{(2)} \cap (G_2 \times G_1)$, set $g_2 \triangleright g_1 = p_1(g_2g_1)$ and $g_2 \triangleleft g_1 = p_2(g_2g_1)$.

Lemma 2.2. (1) For $g_2 \in G_2$, $g_1 \in G_1^{s_G(g_2)}$ and $h_2 \in G_{2,r_G(g_2)}$, the following equations hold:

$$g_2^{-1} \triangleright (g_2 \triangleright g_1) = g_1, \quad (g_2^{-1}h_2^{-1}) \triangleright (h_2 \triangleright (g_2 \triangleright g_1)) = g_1.$$

(2) For $g_1 \in G_1$, $g_2 \in G_{2,r_G(q_1)}$ and $h_1 \in G_1^{s_G(g_1)}$, the following equations hold:

$$(g_2 \triangleleft g_1) \triangleleft g_1^{-1} = g_2, \quad ((g_2 \triangleleft g_1) \triangleleft h_1) \triangleleft (h_1^{-1}g_1^{-1}) = g_2.$$

Proof. (1) Since we have $g_2^{-1}p_1(g_2g_1)p_2(g_2g_1) = g_2^{-1}(g_2g_1) = g_1$, we have

$$p_1(g_2^{-1}p_1(g_2g_1)) = p_1(g_1p_2(g_2g_1)^{-1}) = g_1.$$

Therefore the first statement of (1) follows.

Set $\tilde{g}_1 = g_2 \triangleright g_1$. It follows from the above argument that we have $g_2^{-1}\tilde{g}_1 = g_1 p_2 (g_2 g_1)^{-1}$. Since we have

$$(g_2^{-1}h_2^{-1})p_1(h_2\tilde{g}_1)p_2(h_2\tilde{g}_1) = g_2^{-1}\tilde{g}_1 = g_1p_2(g_2g_1)^{-1},$$

we have

$$(g_2^{-1}h_2^{-1})p_1(h_2\tilde{g}_1) = g_1p_2(g_2g_1)^{-1}p_2(h_2\tilde{g}_1)^{-1}$$

Thus we have $p_1((g_2^{-1}h_2^{-1})p_1(h_2\tilde{g}_1)) = g_1$. Therefore the second statement of (1) follows.

We can prove the statements of (2) similarly.

The following proposition is an immediate consequence of the above lemma.

Proposition 2.3. (1) For every $g_2 \in G_2$, the map $g_1 \in G_1^{s_G(g_2)} \mapsto g_2 \triangleright g_1 \in G_1^{r_G(g_2)}$ is a bijection. (2) For every $g_1 \in G_1$, the map $g_2 \in G_{2,r_G(g_1)} \mapsto g_2 \triangleleft g_1 \in G_{2,s_G(g_1)}$ is a bijection.

3 A trinary relation associated with a matched pair Let (G_1, G_2) be a matched pair. Set $\mathcal{T} = \{(g_1, g_2) \in G_1 \times G_2; s_G(g_1) = s_G(g_2)\}$. Define maps $q, r, s : \mathcal{T} \to G^{(0)}$ by $q(g_1, g_2) = r_G(g_1)$, $r(g_1, g_2) = r_G(g_2)$ and $s(g_1, g_2) = s_G(g_1) = s_G(g_2)$ respectively. We denote by $\mathcal{T} *_q \mathcal{T}$ the fibered product $\{(u, v) \in \mathcal{T}^2; s(u) = q(v)\}$. Define the fibered product $\mathcal{T} *_r \mathcal{T}$ similarly. We define a continuous map $\mathcal{W} : \mathcal{T} *_q \mathcal{T} \to \mathcal{T} *_r \mathcal{T}$ by

$$\mathcal{W}((g_1, g_2), (h_1, h_2)) = ((p_1(g_2h_1), h_2p_2(g_2h_1)^{-1}), (g_1h_1, p_2(g_2h_1)))$$

for $((g_1, g_2), (h_1, h_2)) \in \mathcal{T} *_q \mathcal{T}$. Then \mathcal{W} is a homeomorphism whose inverse is given by

$$\mathcal{W}^{-1}((g_1, g_2), (h_1, h_2)) = ((h_1 p_1(h_2^{-1} g_1^{-1}), p_2(h_2^{-1} g_1^{-1})^{-1}), (p_1(h_2^{-1} g_1^{-1})^{-1}, g_2 h_2))$$

for $((g_1, g_2), (h_1, h_2)) \in \mathcal{T} *_r \mathcal{T}$. We call $(\mathcal{T}, \mathcal{W})$ a trinary relation associated with (G_1, G_2) .

If $\mathcal{W}(u,v) = (u',v')$, then we have q(u) = q(v'), r(u) = q(u'), r(v) = r(u') and s(v) = s(v'). We denote by $\mathcal{T} *_q \mathcal{T} *_q \mathcal{T}$ the fibered product $\{(u,v,w) \in \mathcal{T}^3; s(u) = q(v), s(v) = q(w)\}$. Define the fibered products $\mathcal{T} *_r \mathcal{T} *_q \mathcal{T}, \mathcal{T} *_q \mathcal{T} *_r \mathcal{T}$ and $\mathcal{T} *_r \mathcal{T} *_r \mathcal{T}$ similarly. We also denote by $(\mathcal{T} \times \mathcal{T}) * \mathcal{T}$ the fibered product $\{(u,v,w) \in \mathcal{T}^3; s(u) = q(w), s(v) = r(w)\}$. Then we can define a map $\mathcal{W} *_q I : \mathcal{T} *_q \mathcal{T} *_q \mathcal{T} \to \mathcal{T} *_r \mathcal{T} *_q \mathcal{T}$ by $(\mathcal{W} *_q I)(u,v,w) = (\mathcal{W}(u,v),w)$. Similarly we can define the following maps; $I *_r \mathcal{W} : \mathcal{T} *_r \mathcal{T} *_q \mathcal{T} \to \mathcal{T} *_r \mathcal{T} *_q \mathcal{T} *_r \mathcal{T}, \mathcal{W} *_r I : \mathcal{T} *_q \mathcal{T} *_r \mathcal{T} \to \mathcal{T} *_r \mathcal{T} *_r \mathcal{T}$ and $I *_q \mathcal{W} : \mathcal{T} *_q \mathcal{T} *_q \mathcal{T} \to (\mathcal{T} \times \mathcal{T}) * \mathcal{T}$. We can also define a map $\mathcal{W}_{(13)} : (\mathcal{T} \times \mathcal{T}) * \mathcal{T} \to \mathcal{T} *_r \mathcal{T} *_r \mathcal{T}$ by $\mathcal{W}_{(13)}(u,v,w) = (v,\mathcal{W}(u,w))$. **Theorem 3.1.** The homeomorphism W satisfies the following pentagonal equation;

(PE) $(\mathcal{W} *_r I)(I *_r \mathcal{W})(\mathcal{W} *_q I) = \mathcal{W}_{(13)}(I *_q \mathcal{W}).$

Proof. For $(u, v, w) \in \mathcal{T} *_q \mathcal{T} *_q \mathcal{T}$, put

$$\begin{split} (\mathcal{W}\ast_r I)(I\ast_r \mathcal{W})(\mathcal{W}\ast_q I)(u,v,w) &= (u',v',w')\\ \mathcal{W}_{(13)}(I\ast_q \mathcal{W})(u,v,w) &= (u'',v'',w''). \end{split}$$

If $u = (f_1, f_2), v = (g_1, g_2), w = (h_1, h_2)$, the first coordinate u'_1 of u' is

$$p_1(g_2p_2(f_2g_1)^{-1}p_1(p_2(f_2g_1)h_1))$$

and the first coordinate u_1'' of u'' is $p_1(g_2h_1)$. We have

$$g_2 p_2(f_2 g_1)^{-1} p_1(p_2(f_2 g_1) h_1) = g_2 h_1 p_2(p_2(f_2 g_1) h_1)^{-1},$$

$$p_1(g_2 h_1 p_2(p_2(f_2 g_1) h_1)^{-1}) = p_1(g_2 h_1).$$

Therefore we have $u'_1 = u''_1$. Similarly we have $u'_2 = u''_2$ and conclude that u' = u''. Similarly we have v' = v'' and w' = w''.

The following map κ plays a role of an involution on \mathcal{T} .

