A TRINARY RELATION ARISING FROM A MATCHED PAIR OF R-DISCRETE GROUPOIDS

Мотo O'uchi

Received June 18, 2008; revised September 17, 2008

Abstract

We introduce a notion of a matched pair of r-discrete groupoids and that of a trinary relation associated with a matched pair. We construct three C^{*}-algebras from a trinary relation and study properties of these algebras. The above results are applied to an action of a countable discrete semidirect product group on a topological space with an invariant measure.

1 Introduction A matched pair of groups has been studied in the theory of quantum groups (cf, [4], [5]) and in the theory of operator algebras (cf. [2]). The notion of a matched pair of groups is a generalization of that of semidirect product groups. It is natural to study a matched pair of groupoids as a generalization of an action of a semidirect product group on a space. In this paper, we introduce a notion of a matched pair of r-discrete groupoids, which is a generalization of that of an action of a discrete semidirect product group. A matched pair of r-discrete groupoid is an r-discrete groupoid G and open and closed subgroupoids G_{1} and G_{2} which satisfy $G=G_{1} G_{2}$, $G_{1} \cap G_{2}=G^{(0)}$ and other conditions.

On the other hand, a notion of multiplicative unitaries was introduced by S. Baaj and G. Skandalis in [1] and a notion of pseudo-multiplicative unitaries was introduced by J. M. Vallin in [14] (see also [3]). The author has studied pseudo-multiplicative unitaries in the setting of Hilbert C^{*} modules (cf. [6, 7, 8, 9]). Recently C^{*}-pseudo-multiplicative unitaries have been studied intensely by T. Timmermann (cf. [13]). A notion of pseudo-multiplicative unitaries can be converted naturally to a notion of maps on trinary relations satisfying pentagonal equations. The author has studied a sort of these maps in [10]. In this paper, we introduce a trinary relation \mathcal{T} and construct a map $\mathcal{W}: \mathcal{T} *_{q} \mathcal{T} \longrightarrow \mathcal{T} *_{r} \mathcal{T}$ that satisfies a pentagonal equation. We use \mathcal{W} to construct C^{*}-algebras associated with a matched pair $\left(G_{1}, G_{2}\right)$ of r-discrete groupoids. We construct a C^{*}-algebra $A \simeq C_{r}^{*}(G)$ and C^{*}-subalgebra $A_{i} \simeq C_{r}^{*}\left(G_{i}\right)(i=1,2)$ such that $A=\overline{\operatorname{span}} A_{1} A_{2}=$ $\overline{\operatorname{span}} A_{2} A_{1}$ and $A_{1} \cap A_{2} \simeq C_{0}\left(G^{(0)}\right)$.

The paper is organized as follows: In Section 2, we introduce a notion of a matched pair $\left(G_{1}, G_{2}\right)$ of r-discrete groupoids. In Section 3, we construct a trinary relation \mathcal{T} associated with $\left(G_{1}, G_{2}\right)$ and construct C^{*}-algebras A_{1} and A_{2} using \mathcal{T} when a matched pair has an invariant system. In Section 4, we show that A_{i} is isomorphic to the reduced groupoid C^{*}-algebra $C_{r}^{*}\left(G_{i}\right)$ $(i=1,2)$ when the induced action is preserving. In Section 5 , we construct a map π of $C_{c}(\mathcal{T})$ to $\mathcal{B}(H)$ for some Hilbert space H. Let A be the closed linear span of $A_{1} A_{2}$. Then we show that A is also the closed linear span of $A_{2} A_{1}$ and it is the closure of $\pi\left(C_{c}(\mathcal{T})\right)$. In Section 6, we introduce a *-algebraic structure on $C_{c}(\mathcal{T})$ using π and show that A is isomorphic to $C_{r}^{*}(G)$. In Section 7, we construct a conditional expectation $E_{i}: A \longrightarrow A_{i}$ for $i=1,2$ and show that $A_{1} \cap A_{2}$ is isomorphic to $C_{0}\left(G^{(0)}\right)$. In Section 8, we apply the above results to an action of a countable discrete semidirect product group on a space with an invariant measure.

[^0]2 A matched pair of groupoids Let G be a second countable locally compact Hausdorff r discrete groupoid. We denote by r_{G} (resp. s_{G}) the range (resp. source) map of G, by $G^{(0)}$ the unit space of G and by $G^{(2)}$ the set of composable pairs. For details of groupoids, we refer the reader to [11] and [12].
Definition 2.1. Let G_{1} and G_{2} be clopen subgroupoids of G. A pair $\left(G_{1}, G_{2}\right)$ is called a matched pair if $G_{1} G_{2}=G, G_{1} \cap G_{2}=G^{(0)}$ and there exist continuous maps $p_{1}: G \rightarrow G_{1}$ and $p_{2}: G \rightarrow G_{2}$ such that $g=p_{1}(g) p_{2}(g)$ for all $g \in G$.