Lemma 3.2. Define maps κ , κ_1 , $\kappa_2 : \mathcal{T} \to \mathcal{T}$ by $\kappa(g_1, g_2) = (g_2 \triangleright g_1^{-1}, (g_2 \triangleleft g_1^{-1})^{-1})$, $\kappa_1(g_1, g_2) = (g_1^{-1}, g_2 \triangleleft g_1^{-1})$ and $\kappa_2(g_1, g_2) = ((g_2 \triangleright g_1^{-1})^{-1}, g_2^{-1})$ respectively. Then κ^2 , κ_1^2 and κ_2^2 are the identity maps, in particular, κ , κ_1 and κ_2 are homeomorphisms.

Proof. Since we have, for i = 1, 2 and $(g_1, g_2) \in \mathcal{T}$,

$$p_i((p_1(g_2g_1^{-1})p_2(g_2g_1^{-1}))^{-1}) = p_i(g_1g_2^{-1}),$$

we have $\kappa^2(g_1, g_2) = (g_1, g_2)$. It follows from Lemma 2.2 that κ_1^2 and κ_2^2 are the identity maps. \Box

Let $\{\tilde{\lambda}_x; x \in G^{(0)}\}$ be a right Haar system on G such that $\tilde{\lambda}_x$ is a counting measure on G_x for every $x \in G^{(0)}$. For i = 1, 2, we denote by $\{\tilde{\lambda}_{i,x}; x \in G^{(0)}\}$ the right Haar system on G_i which is the restriction of $\{\tilde{\lambda}_x\}$ to G_i . We denote by $C_c(\mathcal{T})$ the set of complex valued continuous functions on \mathcal{T} with compact supports. Define a measure λ_x on \mathcal{T} by

$$\int_{\mathcal{T}} \xi(u) \, d\lambda_x(u) = \iint_{G_1 \times G_2} \xi(g_1, g_2) \, d\tilde{\lambda}_{1,x}(g_1) d\tilde{\lambda}_{2,x}(g_2)$$

for $\xi \in C_c(\mathcal{T})$. Note that the support of λ_x is $\mathcal{T}_x = s^{-1}(x)$ and that the map $x \in G^{(0)} \mapsto \int_{\mathcal{T}} \xi(u) d\lambda_x(u)$ is continuous for every $\xi \in C_c(\mathcal{T})$. We say that $\{\lambda_x\}$ is \mathcal{W} -invariant if it satisfies the following equation:

$$\iint_{\mathcal{T}*_q\mathcal{T}} \xi(\mathcal{W}(u,v)) \, d\lambda_{q(v)}(u) d\lambda_x(v) = \iint_{\mathcal{T}*_r\mathcal{T}} \xi(u,v) \, d\lambda_{r(v)}(u) d\lambda_x(v)$$

for every $\xi \in C_c(\mathcal{T} *_r \mathcal{T})$ and $x \in G^{(0)}$.

For $\xi, \eta \in C_c(\mathcal{T})$, define a product $\xi * \eta$ in $C_c(\mathcal{T})$ by

$$(\xi * \eta)(v) = \int_{\mathcal{T}} (\xi \otimes \eta) (\mathcal{W}^{-1}(u, v)) d\lambda_{r(v)}(u)$$

and define a product $\xi \bullet \eta$ in $C_c(\mathcal{T})$ by

$$(\xi \bullet \eta)(v) = \int_{\mathcal{T}} (\xi \otimes \eta)(\mathcal{W}(u,v)) d\lambda_{q(v)}(u).$$

Proposition 3.3. Suppose that $\{\lambda_x\}$ is \mathcal{W} -invariant. The above products are associative, that is, $(\xi * \eta) * \zeta = \xi * (\eta * \zeta)$ and $(\xi \bullet \eta) \bullet \zeta = \xi \bullet (\eta \bullet \zeta)$ for $\xi, \eta, \zeta \in C_c(\mathcal{T})$.

Proof. Set $\mathcal{W}^{-1}(u, v) = (\Psi_1(u, v), \Psi_2(u, v))$. Then we have, for $w \in \mathcal{T}$,

$$\begin{aligned} &((\xi * \eta) * \zeta)(w) \\ &= \iint (\xi \otimes \eta \otimes \zeta)(\mathcal{W}^{-1}(u, \Psi_1(v, w)), \Psi_2(v, w)) \, d\lambda_{q(v)}(u) d\lambda_{r(w)}(v) \\ &= \iint (\xi \otimes \eta \otimes \zeta)((\mathcal{W} *_q I)^{-1}(I *_r \mathcal{W})^{-1}(u, v, w)) \, d\lambda_{q(v)}(u) d\lambda_{r(w)}(v) \\ &= \iint (\xi \otimes \eta \otimes \zeta)((\mathcal{W} *_q I)^{-1}(I *_r \mathcal{W})^{-1}(\mathcal{W} *_r I)^{-1}(u, v, w)) \, d\lambda_{r(v)}(u) d\lambda_{r(w)}(v). \end{aligned}$$

The last equation follows from the invariance of $\{\lambda_x\}$. On the other hand, we have

$$\begin{aligned} &(\xi * (\eta * \zeta))(w) \\ &= \iint (\xi \otimes \eta \otimes \zeta)(\Psi_1(v, w), \mathcal{W}^{-1}(u, \Psi_2(v, w))) \, d\lambda_{r(v)}(u) d\lambda_{r(w)}(v) \\ &= \iint (\xi \otimes \eta \otimes \zeta)((I *_q \mathcal{W})^{-1}(\Psi_1(v, w), u, \Psi_2(v, w))) \, d\lambda_{r(v)}(u) d\lambda_{r(w)}(v) \\ &= \iint (\xi \otimes \eta \otimes \zeta)((I *_q \mathcal{W})^{-1} \mathcal{W}_{(13)}^{-1}(u, v, w)) \, d\lambda_{r(v)}(u) d\lambda_{r(w)}(v). \end{aligned}$$

Since \mathcal{W} satisfies (PE), we have $(\xi * \eta) * \zeta = \xi * (\eta * \zeta)$.

Set $\mathcal{W}(u,v) = (\Phi_1(u,v), \Phi_2(u,v))$. Then we have, for $w \in \mathcal{T}$,

$$\begin{aligned} &((\xi \bullet \eta) \bullet \zeta)(w) \\ &= \iint (\xi \otimes \eta \otimes \zeta)(\mathcal{W}(u, \Phi_1(v, w)), \Phi_2(v, w)) \, d\lambda_{r(v)}(u) d\lambda_{q(w)}(v) \\ &= \iint (\xi \otimes \eta \otimes \zeta)((\mathcal{W} *_r I)(I *_r \mathcal{W})(u, v, w)) \, d\lambda_{r(v)}(u) d\lambda_{q(w)}(v) \\ &= \iint (\xi \otimes \eta \otimes \zeta)((\mathcal{W} *_r I)(I *_r \mathcal{W})(\mathcal{W} *_q I)(u, v, w)) \, d\lambda_{q(v)}(u) d\lambda_{q(w)}(v). \end{aligned}$$

The last equation follows from the invariance of $\{\lambda_x\}$. On the other hand, we have

$$\begin{aligned} &(\xi \bullet (\eta \bullet \zeta))(w) \\ &= \iint (\xi \otimes \eta \otimes \zeta)(\Phi_1(v, w), \mathcal{W}(u, \Phi_2(v, w))) \, d\lambda_{q(v)}(u) d\lambda_{q(w)}(v) \\ &= \iint (\xi \otimes \eta \otimes \zeta)(\mathcal{W}_{(13)}(u, \Phi_1(v, w), \Phi_2(v, w))) \, d\lambda_{q(v)}(u) d\lambda_{q(w)}(v) \\ &= \iint (\xi \otimes \eta \otimes \zeta)(\mathcal{W}_{(13)}(I *_q \mathcal{W})(u, v, w)) \, d\lambda_{q(v)}(u) d\lambda_{q(w)}(v). \end{aligned}$$

Since \mathcal{W} satisfies (PE), we have $(\xi \bullet \eta) \bullet \zeta = \xi \bullet (\eta \bullet \zeta)$.