Let $\left(G_{1}, G_{2}\right)$ be a matched pair. For $i=1,2$, we have $G_{i}^{(0)}=G^{(0)}$ and set $G_{i, x}=s_{G}^{-1}(x) \cap G_{i}$ and $G_{i}^{x}=r_{G}^{-1}(x) \cap G_{i}$ for $x \in G^{(0)}$. Note that we have $r_{G}(g)=r_{G}\left(p_{1}(g)\right)$ and $s_{G}(g)=s_{G}\left(p_{2}(g)\right)$ for $g \in G$. For $\left(g_{2}, g_{1}\right) \in G^{(2)} \cap\left(G_{2} \times G_{1}\right)$, set $g_{2} \triangleright g_{1}=p_{1}\left(g_{2} g_{1}\right)$ and $g_{2} \triangleleft g_{1}=p_{2}\left(g_{2} g_{1}\right)$.

Lemma 2.2. (1) For $g_{2} \in G_{2}, g_{1} \in G_{1}^{s_{G}\left(g_{2}\right)}$ and $h_{2} \in G_{2, r_{G}\left(g_{2}\right)}$, the following equations hold:

$$
g_{2}^{-1} \triangleright\left(g_{2} \triangleright g_{1}\right)=g_{1}, \quad\left(g_{2}^{-1} h_{2}^{-1}\right) \triangleright\left(h_{2} \triangleright\left(g_{2} \triangleright g_{1}\right)\right)=g_{1} .
$$

(2) For $g_{1} \in G_{1}, g_{2} \in G_{2, r_{G}\left(g_{1}\right)}$ and $h_{1} \in G_{1}^{s_{G}\left(g_{1}\right)}$, the following equations hold:

$$
\left(g_{2} \triangleleft g_{1}\right) \triangleleft g_{1}^{-1}=g_{2}, \quad\left(\left(g_{2} \triangleleft g_{1}\right) \triangleleft h_{1}\right) \triangleleft\left(h_{1}^{-1} g_{1}^{-1}\right)=g_{2} .
$$

Proof. (1) Since we have $g_{2}^{-1} p_{1}\left(g_{2} g_{1}\right) p_{2}\left(g_{2} g_{1}\right)=g_{2}^{-1}\left(g_{2} g_{1}\right)=g_{1}$, we have

$$
p_{1}\left(g_{2}^{-1} p_{1}\left(g_{2} g_{1}\right)\right)=p_{1}\left(g_{1} p_{2}\left(g_{2} g_{1}\right)^{-1}\right)=g_{1} .
$$

Therefore the first statement of (1) follows.
Set $\tilde{g}_{1}=g_{2} \triangleright g_{1}$. It follows from the above argument that we have $g_{2}^{-1} \tilde{g}_{1}=g_{1} p_{2}\left(g_{2} g_{1}\right)^{-1}$. Since we have

$$
\left(g_{2}^{-1} h_{2}^{-1}\right) p_{1}\left(h_{2} \tilde{g}_{1}\right) p_{2}\left(h_{2} \tilde{g}_{1}\right)=g_{2}^{-1} \tilde{g}_{1}=g_{1} p_{2}\left(g_{2} g_{1}\right)^{-1},
$$

we have

$$
\left(g_{2}^{-1} h_{2}^{-1}\right) p_{1}\left(h_{2} \tilde{g}_{1}\right)=g_{1} p_{2}\left(g_{2} g_{1}\right)^{-1} p_{2}\left(h_{2} \tilde{g}_{1}\right)^{-1}
$$

Thus we have $p_{1}\left(\left(g_{2}^{-1} h_{2}^{-1}\right) p_{1}\left(h_{2} \tilde{g}_{1}\right)\right)=g_{1}$. Therefore the second statement of (1) follows.
We can prove the statements of (2) similarly.
The following proposition is an immediate consequence of the above lemma.
Proposition 2.3. (1) For every $g_{2} \in G_{2}$, the map $g_{1} \in G_{1}^{s_{G}\left(g_{2}\right)} \mapsto g_{2} \triangleright g_{1} \in G_{1}^{r_{G}\left(g_{2}\right)}$ is a bijection.
(2) For every $g_{1} \in G_{1}$, the map $g_{2} \in G_{2, r_{G}\left(g_{1}\right)} \mapsto g_{2} \triangleleft g_{1} \in G_{2, s_{G}\left(g_{1}\right)}$ is a bijection.

3 A trinary relation associated with a matched pair Let $\left(G_{1}, G_{2}\right)$ be a matched pair. Set $\mathcal{T}=\left\{\left(g_{1}, g_{2}\right) \in G_{1} \times G_{2} ; s_{G}\left(g_{1}\right)=s_{G}\left(g_{2}\right)\right\}$. Define maps $q, r, s: \mathcal{T} \rightarrow G^{(0)}$ by $q\left(g_{1}, g_{2}\right)=r_{G}\left(g_{1}\right)$, $r\left(g_{1}, g_{2}\right)=r_{G}\left(g_{2}\right)$ and $s\left(g_{1}, g_{2}\right)=s_{G}\left(g_{1}\right)=s_{G}\left(g_{2}\right)$ respectively. We denote by $\mathcal{T} *_{q} \mathcal{T}$ the fibered product $\left\{(u, v) \in \mathcal{T}^{2} ; s(u)=q(v)\right\}$. Define the fibered product $\mathcal{T} *_{r} \mathcal{T}$ similarly. We define a continuous map $\mathcal{W}: \mathcal{T} *_{q} \mathcal{T} \rightarrow \mathcal{T} *_{r} \mathcal{T}$ by

$$
\mathcal{W}\left(\left(g_{1}, g_{2}\right),\left(h_{1}, h_{2}\right)\right)=\left(\left(p_{1}\left(g_{2} h_{1}\right), h_{2} p_{2}\left(g_{2} h_{1}\right)^{-1}\right),\left(g_{1} h_{1}, p_{2}\left(g_{2} h_{1}\right)\right)\right.
$$

for $\left(\left(g_{1}, g_{2}\right),\left(h_{1}, h_{2}\right)\right) \in \mathcal{T} *_{q} \mathcal{T}$. Then \mathcal{W} is a homeomorphism whose inverse is given by

$$
\mathcal{W}^{-1}\left(\left(g_{1}, g_{2}\right),\left(h_{1}, h_{2}\right)\right)=\left(\left(h_{1} p_{1}\left(h_{2}^{-1} g_{1}^{-1}\right), p_{2}\left(h_{2}^{-1} g_{1}^{-1}\right)^{-1}\right),\left(p_{1}\left(h_{2}^{-1} g_{1}^{-1}\right)^{-1}, g_{2} h_{2}\right)\right)
$$

for $\left(\left(g_{1}, g_{2}\right),\left(h_{1}, h_{2}\right)\right) \in \mathcal{T} *_{r} \mathcal{T}$. We call $(\mathcal{T}, \mathcal{W})$ a trinary relation associated with $\left(G_{1}, G_{2}\right)$.
If $\mathcal{W}(u, v)=\left(u^{\prime}, v^{\prime}\right)$, then we have $q(u)=q\left(v^{\prime}\right), r(u)=q\left(u^{\prime}\right), r(v)=r\left(u^{\prime}\right)$ and $s(v)=s\left(v^{\prime}\right)$. We denote by $\mathcal{T} *_{q} \mathcal{T} *_{q} \mathcal{T}$ the fibered product $\left\{(u, v, w) \in \mathcal{T}^{3} ; s(u)=q(v), s(v)=q(w)\right\}$. Define the fibered products $\mathcal{T} *_{r} \mathcal{T} *_{q} \mathcal{T}, \mathcal{T} *_{q} \mathcal{T} *_{r} \mathcal{T}$ and $\mathcal{T} *_{r} \mathcal{T} *_{r} \mathcal{T}$ similarly. We also denote by $(\mathcal{T} \times \mathcal{T}) * \mathcal{T}$ the fibered product $\left\{(u, v, w) \in \mathcal{T}^{3} ; s(u)=q(w), s(v)=r(w)\right\}$. Then we can define a $\operatorname{map} \mathcal{W} *_{q} I: \mathcal{T} *_{q} \mathcal{T} *_{q} \mathcal{T} \rightarrow \mathcal{T} *_{r} \mathcal{T} *_{q} \mathcal{T}$ by $\left(\mathcal{W} *_{q} I\right)(u, v, w)=(\mathcal{W}(u, v), w)$. Similarly we can define the following maps; $I *_{r} \mathcal{W}: \mathcal{T} *_{r} \mathcal{T} *_{q} \mathcal{T} \rightarrow \mathcal{T} *_{q} \mathcal{T} *_{r} \mathcal{T}, \mathcal{W} *_{r} I: \mathcal{T} *_{q} \mathcal{T} *_{r} \mathcal{T} \rightarrow \mathcal{T} *_{r} \mathcal{T} *_{r} \mathcal{T}$ and $I *_{q} \mathcal{W}: \mathcal{T} *_{q} \mathcal{T} *_{q} \mathcal{T} \rightarrow(\mathcal{T} \times \mathcal{T}) * \mathcal{T}$. We can also define a map $\mathcal{W}_{(13)}:(\mathcal{T} \times \mathcal{T}) * \mathcal{T} \rightarrow \mathcal{T} *_{r} \mathcal{T} *_{r} \mathcal{T}$ by $\mathcal{W}_{(13)}(u, v, w)=(v, \mathcal{W}(u, w))$.