We denote by \mathcal{A}_1 the opposite algebra of $(C_c(\mathcal{T}), *)$, that is, $\mathcal{A}_1 = C_c(\mathcal{T})$ is an associative algebra over \mathbb{C} whose product is defined by $\xi \eta = \eta * \xi$ and we denote by \mathcal{A}_2 the opposite algebra of $(C_c(\mathcal{T}), \bullet)$, that is, $\mathcal{A}_2 = C_c(\mathcal{T})$ is an associative algebra over \mathbb{C} whose product is defined by $\xi \eta = \eta \bullet \xi$. Let μ be a positive regular Radon measure on $G^{(0)}$ whose support is $G^{(0)}$. For i = 1, 2, define a measure $\tilde{\lambda}_i$ on G_i by $\tilde{\lambda}_i = \int_{G^{(0)}} \tilde{\lambda}_{i,x} d\mu(x)$. We say that μ is G_i -invariant if it satisfies the following equation

$$\int_{G_i} \xi(g_i^{-1}) \, d\tilde{\lambda}_i(g_i) = \int_{G_i} \xi(g_i) \, d\tilde{\lambda}_i(g_i)$$

for every $\xi \in C_c(G_i)$. Define a measure λ on \mathcal{T} by $\lambda = \int_{G^{(0)}} \lambda_x d\mu(x)$. We denote by H the Hilbert space $L^2(\mathcal{T}, \lambda)$.

Let $\rho_1 : \mathcal{T} \to G_1$ be a Borel map such that $s_G(\rho_1(g_1, g_2)) = r_G(g_2)$. We say that ρ_1 satisfies the condition (A1) if it holds the equation

(A1)
$$\int_{G_2} \xi(p_1(g_2g_1), p_2(g_2g_1)^{-1}) d\tilde{\lambda}_{2,r_G(g_1)}(g_2)$$
$$= \int_{G_2} \xi(\rho_1(g_1, g_2), g_2^{-1}) d\tilde{\lambda}_{2,s_G(g_1)}(g_2)$$

for every $g_1 \in G_1$ and every positive Borel function ξ on \mathcal{T} and we say that ρ_1 satisfies the condition (B1) if it holds the equation

(B1)
$$\int_{G_1} \xi(\rho_1(g_1, g_2)) \, d\tilde{\lambda}_{1, s_G(g_2)}(g_1) = \int_{G_1} \xi(g_1) \, d\tilde{\lambda}_{1, r_G(g_2)}(g_1)$$

for every $g_2 \in G_2$ and every positive Borel function ξ on G_1 . Let $\rho_2 : \mathcal{T} \to G_2$ be a Borel map such that $s_G(\rho_2(g_1, g_2)) = r_G(g_1)$. We say that ρ_2 satisfies the condition (A2) if it holds the equation

(A2)
$$\int_{G_1} \xi(p_1(g_2^{-1}g_1^{-1}), p_2(g_2^{-1}g_1^{-1})^{-1}) d\tilde{\lambda}_{1,r_G(g_2)}(g_1)$$
$$= \int_{G_1} \xi(g_1^{-1}, \rho_2(g_1, g_2)) d\tilde{\lambda}_{1,s_G(g_2)}(g_1)$$

for every $g_2 \in G_2$ and every positive Borel function ξ on \mathcal{T} and we say that ρ_2 satisfies the equation (B2) if it holds the equation

(B2)
$$\int_{G_2} \xi(\rho_2(g_1, g_2)) d\tilde{\lambda}_{2, s_G(g_1)}(g_2) = \int_{G_2} \xi(g_2) d\tilde{\lambda}_{2, r_G(g_1)}(g_2)$$

for every $g_1 \in G_1$ and every positive Borel function ξ on G_2 . The existence of ρ_1 that satisfies the conditions (A1) and (B1) implies that $\{\lambda_x\}$ is \mathcal{W} -invariant and the existence of ρ_2 that satisfies the conditions (A2) and (B2) also implies that $\{\lambda_x\}$ is \mathcal{W} -invariant.

Theorem 3.4. (1) Suppose that μ is G_1 -invariant and that there exists a map ρ_2 which satisfies conditions (A2) and (B2). Then, for every $\xi \in C_c(\mathcal{T})$, there exists a positive number M such that $\|\eta * \xi\|_H \leq M \|\eta\|_H$ for every $\eta \in C_c(\mathcal{T})$.

(2) Suppose that μ is G_2 -invariant and that there exists a map ρ_1 which satisfies conditions (A1) and (B1). Then, for every $\xi \in C_c(\mathcal{T})$, there exists a positive number M such that $\|\eta \bullet \xi\|_H \leq M \|\eta\|_H$ for every $\eta \in C_c(\mathcal{T})$.

Proof. (1) For i = 1, 2, let K_i be a compact set in G_i such that the support of ξ is contained in $K_1 \times K_2$. We denote by χ_{K_i} the characteristic function of K_i . Set

$$\chi(g_1, g_2, h_2) = \chi_{K_1}(p_1(h_2^{-1}g_1^{-1})^{-1})\chi_{K_2}(g_2h_2)$$

for $h_2 \in G_2$ and $(g_1, g_2) \in \mathcal{T}_{r_G(h_2)}$. For $(h_1, h_2) \in \mathcal{T}$, set

$$F(h_1, h_2) = \int_{\mathcal{T}} |\eta(h_1 p_1(h_2^{-1} g_1^{-1}), p_2(h_2^{-1} g_1^{-1})^{-1})|^2 \chi(g_1, g_2, h_2) \, d\lambda_{r_G(h_2)}(g_1, g_2),$$
$$\tilde{\chi}(h_2) = \int_{\mathcal{T}} \chi(g_1, g_2, h_2) \, d\lambda_{r_G(h_2)}(g_1, g_2).$$

Then we have

$$\|\eta * \xi\|_{H}^{2} \leq \|\xi\|_{\infty}^{2} \int_{\mathcal{T}} F(h_{1}, h_{2}) \tilde{\chi}(h_{2}) \, d\lambda(h_{1}, h_{2}).$$

Set $M_i = \sup{\{\tilde{\lambda}_{i,x}(K_i); x \in G^{(0)}\}}$. It follows from the condition (A2) that we have $\tilde{\chi}(h_2) \leq M_1 M_2$ and that we have

$$F(h_1, h_2) \le M_2 \int_{G_1} |\eta(h_1 g_1^{-1}, \rho_2(g_1, h_2))|^2 \chi_{K_1}(g_1) \, d\tilde{\lambda}_{1, s_G(h_2)}(g_1).$$

It follows from the condition (B2) that we have, for $g_1 \in G_{1,x}$,

$$\int_{\mathcal{T}} |\eta(h_1 g_1^{-1}, \rho_2(g_1, h_2))|^2 d\lambda_x(h_1, h_2) = \int_{\mathcal{T}} |\eta(u)|^2 d\lambda_{r_G(g_1)}(u).$$

Set $\|\eta\|_x^2 = \int |\eta(u)|^2 d\lambda_x(u)$ and set $M'_i = \sup\{\tilde{\lambda}_{i,x}(K_i^{-1}); x \in G^{(0)}\}$. Since μ is G_1 -invariant, we have

$$\int_{G_1} \|\eta\|_{r_G(g_1)}^2 \chi_{K_1}(g_1) \, d\tilde{\lambda}_1(g_1) = \int_{G_1} \|\eta\|_{s_G(g_1)}^2 \chi_{K_1^{-1}}(g_1) \, d\tilde{\lambda}_1(g_1)$$
$$\leq M_1' \|\eta\|_H^2.$$

Therefore we have $\|\eta * \xi\|_H \le M_1^{1/2} M_1'^{1/2} M_2 \|\xi\|_{\infty} \|\eta\|_H.$

(2) We keep the notations in the proof of (1). Set

$$\chi'(g_1, g_2, h_1) = \chi_{K_1}(g_1 h_1) \chi_{K_2}(p_2(g_2 h_1))$$

for $h_1 \in G_1$ and $(g_1, g_2) \in \mathcal{T}_{r_G(h_1)}$. For $(h_1, h_2) \in \mathcal{T}$, set

$$F'(h_1, h_2) = \int_{\mathcal{T}} |\eta(p_1(g_2h_1), h_2p_2(g_2h_1)^{-1})|^2 \chi'(g_1, g_2, h_1) \, d\lambda_{r_G(h_1)}(g_1, g_2),$$
$$\tilde{\chi}'(h_1) = \int_{\mathcal{T}} \chi'(g_1, g_2, h_1) \, d\lambda_{r_G(h_1)}(g_1, g_2).$$

Then we have

$$\|\eta \bullet \xi\|_{H}^{2} \leq \|\xi\|_{\infty}^{2} \int_{\mathcal{T}} F'(h_{1},h_{2})\tilde{\chi}'(h_{1}) d\lambda(h_{1},h_{2}).$$

It follows from the condition (A1) that we have $\tilde{\chi}'(h_1) \leq M_1 M_2$ and that we have

$$F'(h_1, h_2) \le M_1 \int_{G_2} |\eta(\rho_1(h_1, g_2), h_2 g_2^{-1})|^2 \chi_{K_2}(g_2) \, d\tilde{\lambda}_{2, s_G(h_1)}(g_2).$$

It follows from the condition (B1) that we have, for $g_2 \in G_{2,x}$,

$$\int_{\mathcal{T}} |\eta(\rho_1(h_1, g_2), h_2 g_2^{-1})|^2 d\lambda_x(h_1, h_2) = \int_{\mathcal{T}} |\eta(u)|^2 d\lambda_{r_G(g_2)}(u).$$

Since μ is G_2 -invariant, we have

$$\int_{G_2} \|\eta\|_{r_G(g_2)}^2 \chi_{K_2}(g_2) d\tilde{\lambda}_2(g_2) = \int_{G_2} \|\eta\|_{s_G(g_2)}^2 \chi_{K_2^{-1}}(g_2) d\tilde{\lambda}_2(g_2)$$
$$\leq M_2' \|\eta\|_H^2.$$

Therefore we have $\|\eta \bullet \xi\|_H \le M_1 M_2^{1/2} M_2'^{1/2} \|\xi\|_{\infty} \|\eta\|_H$.