Theorem 3.1. The homeomorphism \mathcal{W} satisfies the following pentagonal equation;

$$
\begin{equation*}
\left(\mathcal{W} *_{r} I\right)\left(I *_{r} \mathcal{W}\right)\left(\mathcal{W} *_{q} I\right)=\mathcal{W}_{(13)}\left(I *_{q} \mathcal{W}\right) \tag{PE}
\end{equation*}
$$

Proof. For $(u, v, w) \in \mathcal{T} *_{q} \mathcal{T} *_{q} \mathcal{T}$, put

$$
\begin{aligned}
& \left(\mathcal{W} *_{r} I\right)\left(I *_{r} \mathcal{W}\right)\left(\mathcal{W} *_{q} I\right)(u, v, w)=\left(u^{\prime}, v^{\prime}, w^{\prime}\right) \\
& \mathcal{W}_{(13)}\left(I *_{q} \mathcal{W}\right)(u, v, w)=\left(u^{\prime \prime}, v^{\prime \prime}, w^{\prime \prime}\right)
\end{aligned}
$$

If $u=\left(f_{1}, f_{2}\right), v=\left(g_{1}, g_{2}\right), w=\left(h_{1}, h_{2}\right)$, the first coordinate u_{1}^{\prime} of u^{\prime} is

$$
p_{1}\left(g_{2} p_{2}\left(f_{2} g_{1}\right)^{-1} p_{1}\left(p_{2}\left(f_{2} g_{1}\right) h_{1}\right)\right)
$$

and the first coordinate $u_{1}^{\prime \prime}$ of $u^{\prime \prime}$ is $p_{1}\left(g_{2} h_{1}\right)$. We have

$$
\begin{aligned}
g_{2} p_{2}\left(f_{2} g_{1}\right)^{-1} p_{1}\left(p_{2}\left(f_{2} g_{1}\right) h_{1}\right) & =g_{2} h_{1} p_{2}\left(p_{2}\left(f_{2} g_{1}\right) h_{1}\right)^{-1} \\
p_{1}\left(g_{2} h_{1} p_{2}\left(p_{2}\left(f_{2} g_{1}\right) h_{1}\right)^{-1}\right) & =p_{1}\left(g_{2} h_{1}\right) .
\end{aligned}
$$

Therefore we have $u_{1}^{\prime}=u_{1}^{\prime \prime}$. Similarly we have $u_{2}^{\prime}=u_{2}^{\prime \prime}$ and conclude that $u^{\prime}=u^{\prime \prime}$. Similarly we have $v^{\prime}=v^{\prime \prime}$ and $w^{\prime}=w^{\prime \prime}$.

The following map κ plays a role of an involution on \mathcal{T}.
Lemma 3.2. Define maps $\kappa, \kappa_{1}, \kappa_{2}: \mathcal{T} \rightarrow \mathcal{T}$ by $\kappa\left(g_{1}, g_{2}\right)=\left(g_{2} \triangleright g_{1}^{-1},\left(g_{2} \triangleleft g_{1}^{-1}\right)^{-1}\right), \kappa_{1}\left(g_{1}, g_{2}\right)=$ $\left(g_{1}^{-1}, g_{2} \triangleleft g_{1}^{-1}\right)$ and $\kappa_{2}\left(g_{1}, g_{2}\right)=\left(\left(g_{2} \triangleright g_{1}^{-1}\right)^{-1}, g_{2}^{-1}\right)$ respectively. Then $\kappa^{2}, \kappa_{1}^{2}$ and κ_{2}^{2} are the identity maps, in particular, κ, κ_{1} and κ_{2} are homeomorphisms.