A triplet (ρ_1, ρ_2, μ) is called an invariant system for (G_1, G_2) if ρ_i satisfies conditions (Ai) and (Bi) for i = 1, 2 and μ is G_1 - and G_2 -invariant. Let (G_1, G_2) be a matched pair with an invariant system (ρ_1, ρ_2, μ) . It follows from Theorem 3.4 (1) that there exists a homomorphism $\pi_1 : \mathcal{A}_1 \to \mathcal{B}(H)$ as algebras over \mathbb{C} such that $\pi_1(\xi)\eta = \eta * \xi$ for $\xi, \eta \in C_c(\mathcal{T})$. We denote by A_1 the C^* -subalgebra of $\mathcal{B}(H)$ generated by $\pi_1(\mathcal{A}_1)$. It follows from Theorem 3.4 (2) that there exists a homomorphism $\pi_2 : \mathcal{A}_2 \to \mathcal{B}(H)$ as algebras over \mathbb{C} such that $\pi_2(\xi)\eta = \eta \bullet \xi$ for $\xi, \eta \in C_c(\mathcal{T})$. We denote by A_2 the C^* -subalgebra of $\mathcal{B}(H)$ generated by $\pi_2(\mathcal{A}_2)$.

4 Preserving actions induced by a matched pair

Definition 4.1. Let (G_1, G_2) be a matched pair with an invariant system (ρ_1, ρ_2, μ) . Then the induced action \triangleright (resp. \triangleleft) of (G_1, G_2) is said to be preserving if $\rho_1(g_1, g_2) = (g_2 \triangleright g_1^{-1})^{-1}$ (resp. $\rho_2(g_1, g_2) = g_2 \triangleleft g_1^{-1}$) for every $(g_1, g_2) \in \mathcal{T}$.

If \triangleright (resp. \triangleleft) is preserving, then ρ_1 (resp. ρ_2) always satisfies (B1) (resp. (B2)). For $i = 1, 2, C_c(G_i)$ is a *-algebra with the following product and involution;

$$(ab)(g) = \int_{G_i} a(gh^{-1})b(h) \, d\tilde{\lambda}_{i,s_G(g)}(h),$$
$$a^*(g) = \overline{a(g^{-1})}$$

for $a, b \in C_c(G_i)$ and $g \in G_i$. For $x \in G^{(0)}$, set $\tilde{H}_{i,x} = L^2(G_{i,x}, \tilde{\lambda}_{i,x})$. Define a *-representation $\tilde{\pi}_{i,x} : C_c(G_i) \to \mathcal{B}(\tilde{H}_{i,x})$ by

$$(\tilde{\pi}_{i,x}(a)\zeta)(g) = \int_{G_i} a(gh^{-1})\zeta(h) \, d\tilde{\lambda}_{i,x}(h)$$

for $a \in C_c(G_i)$, $\zeta \in \tilde{H}_{i,x}$ and $g \in G_{i,x}$. Define the reduced norm ||a|| by $||a|| = \sup\{|\tilde{\pi}_{i,x}(a)||; x \in G^{(0)}\}$. The reduced groupoid C^* -algebra $C^*_r(G_i)$ is the completion of $C_c(G_i)$ by the reduced norm. We can extend $\tilde{\pi}_{i,x}$ to the *-representation of $C^*_r(G_i)$ on $\tilde{H}_{i,x}$, which we denote again by $\tilde{\pi}_{i,x}$.

In this section, we will prove the following theorem.

Theorem 4.2. Let (G_1, G_2) be a matched pair with an invariant system (ρ_1, ρ_2, μ) and suppose that the actions \triangleright and \triangleleft are preserving. Then, A_1 and A_2 are *-isomorphic to the reduced groupoid C^* -algebras $C^*_r(G_1)$ and $C^*_r(G_2)$ respectively.

Proof. Since μ is G_1 - and G_2 -invariant, we have

$$\begin{split} \int_{\mathcal{T}} \xi(u) \, d\lambda(u) &= \int_{G^{(0)}} \int_{G_1} \int_{G_2} \xi(g_1^{-1}, g_2) \, d\tilde{\lambda}_{2, r_G(g_1)}(g_2) \tilde{\lambda}_{1, x}(g_1) d\mu(x) \\ &= \int_{G^{(0)}} \int_{G_2} \int_{G_1} \xi(g_1, g_2^{-1}) \, d\tilde{\lambda}_{1, r_G(g_2)}(g_1) \tilde{\lambda}_{2, x}(g_2) d\mu(x) \end{split}$$

for $\xi \in C_c(\mathcal{T})$. Then we can define unitary operators T_1 and T_2 in $\mathcal{B}(H)$ by

$$(T_1\xi)(g_1,g_2) = \xi \circ \kappa_1(g_1,g_2) = \xi(g_1^{-1},\rho_2(g_1,g_2))$$

and

$$(T_2\xi)(g_1,g_2) = \xi \circ \kappa_2(g_1,g_2) = \xi(\rho_1(g_1,g_2),g_2^{-1})$$

for $\xi \in H$ and $(g_1, g_2) \in \mathcal{T}$ respectively. It follows from Lemma 3.2 that we have $T_i^2 = I$ for i = 1, 2. Thus we have $T_i^* = T_i$.

For $x \in G^{(0)}$, set $H_x = L^2(\mathcal{T}, \lambda_x)$. Note that we have $H_x = \tilde{H}_{1,x} \otimes \tilde{H}_{2,x}$ and $H = \int^{\oplus} H_x d\mu(x)$. Define a *-representation $\tilde{\pi}_{1,x} \otimes \iota : C_r^*(G_1) \to \mathcal{B}(H_x)$ by $(\tilde{\pi}_{1,x} \otimes \iota)(a) = \tilde{\pi}_{1,x}(a) \otimes I$ for $a \in C_r^*(G_1)$ and define a *-representation $\tilde{\pi}_1 : C_r^*(G_1) \to \mathcal{B}(H)$ by $\tilde{\pi}_1 = \int^{\oplus} (\tilde{\pi}_{1,x} \otimes \iota) d\mu(x)$. Similarly define *-representations $\iota \otimes \tilde{\pi}_{2,x} : C_r^*(G_2) \to \mathcal{B}(H_x)$ and $\tilde{\pi}_2 : C_r^*(G_2) \to \mathcal{B}(H)$. Since the support of μ is $G^{(0)}, \tilde{\pi}_1$ and $\tilde{\pi}_2$ are faithful. Define a linear map $\varphi_1 : C_c(\mathcal{T}) \to C_c(G_1)$ by

$$\varphi_1(\xi)(g_1) = \int \xi(g_1^{-1}, g_2) \, d\tilde{\lambda}_{2, r_G(g_1)}(g_2)$$

for $\xi \in C_c(\mathcal{T})$ and $g_1 \in G_1$ and define a linear map $\varphi_2 : C_c(\mathcal{T}) \to C_c(G_2)$ by

$$\varphi_2(\xi)(g_2) = \int \xi(g_1, g_2^{-1}) \, d\tilde{\lambda}_{1, r_G(g_2)}(g_1)$$

for $\xi \in C_c(\mathcal{T})$ and $g_2 \in G_2$. Using the conditions (A1) and (A2), we have, for $\xi \in C_c(\mathcal{T})$, $\eta \in H$ and $(g_1, g_2) \in \mathcal{T}$,

$$\begin{aligned} &(\pi_1(\xi)\eta)(g_1,g_2)\\ &= \int_{G_1\times G_2} \xi(h_1,h_2)\eta(g_1h_1^{-1},\rho_2(h_1,g_2))\,d\tilde{\lambda}_{1,s_G(g_2)}(h_1)d\tilde{\lambda}_{2,s_G(g_2)}(h_2),\\ &(\pi_2(\xi)\eta)(g_1,g_2)\\ &= \int_{G_1\times G_2} \xi(h_1,h_2)\eta(\rho_1(g_1,h_2),g_2h_2^{-1})\,d\tilde{\lambda}_{1,s_G(g_1)}(h_1)d\tilde{\lambda}_{2,s_G(g_1)}(h_2). \end{aligned}$$

It follows from Lemma 2.2 that we have $T_i \pi_i(\xi) T_i = \tilde{\pi}_i(\varphi_i(\xi))$ for i = 1, 2 and $\xi \in C_c(\mathcal{T})$. Therefore $T_i A_i T_i$ is contained in $\tilde{\pi}_i(C_r^*(G_i))$ for i = 1, 2.

We denote by $\chi_{G^{(0)}}$ the characteristic function of $G^{(0)}$ in G. Since G is r-discrete, $\chi_{G^{(0)}}$ is a continuous function on G. For $f_i \in C_c(G_i)$, define an element $\psi_1(f_1)$ (resp. $\psi_2(f_2)$) of $C_c(\mathcal{T})$ by $\psi_1(f_1)(g_1,g_2) = f_1(g_1^{-1})\chi_{G^{(0)}}(g_2)$ (resp. $\psi_2(f_2)(g_1,g_2) = \chi_{G^{(0)}}(g_1)f_2(g_2^{-1})$). We have $\varphi_i(\psi_i(f_i)) = f_i$. Therefore we have $T_i\pi_i(\psi_i(f_i))T_i = \tilde{\pi}_i(f_i)$. This implies that $\tilde{\pi}_i(C_r^*(G_i))$ is contained in $T_iA_iT_i$ for i = 1, 2.

Corollary 4.3. For $i = 1, 2, A_i$ is the closure of the set of elements $\pi_i(\psi_i(f))$ with $f \in C_c(G_i)$.

5 C^* -algebras arising from $C_c(\mathcal{T})$ Let (G_1, G_2) be a matched pair with an invariant system (ρ_1, ρ_2, μ) . Moreover, suppose that the actions \triangleright and \triangleleft are preserving. In this section, we define a map $\pi : C_c(\mathcal{T}) \to \mathcal{B}(H)$ and show that the closure of $\pi(C_c(\mathcal{T}))$ is a C^* -algebra.

For $\xi \in C_c(\mathcal{T})$, define $\psi(\xi) \in C_c(\mathcal{T} *_r \mathcal{T})$ by

$$\psi(\xi)((g_1,g_2),(h_1,h_2)) = \xi(g_1,h_2^{-1})\chi_{G^{(0)}}(h_1)\chi_{G^{(0)}}(g_2).$$

For $\xi, \eta \in C_c(\mathcal{T})$, define $\pi(\xi)\eta \in C_c(\mathcal{T})$ by

$$(\pi(\xi)\eta)(w) = \int_{\mathcal{T}} \int_{\mathcal{T}} (\eta \otimes \psi(\xi))((\mathcal{W} *_r I)^{-1} \mathcal{W}_{(13)}(u, v, w)) \, d\lambda_{r(w)}(v) d\lambda_{q(w)}(u)$$

for $w \in \mathcal{T}$. Then we will show the following proposition.

Proposition 5.1. For every $\xi \in C_c(\mathcal{T})$, there exists a positive number M such that $\|\pi(\xi)\eta\|_H \leq M \|\eta\|_H$ for every $\eta \in C_c(\mathcal{T})$.

The above proposition implies that we can extend $\pi(\xi)$ to a bounded linear operator on H, which we denote again by $\pi(\xi)$. Therefore we have a linear map $\pi : C_c(\mathcal{T}) \to \mathcal{B}(H)$. From the proof of theorem 4.2, we have the following lemma.

Lemma 5.2. For $f_i \in C_c(G_i)$ (i = 1, 2), $\eta \in H$ and $(g_1, g_2) \in \mathcal{T}$, the following equations hold;

$$(\pi_1(\psi_1(f_1))\eta)(g_1,g_2) = \int_{G_1} f_1(h_1^{-1})\eta(g_1h_1^{-1},p_2(g_2h_1^{-1})) d\tilde{\lambda}_{1,s_G(g_2)}(h_1),$$

$$(\pi_2(\psi_2(f_2))\eta)(g_1,g_2) = \int_{G_2} f_2(h_2^{-1})\eta(p_1(h_2g_1^{-1})^{-1},g_2h_2^{-1}) d\tilde{\lambda}_{2,s_G(g_1)}(h_2).$$

For $(g_1, g_2) \in \mathcal{T}$, $h_1 \in G_{1, s_G(g_2)}$ and $h_2 \in G_{2, r_G(h_1)}$, set

$$\theta_1(g_1, g_2; h_1, h_2) = (p_1(h_2h_1g_1^{-1})^{-1}, p_2(g_2(h_2h_1)^{-1})) \in \mathcal{T},$$

and for $(g_1, g_2) \in \mathcal{T}$, $h_2 \in G_{2, s_G(g_1)}$ and $h_1 \in G_{2, r_G(h_2)}$, set

$$\theta_2(g_1, g_2; h_1, h_2) = (p_1(h_1h_2g_1^{-1})^{-1}, p_2(g_2(h_1h_2)^{-1})) \in \mathcal{T}.$$

Proof of Proposition 5.1. By using the conditions (A1) and (A2) and the fact that the induced actions are preserving, we have

(5.1)
$$(\pi(\xi)\eta)(g_1,g_2) = \int_{G_2} \int_{G_1} \xi(h_1,h_2^{-1})\eta(\theta_2(g_1,g_2;h_1,h_2)) d\tilde{\lambda}_{1,r_G(h_2)}(h_1) d\tilde{\lambda}_{2,s_G(g_1)}(h_2).$$

For i = 1, 2, let K_i be a compact subset of G_i such that the support of ξ is contained in $K_1 \times K_2$. We can define $\pi_i(\psi_i(\chi_{K_i})) \in \mathcal{B}(H)$ by a similar formula to that in Lemma 5.2. Then we have $\|\pi_i(\psi(\chi_{K_i}))\| \leq M_i^{1/2} M_i'^{1/2}$, where $M_i = \sup\{\tilde{\lambda}_{i,x}(K_i); x \in G^{(0)}\}$ and $M_i' = \sup\{\tilde{\lambda}_{i,x}(K_i^{-1}); x \in G^{(0)}\}$. Since we have, for $u \in \mathcal{T}$,

$$|(\pi(\xi)\eta)(u)| \le ||\xi||_{\infty} (\pi_2(\psi(\chi_{K_2}))\pi_1(\psi_1(\chi_{K_1^{-1}}))|\eta|)(u),$$

we have

$$\|\pi(\xi)\eta\|_{H} \le \|\xi\|_{\infty} \|\pi_{1}(\psi_{1}(\chi_{K_{1}^{-1}}))\| \|\pi_{2}(\psi_{2}(\chi_{K_{2}}))\| \|\eta\|_{H}.$$

For $f_i \in C_c(G_i)$ (i = 1, 2), define $\check{f}_i \in C_c(G_i)$ by $\check{f}_i(g_i) = f_i(g_i^{-1})$. We denote by $f_1 \otimes f_2$ the restriction of $f_1 \otimes f_2 \in C_c(G_1 \times G_2)$ to \mathcal{T} by abuse of notation. Recall that $\kappa : \mathcal{T} \to \mathcal{T}$ is the homeomorphism introduced in Lemma 3.2. Then we have the following proposition.