Proof. Since we have, for $i=1,2$ and $\left(g_{1}, g_{2}\right) \in \mathcal{T}$,

$$
p_{i}\left(\left(p_{1}\left(g_{2} g_{1}^{-1}\right) p_{2}\left(g_{2} g_{1}^{-1}\right)\right)^{-1}\right)=p_{i}\left(g_{1} g_{2}^{-1}\right)
$$

we have $\kappa^{2}\left(g_{1}, g_{2}\right)=\left(g_{1}, g_{2}\right)$. It follows from Lemma 2.2 that κ_{1}^{2} and κ_{2}^{2} are the identity maps.
Let $\left\{\tilde{\lambda}_{x} ; x \in G^{(0)}\right\}$ be a right Haar system on G such that $\tilde{\lambda}_{x}$ is a counting measure on G_{x} for every $x \in G^{(0)}$. For $i=1,2$, we denote by $\left\{\tilde{\lambda}_{i, x} ; x \in G^{(0)}\right\}$ the right Haar system on G_{i} which is the restriction of $\left\{\tilde{\lambda}_{x}\right\}$ to G_{i}. We denote by $C_{c}(\mathcal{T})$ the set of complex valued continuous functions on \mathcal{T} with compact supports. Define a measure λ_{x} on \mathcal{T} by

$$
\int_{\mathcal{T}} \xi(u) d \lambda_{x}(u)=\iint_{G_{1} \times G_{2}} \xi\left(g_{1}, g_{2}\right) d \tilde{\lambda}_{1, x}\left(g_{1}\right) d \tilde{\lambda}_{2, x}\left(g_{2}\right)
$$

for $\xi \in C_{c}(\mathcal{T})$. Note that the support of λ_{x} is $\mathcal{T}_{x}=s^{-1}(x)$ and that the map $x \in G^{(0)} \mapsto$ $\int_{\mathcal{T}} \xi(u) d \lambda_{x}(u)$ is continuous for every $\xi \in C_{c}(\mathcal{T})$. We say that $\left\{\lambda_{x}\right\}$ is \mathcal{W}-invariant if it satisfies the following equation:

$$
\iint_{\mathcal{T}_{*_{q} \mathcal{T}}} \xi(\mathcal{W}(u, v)) d \lambda_{q(v)}(u) d \lambda_{x}(v)=\iint_{\mathcal{T}_{*_{r}} \mathcal{T}} \xi(u, v) d \lambda_{r(v)}(u) d \lambda_{x}(v)
$$

for every $\xi \in C_{c}\left(\mathcal{T} *_{r} \mathcal{T}\right)$ and $x \in G^{(0)}$.
For $\xi, \eta \in C_{c}(\mathcal{T})$, define a product $\xi * \eta$ in $C_{c}(\mathcal{T})$ by

$$
(\xi * \eta)(v)=\int_{\mathcal{T}}(\xi \otimes \eta)\left(\mathcal{W}^{-1}(u, v)\right) d \lambda_{r(v)}(u)
$$

and define a product $\xi \bullet \eta$ in $C_{c}(\mathcal{T})$ by

$$
(\xi \bullet \eta)(v)=\int_{\mathcal{T}}(\xi \otimes \eta)(\mathcal{W}(u, v)) d \lambda_{q(v)}(u)
$$

Proposition 3.3. Suppose that $\left\{\lambda_{x}\right\}$ is \mathcal{W}-invariant. The above products are associative, that is, $(\xi * \eta) * \zeta=\xi *(\eta * \zeta)$ and $(\xi \bullet \eta) \bullet \zeta=\xi \bullet(\eta \bullet \zeta)$ for $\xi, \eta, \zeta \in C_{c}(\mathcal{T})$.

Proof. Set $\mathcal{W}^{-1}(u, v)=\left(\Psi_{1}(u, v), \Psi_{2}(u, v)\right)$. Then we have, for $w \in \mathcal{T}$,

$$
\begin{aligned}
& ((\xi * \eta) * \zeta)(w) \\
& =\iint(\xi \otimes \eta \otimes \zeta)\left(\mathcal{W}^{-1}\left(u, \Psi_{1}(v, w)\right), \Psi_{2}(v, w)\right) d \lambda_{q(v)}(u) d \lambda_{r(w)}(v) \\
& =\iint(\xi \otimes \eta \otimes \zeta)\left(\left(\mathcal{W} *_{q} I\right)^{-1}\left(I *_{r} \mathcal{W}\right)^{-1}(u, v, w)\right) d \lambda_{q(v)}(u) d \lambda_{r(w)}(v) \\
& =\iint(\xi \otimes \eta \otimes \zeta)\left(\left(\mathcal{W} *_{q} I\right)^{-1}\left(I *_{r} \mathcal{W}\right)^{-1}\left(\mathcal{W} *_{r} I\right)^{-1}(u, v, w)\right) d \lambda_{r(v)}(u) d \lambda_{r(w)}(v)
\end{aligned}
$$