Proposition 5.3. For $f_i \in C_c(G_i)$ (i = 1, 2), the following equations hold;

$$\pi_2(\psi_2(f_2))\pi_1(\psi_1(f_1)) = \pi(\check{f}_1 \otimes f_2), \pi_1(\psi_1(f_1))\pi_2(\psi_2(f_2)) = \pi((f_1 \otimes \check{f}_2) \circ \kappa)$$

Proof. By Lemma 5.2, we have

$$\begin{split} &(\pi_1(\psi_1(f_1))\pi_2(\psi_2(f_2))\eta)(g_1,g_2) \\ &= \int_{G_1} \int_{G_2} f_1(h_1^{-1})f_2(h_2^{-1})\eta(\theta_1(g_1,g_2;h_1,h_2)) \, d\tilde{\lambda}_{2,r_G(h_1)}(h_2) d\tilde{\lambda}_{1,s_G(g_2)}(h_1), \\ &(\pi_2(\psi_2(f_2))\pi_1(\psi_1(f_1))\eta)(g_1,g_2) \\ &= \int_{G_2} \int_{G_1} f_1(h_1^{-1})f_2(h_2^{-1})\eta(\theta_2(g_1,g_2;h_1,h_2)) \, d\tilde{\lambda}_{1,r_G(h_2)}(h_1) d\tilde{\lambda}_{2,s_G(g_1)}(h_2). \end{split}$$

Note that we have $(h_2^{-1} \triangleright h_1^{-1})^{-1} h_2^{-1} h_1^{-1} = h_2^{-1} \triangleleft h_1^{-1}$. By using the conditions (A1) and (B1) and the fact that \triangleright is preserving, we have

$$(\pi_1(\psi_1(f_1))\pi_2(\psi_2(f_2))\eta)(g_1,g_2)$$

= $\iint f_1(h_2^{-1} \triangleright h_1^{-1})f_2(h_2^{-1} \triangleleft h_1^{-1})\eta(\theta_2(g_1,g_2;h_1,h_2)) d\tilde{\lambda}_{1,r_G(h_2)}(h_1)d\tilde{\lambda}_{2,s_G(g_1)}(h_2).$

Using (5.1), we have the equations in the proposition.

We denote by A_1A_2 the set of elements a_1a_2 with $a_i \in A_i$ (i = 1, 2) and by $\overline{\operatorname{span}} A_1A_2$ the closed linear span of A_1A_2 . Set $A = \overline{\operatorname{span}} A_1A_2$.

Theorem 5.4. The closed linear space A is a C^* -algebra.

The above theorem is an immediate consequence of the following proposition.

Proposition 5.5. $\overline{\text{span}} A_1 A_2 = \overline{\text{span}} A_2 A_1$.

Proof. For $f_i \in C_c(G_i)$ (i = 1, 2), $F = (f_1 \otimes f_2) \circ \kappa$ is an element of $C_c(\mathcal{T})$. For every $\varepsilon > 0$, there exist $f_{ij} \in C_c(G_i)$ $(i = 1, 2, j = 1, \dots, n)$ such that $||F - \sum f_{1,j} \otimes f_{2,j}||_{\infty} < \varepsilon$ and the supports of F and $\sum f_{1,j} \otimes f_{2,j}$ are contained in some compact set K of $G_1 \times G_2$. It follows from Proposition 5.3 and the proof of Proposition 5.1 that we have

$$\|\pi_1(\psi_1(f_1))\pi_2(\psi_2(f_2)) - \sum_{j=1}^n \pi_2(\psi_2(f_{2,j}))\pi_1(\psi_1(\check{f}_{1,j}))\| \le \varepsilon M,$$

where M is a constant that depends only on K. This implies that $\overline{\operatorname{span}} A_1 A_2 \subset \overline{\operatorname{span}} A_2 A_1$. By taking adjoint, we have the reverse inclusion.

It is easy to show that A_i is contained in $\overline{A_1A_2}$ (i = 1, 2). In particular A_i is a C^{*}-subalgebra of A. By Proposition 5.3 we have the following corollary.

Corollary 5.6. The C^* -algebra A is the closure of $\pi(C_c(\mathcal{T}))$.

6 A *-algebraic structure for $C_c(\mathcal{T})$ In this section, we prove that A is isomorphic to the groupoid C^* -algebra $C^*_r(G)$. To prove this fact, we introduce a *-algebraic structure for $C_c(\mathcal{T})$.

Let S be a closed subset of $(G_1 \times G_2)^2$ consisting of elements (g_1, g_2, h_1, h_2) such that $s_G(g_1) = s_G(g_2)$, $r_G(g_2) = s_G(h_2)$ and $s_G(h_1) = r_G(h_2)$. Let S' be a closed subset of \mathcal{T}^2 consisting of elements (u, v) such that q(u) = r(v). Define a homeomorphism $\alpha : S \to S'$ by

$$\alpha(g_1, g_2, h_1, h_2) = (h_1, h_2^{-1}, p_1(g_1g_2^{-1}(h_1h_2)^{-1}), p_2(g_1g_2^{-1}(h_1h_2)^{-1})^{-1})$$

The inverse of α is given by

$$\alpha^{-1}(g_1, g_2, h_1, h_2) = (p_1(h_1h_2^{-1}g_1g_2^{-1}), p_2(h_1h_2^{-1}g_1g_2^{-1})^{-1}, g_1, g_2^{-1}).$$

For $\xi, \eta \in C_c(\mathcal{T})$, define an element $\xi \eta \in C_c(\mathcal{T})$ by

$$(\xi\eta)(g_1,g_2) = \iint (\xi \otimes \eta)(\alpha(g_1,g_2,h_1,h_2)) \, d\tilde{\lambda}_{1,r_G(h_2)}(h_1) d\tilde{\lambda}_{2,r_G(g_2)}(h_2).$$

For $\xi \in C_c(\mathcal{T})$, define an element $\xi^* \in C_c(\mathcal{T})$ by $\xi^* = \overline{\xi} \circ \kappa$. We will show that $C_c(\mathcal{T})$ is a *-algebra with respect to the product $\xi\eta$ and the involution ξ^* defined above.

Lemma 6.1. For $\xi, \eta \in C_c(\mathcal{T})$, the following equation holds; $\pi(\xi)\pi(\eta) = \pi(\xi\eta)$. *Proof.* For $f_i \in C_c(G_i)$ (i = 1, 2) and $\zeta \in C_c(\mathcal{T})$, define $f_i \zeta \in C_c(\mathcal{T})$ by

$$(f_1\zeta)(g_1,g_2) = \int_{G_1} f_1(h_1^{-1})\zeta(h_1g_1,g_2) d\tilde{\lambda}_{1,r_G(g_1)}(h_1),$$

$$(f_2\zeta)(g_1,g_2) = \int_{G_2} f_2(h_2^{-1})\zeta(g_1,h_2g_2) d\tilde{\lambda}_{2,r_G(g_2)}(h_2).$$

Then we have $\pi_1(\psi_1(f_1))\pi(\zeta) = \pi((f_1(\zeta \circ \kappa)) \circ \kappa)$ and $\pi_2(\psi_2(f_2))\pi(\zeta) = \pi(f_2\zeta)$. It follows from Proposition 5.3 that we have

$$\pi(f_1 \otimes f_2)\pi(\eta) = \pi(f_2(\check{f}_1(\eta \circ \kappa)) \circ \kappa) = \pi((f_1 \otimes f_2)\eta).$$

For $\xi_1, \xi_2 \in C_c(\mathcal{T})$, we have $\|\xi_1\xi_2\|_{\infty} \leq M\|\xi_1\|_{\infty}\|\xi_2\|_{\infty}$, where M is a constant that depends only on the supports of ξ_1 and ξ_2 . For every $\varepsilon > 0$, there exist $f_{ij} \in C_c(G_i)$ $(i = 1, 2, j = 1, \dots, n)$ such that $\|\xi - \sum f_{1j} \otimes f_{2j}\|_{\infty} < \varepsilon$ and the supports of ξ and $\sum f_{1j} \otimes f_{2,j}$ are contained in some compact set K of $G_1 \times G_2$. It follows from the proof of Proposition 5.1 that we have

$$\begin{aligned} \|\pi(\xi)\pi(\eta) - \pi(\xi\eta)\|_{\infty} \\ &\leq \|\pi(\xi)\pi(\eta) - \sum \pi(f_{1j} \otimes f_{2,j})\pi(\eta)\|_{\infty} + \|\sum \pi((f_{1j} \otimes f_{2,j})\eta) - \pi(\xi\eta)\|_{\infty} \\ &\leq \varepsilon M' \|\eta\|_{\infty}, \end{aligned}$$

where M' depends only on K and the support of η . This implies that $\pi(\xi)\pi(\eta) = \pi(\xi\eta)$.

Lemma 6.2. For $\xi \in C_c(\mathcal{T})$, the following equation holds; $\pi(\xi)^* = \pi(\xi^*)$.

Proof. Let $f_i \in C_c(G_i)$, (i = 1, 2). In the proof of Theorem 4.2, we show that $T_i \pi(\psi_i(f_i))T_i = \tilde{\pi}_i(f_i)$. Since $\tilde{\pi}_i$ is a *-representation, we have $\pi(\psi(f_i))^* = \pi(\psi_i(f_i^*))$. It follows from Proposition 5.3 that we have $\pi(f_1 \otimes f_2)^* = \pi((f_1 \otimes f_2)^*)$. As in the proof of Lemma 6.1, we can show that $\pi(\xi)^* = \pi(\xi^*)$ for every $\xi \in C_c(\mathcal{T})$.

Proposition 6.3. The map $\pi : C_c(\mathcal{T}) \to A$ is injective.

Proof. Let $\xi \in C_c(\mathcal{T})$. Suppose that $\pi(\xi) = 0$. It follows from Lemmas 6.1 and 6.2 that we have $\pi(\xi^*\xi) = \pi(\xi)^*\pi(\xi) = 0$. Take $\eta \in C_c(\mathcal{T})$ whose support is contained in $G^{(0)} \times G^{(0)}$. Then we have $(\pi(\xi^*\xi)\eta)(x,x) = (\xi^*\xi)(x,x)\eta(x,x)$ for every $x \in G^{(0)}$. Therefore we have $(\xi^*\xi)(x,x) = 0$ for $x \in G^{(0)}$. Since we have

$$(\xi^*\xi)(x,x) = \iint |\xi \circ \kappa(h_1, h_2^{-1})|^2 d\tilde{\lambda}_{1,r_G(h_2)}(h_1) d\tilde{\lambda}_{2,x}(h_2),$$

we have $\xi \circ \kappa = 0$. This implies that $\xi = 0$

Theorem 6.4. The set $C_c(\mathcal{T})$ is a *-algebra with respect to the product $\xi\eta$ and the involution ξ^* and π becomes an injective *-homomorphism.

Proof. The statement follows from Lemmas 6.1 and 6.2 and Proposition 6.3.

Theorem 6.5. The C^* -algebra A is isomorphic to $C^*_r(G)$.

Proof. For i = 1, 2, define a Hilbert space \tilde{H}_i by $\tilde{H}_i = \int^{\oplus} \tilde{H}_{i,x} d\mu(x)$ and define a faithful *representation $\tilde{\pi}_{(i)} : C_r^*(G_i) \to \mathcal{B}(\tilde{H}_i)$ by $\tilde{\pi}_{(i)} = \int^{\oplus} \tilde{\pi}_{i,x} d\mu(x)$. Define a measure $\tilde{\lambda}$ on G by $\tilde{\lambda} = \int \tilde{\lambda}_x d\mu(x)$ and define a Hilbert space K by $K = L^2(G, \tilde{\lambda})$. We denote by $\pi_G : C_r^*(G) \to \mathcal{B}(K)$ a faithful representation such that $\pi_G(f)\eta = f\eta$ for $f, \eta \in C_c(G)$, where $f\eta$ is a convolution product in $C_c(G)$. Note that we have

$$\int_{G} f(g) \, d\tilde{\lambda}_{x}(g) = \int_{G_2} \int_{G_1} f(g_1 g_2) \, d\tilde{\lambda}_{1, r_G(g_2)}(g_1) d\tilde{\lambda}_{2, x}(g_2)$$

for $f \in C_c(G)$ and $x \in G^{(0)}$. Since μ is G_1 - and G_2 -invariant, we can show that μ is G-invariant using the conditions (A1) and (B1).

Define a homeomorphism $\omega: G \to \mathcal{T}$ by $\omega(g) = (p_1(g^{-1}), p_2(g^{-1})^{-1})$. The inverse of ω is given by $\omega^{-1}(g_1, g_2) = g_2 g_1^{-1}$. Define a map $\omega_* : C_c(G) \to C_c(\mathcal{T})$ by $\omega_*(f) = f \circ \omega^{-1}$. Then ω_* is a *-isomorphism. Define a unitary operator $\tilde{\omega} \in \mathcal{B}(K, H)$ by $\tilde{\omega}(\eta) = \eta \circ \omega^{-1}$. Since we have $(\pi(\xi)(\eta \circ \kappa_2)) \circ \kappa_2 = \xi \eta$ for $\xi, \eta \in C_c(\mathcal{T})$, we have $(T_2 \tilde{\omega}) \pi_G(f)(T_2 \tilde{\omega})^{-1} = \pi(\omega_*(f))$ for $f \in C_c(G)$. Then the theorem follows from Corollary 5.6.

7 Conditional expectations Define $P_1 \in \mathcal{B}(H, \tilde{H}_1)$ (resp. $P_2 \in \mathcal{B}(H, \tilde{H}_2)$) by $P_1(\xi)(g_1) = \xi(g_1, s_G(g_1))$ (resp. $P_2(\xi)(g_2) = \xi(s_G(g_2), g_2)$) for $\xi \in H$ and $g_1 \in G_1$ (resp. $g_2 \in G_2$). Note that we have $(P_1^*\eta_1)(g_1, g_2) = \eta_1(g_1)\chi_{G^{(0)}}(g_2)$ and $(P_2^*\eta_2)(g_1, g_2) = \chi_{G^{(0)}}(g_1)\eta_2(g_2)$. For i = 1, 2, recall that T_i is a unitary operator defined in the proof of Theorem 4.2 and that $\tilde{\pi}_{(i)}$ is the faithful *-representation of $C_r^*(G_i)$ defined in the proof of Theorem 6.5. Note that we have $T_iA_iT_i = \tilde{\pi}_i(C_r^*(G_i))$ by the proof of Theorem 4.2. Then we have the following lemma.

Lemma 7.1. The image of $\tilde{\pi}_{(i)}$ is $P_i T_i A T_i P_i^*$ for i = 1, 2.

Proof. For i = 1, 2, Define a linear map $\epsilon_i : C_c(\mathcal{T}) \to C_c(G_i)$ by $\epsilon_1(\xi)(g_1) = \xi(g_1, s_G(g_1))$ and by $\epsilon_2(\xi)(g_2) = \xi(s_G(g_2), g_2)$ respectively. Then we have

$$P_1T_1\pi(\xi)T_1P_1^* = \tilde{\pi}_{(1)}(\epsilon_1(\xi))$$
 and $P_2T_2\pi(\xi)T_2P_2^* = \tilde{\pi}_{(2)}(\epsilon_2(\xi))$

for $\xi \in C_c(\mathcal{T})$. These imply that $P_i T_i A T_i P_i^* \subset \tilde{\pi}_{(i)}(C_r^*(G_i))$ for i = 1, 2. Since we have $\epsilon_1(\psi_1(f_1)) = f_1$ for $f_1 \in C_c(G_1)$ and $\epsilon_2(\psi_2(\check{f}_2)) = f_2$ for $f_2 \in C_c(G_2)$, the reverse inclusions hold.

Define a *-isomorphism $\iota_i : A_i \to C_r^*(G_i)$ by $\iota_i(a) = \tilde{\pi}_i^{-1}(T_i a T_i)$ for $a \in A_i$ and define a map $E_i : A \to A_i$ by $E_i(a) = \iota_i^{-1} \circ \tilde{\pi}_{(i)}^{-1}(P_i T_i a T_i P_i^*)$ for $a \in A$.

Theorem 7.2. For $i = 1, 2, E_i$ is a faithful conditional expectation.

Proof. For
$$f_i, f'_i \in C_c(G_i)$$
 $(i = 1, 2)$, set $a_i = \pi_i(\psi_i(f_i))$ and $a'_i = \pi_i(\psi_i(f'_i))$. Then we have

$$P_1T_1a_2a_1a'_1T_1P_1^* = P_1T_1a_2a_1T_1P_1^*\tilde{\pi}_{(1)}(f'_1),$$

$$P_2T_2a'_2a_2a_1T_2P_2^* = \tilde{\pi}_{(2)}(f'_2)P_2T_2a_2a_1T_2P_2^*.$$

Since we have $T_i a'_i T_i = \tilde{\pi}_i(f'_i)$ by the proof of Theorem 4.2, we have $E_1(a_2a_1a'_1) = E_1(a_2a_1)a'_1$ and $E_2(a'_2a_2a_1) = a'_2E_2(a_2a_1)$. This implies that $E_1(aa_1) = E_1(a)a_1$ and $E_2(a_2a) = a_2E_2(a)$ for every $a \in A$ and $a_i \in A_i$. Since we have $E_i(a^*) = E_i(a)^*$ (i = 1, 2), we have $E_1(a_1a) = a_1E_1(a)$ and $E_2(aa_2) = E_2(a)a_2$ for every $a \in A$ and $a_i \in A_i$. It is easy to show that $E_i(a_i) = a_i$ for $a_i \in A_i$ and that $E_i(a^*a) \ge 0$.