The last equation follows from the invariance of $\left\{\lambda_{x}\right\}$. On the other hand, we have

$$
\begin{aligned}
& (\xi *(\eta * \zeta))(w) \\
& =\iint(\xi \otimes \eta \otimes \zeta)\left(\Psi_{1}(v, w), \mathcal{W}^{-1}\left(u, \Psi_{2}(v, w)\right)\right) d \lambda_{r(v)}(u) d \lambda_{r(w)}(v) \\
& =\iint(\xi \otimes \eta \otimes \zeta)\left(\left(I *_{q} \mathcal{W}\right)^{-1}\left(\Psi_{1}(v, w), u, \Psi_{2}(v, w)\right)\right) d \lambda_{r(v)}(u) d \lambda_{r(w)}(v) \\
& =\iint(\xi \otimes \eta \otimes \zeta)\left(\left(I *_{q} \mathcal{W}\right)^{-1} \mathcal{W}_{(13)}^{-1}(u, v, w)\right) d \lambda_{r(v)}(u) d \lambda_{r(w)}(v)
\end{aligned}
$$

Since \mathcal{W} satisfies (PE), we have $(\xi * \eta) * \zeta=\xi *(\eta * \zeta)$.
Set $\mathcal{W}(u, v)=\left(\Phi_{1}(u, v), \Phi_{2}(u, v)\right)$. Then we have, for $w \in \mathcal{T}$,

$$
\begin{aligned}
& ((\xi \bullet \eta) \bullet \zeta)(w) \\
& =\iint(\xi \otimes \eta \otimes \zeta)\left(\mathcal{W}\left(u, \Phi_{1}(v, w)\right), \Phi_{2}(v, w)\right) d \lambda_{r(v)}(u) d \lambda_{q(w)}(v) \\
& =\iint(\xi \otimes \eta \otimes \zeta)\left(\left(\mathcal{W} *_{r} I\right)\left(I *_{r} \mathcal{W}\right)(u, v, w)\right) d \lambda_{r(v)}(u) d \lambda_{q(w)}(v) \\
& =\iint(\xi \otimes \eta \otimes \zeta)\left(\left(\mathcal{W} *_{r} I\right)\left(I *_{r} \mathcal{W}\right)\left(\mathcal{W} *_{q} I\right)(u, v, w)\right) d \lambda_{q(v)}(u) d \lambda_{q(w)}(v)
\end{aligned}
$$

The last equation follows from the invariance of $\left\{\lambda_{x}\right\}$. On the other hand, we have

$$
\begin{aligned}
& (\xi \bullet(\eta \bullet \zeta))(w) \\
& =\iint(\xi \otimes \eta \otimes \zeta)\left(\Phi_{1}(v, w), \mathcal{W}\left(u, \Phi_{2}(v, w)\right)\right) d \lambda_{q(v)}(u) d \lambda_{q(w)}(v) \\
& =\iint(\xi \otimes \eta \otimes \zeta)\left(\mathcal{W}_{(13)}\left(u, \Phi_{1}(v, w), \Phi_{2}(v, w)\right)\right) d \lambda_{q(v)}(u) d \lambda_{q(w)}(v) \\
& =\iint(\xi \otimes \eta \otimes \zeta)\left(\mathcal{W}_{(13)}\left(I *_{q} \mathcal{W}\right)(u, v, w)\right) d \lambda_{q(v)}(u) d \lambda_{q(w)}(v)
\end{aligned}
$$

Since \mathcal{W} satisfies (PE), we have $(\xi \bullet \eta) \bullet \zeta=\xi \bullet(\eta \bullet \zeta)$.
We denote by \mathcal{A}_{1} the opposite algebra of $\left(C_{c}(\mathcal{T}), *\right)$, that is, $\mathcal{A}_{1}=C_{c}(\mathcal{T})$ is an associative algebra over \mathbb{C} whose product is defined by $\xi \eta=\eta * \xi$ and we denote by \mathcal{A}_{2} the opposite algebra of $\left(C_{c}(\mathcal{T}), \bullet\right)$, that is, $\mathcal{A}_{2}=C_{c}(\mathcal{T})$ is an associative algebra over \mathbb{C} whose product is defined by $\xi \eta=\eta \bullet \xi$. Let μ be a positive regular Radon measure on $G^{(0)}$ whose support is $G^{(0)}$. For $i=1,2$, define a measure $\tilde{\lambda}_{i}$ on G_{i} by $\tilde{\lambda}_{i}=\int_{G^{(0)}} \tilde{\lambda}_{i, x} d \mu(x)$. We say that μ is G_{i}-invariant if it satisfies the following equation

$$
\int_{G_{i}} \xi\left(g_{i}^{-1}\right) d \tilde{\lambda}_{i}\left(g_{i}\right)=\int_{G_{i}} \xi\left(g_{i}\right) d \tilde{\lambda}_{i}\left(g_{i}\right)
$$

for every $\xi \in C_{c}\left(G_{i}\right)$. Define a measure λ on \mathcal{T} by $\lambda=\int_{G^{(0)}} \lambda_{x} d \mu(x)$. We denote by H the Hilbert space $L^{2}(\mathcal{T}, \lambda)$.

Let $\rho_{1}: \mathcal{T} \rightarrow G_{1}$ be a Borel map such that $s_{G}\left(\rho_{1}\left(g_{1}, g_{2}\right)\right)=r_{G}\left(g_{2}\right)$. We say that ρ_{1} satisfies the condition (A1) if it holds the equation

$$
\begin{align*}
& \int_{G_{2}} \xi\left(p_{1}\left(g_{2} g_{1}\right), p_{2}\left(g_{2} g_{1}\right)^{-1}\right) d \tilde{\lambda}_{2, r_{G}\left(g_{1}\right)}\left(g_{2}\right) \tag{A1}\\
& =\int_{G_{2}} \xi\left(\rho_{1}\left(g_{1}, g_{2}\right), g_{2}^{-1}\right) d \tilde{\lambda}_{2, s_{G}\left(g_{1}\right)}\left(g_{2}\right)
\end{align*}
$$

for every $g_{1} \in G_{1}$ and every positive Borel function ξ on \mathcal{T} and we say that ρ_{1} satisfies the condition (B1) if it holds the equation

$$
\begin{equation*}
\int_{G_{1}} \xi\left(\rho_{1}\left(g_{1}, g_{2}\right)\right) d \tilde{\lambda}_{1, s_{G}\left(g_{2}\right)}\left(g_{1}\right)=\int_{G_{1}} \xi\left(g_{1}\right) d \tilde{\lambda}_{1, r_{G}\left(g_{2}\right)}\left(g_{1}\right) \tag{B1}
\end{equation*}
$$

for every $g_{2} \in G_{2}$ and every positive Borel function ξ on G_{1}. Let $\rho_{2}: \mathcal{T} \rightarrow G_{2}$ be a Borel map such that $s_{G}\left(\rho_{2}\left(g_{1}, g_{2}\right)\right)=r_{G}\left(g_{1}\right)$. We say that ρ_{2} satisfies the condition (A2) if it holds the equation

$$
\begin{align*}
& \int_{G_{1}} \xi\left(p_{1}\left(g_{2}^{-1} g_{1}^{-1}\right), p_{2}\left(g_{2}^{-1} g_{1}^{-1}\right)^{-1}\right) d \tilde{\lambda}_{1, r_{G}\left(g_{2}\right)}\left(g_{1}\right) \tag{A2}\\
& =\int_{G_{1}} \xi\left(g_{1}^{-1}, \rho_{2}\left(g_{1}, g_{2}\right)\right) d \tilde{\lambda}_{1, s_{G}\left(g_{2}\right)}\left(g_{1}\right)
\end{align*}
$$

for every $g_{2} \in G_{2}$ and every positive Borel function ξ on \mathcal{T} and we say that ρ_{2} satisfies the equation (B2) if it holds the equation

$$
\begin{equation*}
\int_{G_{2}} \xi\left(\rho_{2}\left(g_{1}, g_{2}\right)\right) d \tilde{\lambda}_{2, s_{G}\left(g_{1}\right)}\left(g_{2}\right)=\int_{G_{2}} \xi\left(g_{2}\right) d \tilde{\lambda}_{2, r_{G}\left(g_{1}\right)}\left(g_{2}\right) \tag{B2}
\end{equation*}
$$

for every $g_{1} \in G_{1}$ and every positive Borel function ξ on G_{2}. The existence of ρ_{1} that satisfies the conditions (A1) and (B1) implies that $\left\{\lambda_{x}\right\}$ is \mathcal{W}-invariant and the existence of ρ_{2} that satisfies the conditions (A2) and (B2) also implies that $\left\{\lambda_{x}\right\}$ is \mathcal{W}-invariant.