We show that E_i is faithful. Note that elements of $C_r^*(G)$ can be viewed as elements of $C_0(G)$ ([12], Proposition 4.2) and that the restriction map $\tilde{E} : C_r^*(G) \to C_0(G^{(0)})$ is a faithful conditional expectation (cf. [12], Proposition 4.8). It follows from the proof of Theorem 6.5 that we can define a *-isomorphism $\iota : A \to C_r^*(G)$ by $\iota(a) = \pi_G^{-1}((\tilde{\kappa}_2 \tilde{\omega})^{-1} a(\tilde{\kappa}_2 \tilde{\omega}))$. Then we have $\tilde{E}\iota = \iota_1 E_1 E_2 = \iota_2 E_2 E_1$. This implies that E_i is faithful.

Since we have $E_1(A_2) = \iota_1^{-1}(C_0(G^{(0)}))$ and $E_2(A_1) = \iota_2^{-1}(C_0(G^{(0)}))$, we have the following Corollary.

Corollary 7.3. $A_1 \cap A_2 = \iota_1^{-1}(C_0(G^{(0)})) = \iota_2^{-1}(C_0(G^{(0)})).$

8 An action of a semi-direct product group Let Γ_1 and Γ_2 be countable discrete groups and let $\sigma : \Gamma_2 \to \operatorname{Aut}(\Gamma_1)$ be a homomorphism. We denote by Γ the semidirect product group $\Gamma_1 \times_{\sigma} \Gamma_2$. Then Γ_1 and Γ_2 are subgroups of Γ and we have $\Gamma = \Gamma_1 \Gamma_2$ and $\Gamma_1 \cap \Gamma_2 = \{e\}$. Note that we have $\gamma_2 \gamma_1 = \sigma_{\gamma_2}(\gamma_1)\gamma_2$. Let X be a second countable locally compact Hausdorff space and let $\alpha : \Gamma \to \operatorname{Homeo}(X)$ be an action of Γ on X by homeomorphisms. We set $\alpha_{\gamma}(x) = \gamma \cdot x$ for $\gamma \in \Gamma$ and $x \in X$. We denote by G the r-discrete groupoid $\Gamma \times X$. The source (rep. range) map is defined by $s_G(\gamma, x) = x$ (resp. $r_G(\gamma, x) = \gamma \cdot x$) and the product and inverse are defined by $(\gamma', \gamma \cdot x)(\gamma, x) = (\gamma'\gamma, x)$ and $(\gamma, x)^{-1} = (\gamma^{-1}, \gamma \cdot x)$ respectively. Let $G_1 = \Gamma_1 \times X$ and $G_2 = \Gamma_2 \times X$ be clopen subgroupoids of G. Then (G_1, G_2) is a matched pair in the sense of Definition 2.1. For $g_1 = (\gamma_1, x) \in G_1$ and $g_2 = (\gamma_2, \gamma_1 \cdot x) \in G_2$, we have $g_2 \triangleright g_1 = (\sigma_{\gamma_2}(\gamma_1), \gamma_2 \cdot x)$ and $g_2 \triangleleft g_1 = (\gamma_2, x)$. We identify $((\gamma_1, x), (\gamma_2, x)) \in \mathcal{T}$ with (γ_1, γ_2, x) and identify \mathcal{T} with $\Gamma_1 \times \Gamma_2 \times X$. The map \mathcal{W} is given by

$$\mathcal{W}((\gamma_1, \gamma_2, \gamma'_1 \cdot x), (\gamma'_1, \gamma'_2, x)) = ((\sigma_{\gamma_2}(\gamma'_1), \gamma'_2\gamma_2^{-1}, \gamma_2 \cdot x), (\gamma_1\gamma'_1, \gamma_2, x))$$

and the inverse is given by

$$\mathcal{W}^{-1}((\gamma_1, \gamma_2, \gamma'_2 \cdot x), (\gamma'_1, \gamma'_2, x)) = ((\gamma'_1 \gamma^{-1}, \gamma'_2, \gamma \cdot x), (\gamma, \gamma_2 \gamma'_2, x)),$$

where $\gamma = \sigma_{\gamma'_2}^{-1}(\gamma_1)$. Define $\rho_1 : \mathcal{T} \to G_1$ by $\rho_1(\gamma_1, \gamma_2, x) = (\sigma_{\gamma_2}(\gamma_1), \gamma_2 \cdot x)$ and define $\rho_2 : \mathcal{T} \to G_2$ by $\rho_2(\gamma_1, \gamma_2, x) = (\gamma_2, \gamma_1 \cdot x)$. Let μ be a positive regular Radon measure on $G^{(0)}$ whose support is X. We assume that μ is invariant under the action α . Then (ρ_1, ρ_2, μ) is an invariant system for (G_1, G_2) . Moreover the induced actions \triangleright and \triangleleft are preserving.

The representations π_1 , π_2 and π satisfy the following equations: for ξ , $\eta \in C_c(\mathcal{T})$. With respect to the *-algebraic structure for $C_c(\mathcal{T})$ introduced in Section 6, the product satisfies the following equations;

$$(\xi\eta)(\gamma_1,\gamma_2,x) = \sum_{\gamma_1'\in\Gamma_1}\sum_{\gamma_2'\in\Gamma_2}\xi(\gamma_1',\gamma_2\gamma_2'^{-1},\gamma_2'\cdot x)\eta(\gamma_1\gamma^{-1},\gamma_2',\gamma\cdot x),$$

where $\gamma = \sigma_{\gamma_2'}^{-1}(\gamma_1')$ and the involution satisfies the following equations;

$$\xi^*(\gamma_1, \gamma_2, x) = \overline{\xi(\sigma_{\gamma_2}(\gamma_1^{-1}), \gamma_2^{-1}, (\gamma_2\gamma_1) \cdot x)}.$$

A MATCHED PAIR OF GROUPOIDS

References

- S. Baaj and G. Skandalis, Unitaires multiplicatifs et dualité pour les produits croisés de C^{*}-algèbres, Ann. Sci. École. Norm. Sup. 26(1993), 425–488.
- [2] S. Baaj, G. Skandalis and S. Vaes, Non-semi-regular quantum groups coming from number theory, Commun. Math. Phys. 235(2003), 139–167.
- [3] M. Enock and J. M. Vallin, Inclusions of von Neumann algebras, and quantum groupoids, J. Funct. Analysis 172(2000), 249–300.
- [4] C. Kassel, Quantum groups, Graduate Texts in Mathematics 155, Springer-Verlag, Berlin, Heidelberg, New York, 1995.
- [5] S. Majid, A quantum groups primer, London Mathematical Society Lecture Note Series 292, Cambridge University Press, Cambridge, 2002.
- [6] M. O'uchi, Pseudo-multiplicative unitaries on Hilbert C*-modules, Far East J. Math. Sci.(FJMS), Special Volume(2001), Part2, (Functional Analysis and its Applications), 229–249.
- [7] M. O'uchi, Pseudo-multiplicative unitaries associated with inclusions of finite dimensional C*-algebras, Linear Algebra Appl. 341(2002), 201–218.
- [8] M. O'uchi, Pentagonal equations for operators associated with inclusions of C*-algebras, Sci. Math. Japonicae 56(2002), 71–94.
- M. O'uchi, Coring structures associated with multiplicative unitary operators on Hilbert C^{*}-modules, Far East J. Math. Sci.(FJMS) 11(2003), 121–136.
- [10] M. O'uchi, C*-algebras arising from two homeomorphisms with a certain relation, Sci. Math. Japonicae 63(2006), 361–369.
- [11] A. L. P. Paterson, Groupoids, inverse semigroups, and their operator algebras, Progress in Math., Vol. 170, Birkhäuser, Boston, 1999.
- J. Renault, A groupoid approach to C^{*}-algebras, Lecture Notes in Math., Vol. 793, Springer-Verlag, New York, 1980.
- T. Timmermann, Pseudo-multiplicative unitaries and pseudo-Kac systems on C^{*}-modules, Dissertationsthema, Uiversität Münster, 2005.
- [14] J. M. Vallin, Unitaire pseudo-multiplicatif associé à un groupoïde applications à la moyennabilité, J. Operator Theory 44(2000), 347–368.

Department of Mathematics and Information Sciences, Graduate School of Science, Osaka Prefecture University, Sakai City, Osaka 599-8531, Japan. E-mail : ouchi@mi.s.osakafu-u.ac.jp