Theorem 3.4. (1) Suppose that μ is G_{1}-invariant and that there exists a map ρ_{2} which satisfies conditions (A2) and (B2). Then, for every $\xi \in C_{c}(\mathcal{T})$, there exists a positive number M such that $\|\eta * \xi\|_{H} \leq M\|\eta\|_{H}$ for every $\eta \in C_{c}(\mathcal{T})$.
(2) Suppose that μ is G_{2}-invariant and that there exists a map ρ_{1} which satisfies conditions (A1) and (B1). Then, for every $\xi \in C_{c}(\mathcal{T})$, there exists a positive number M such that $\|\eta \bullet \xi\|_{H} \leq M\left\|_{\eta}\right\|_{H}$ for every $\eta \in C_{c}(\mathcal{T})$.

Proof. (1) For $i=1,2$, let K_{i} be a compact set in G_{i} such that the support of ξ is contained in $K_{1} \times K_{2}$. We denote by $\chi_{K_{i}}$ the characteristic function of K_{i}. Set

$$
\chi\left(g_{1}, g_{2}, h_{2}\right)=\chi_{K_{1}}\left(p_{1}\left(h_{2}^{-1} g_{1}^{-1}\right)^{-1}\right) \chi_{K_{2}}\left(g_{2} h_{2}\right)
$$

for $h_{2} \in G_{2}$ and $\left(g_{1}, g_{2}\right) \in \mathcal{T}_{r_{G}\left(h_{2}\right)}$. For $\left(h_{1}, h_{2}\right) \in \mathcal{T}$, set

$$
\begin{aligned}
F\left(h_{1}, h_{2}\right) & =\int_{\mathcal{T}}\left|\eta\left(h_{1} p_{1}\left(h_{2}^{-1} g_{1}^{-1}\right), p_{2}\left(h_{2}^{-1} g_{1}^{-1}\right)^{-1}\right)\right|^{2} \chi\left(g_{1}, g_{2}, h_{2}\right) d \lambda_{r_{G}\left(h_{2}\right)}\left(g_{1}, g_{2}\right) \\
\tilde{\chi}\left(h_{2}\right) & =\int_{\mathcal{T}} \chi\left(g_{1}, g_{2}, h_{2}\right) d \lambda_{r_{G}\left(h_{2}\right)}\left(g_{1}, g_{2}\right)
\end{aligned}
$$

Then we have

$$
\|\eta * \xi\|_{H}^{2} \leq\|\xi\|_{\infty}^{2} \int_{\mathcal{T}} F\left(h_{1}, h_{2}\right) \tilde{\chi}\left(h_{2}\right) d \lambda\left(h_{1}, h_{2}\right)
$$

Set $M_{i}=\sup \left\{\tilde{\lambda}_{i, x}\left(K_{i}\right) ; x \in G^{(0)}\right\}$. It follows from the condition (A2) that we have $\tilde{\chi}\left(h_{2}\right) \leq M_{1} M_{2}$ and that we have

$$
F\left(h_{1}, h_{2}\right) \leq M_{2} \int_{G_{1}}\left|\eta\left(h_{1} g_{1}^{-1}, \rho_{2}\left(g_{1}, h_{2}\right)\right)\right|^{2} \chi_{K_{1}}\left(g_{1}\right) d \tilde{\lambda}_{1, s_{G}\left(h_{2}\right)}\left(g_{1}\right) .
$$

It follows from the condition (B2) that we have, for $g_{1} \in G_{1, x}$,

$$
\int_{\mathcal{T}}\left|\eta\left(h_{1} g_{1}^{-1}, \rho_{2}\left(g_{1}, h_{2}\right)\right)\right|^{2} d \lambda_{x}\left(h_{1}, h_{2}\right)=\int_{\mathcal{T}}|\eta(u)|^{2} d \lambda_{r_{G}\left(g_{1}\right)}(u) .
$$

Set $\|\eta\|_{x}^{2}=\int|\eta(u)|^{2} d \lambda_{x}(u)$ and set $M_{i}^{\prime}=\sup \left\{\tilde{\lambda}_{i, x}\left(K_{i}^{-1}\right) ; x \in G^{(0)}\right\}$. Since μ is G_{1}-invariant, we have

$$
\begin{aligned}
\int_{G_{1}}\|\eta\|_{r_{G}\left(g_{1}\right)}^{2} \chi_{K_{1}}\left(g_{1}\right) d \tilde{\lambda}_{1}\left(g_{1}\right) & =\int_{G_{1}}\|\eta\|_{s_{G}\left(g_{1}\right)}^{2} \chi_{K_{1}^{-1}}\left(g_{1}\right) d \tilde{\lambda}_{1}\left(g_{1}\right) \\
& \leq M_{1}^{\prime}\|\eta\|_{H}^{2}
\end{aligned}
$$

Therefore we have $\|\eta * \xi\|_{H} \leq M_{1}^{1 / 2} M_{1}^{\prime 1 / 2} M_{2}\|\xi\|_{\infty}\|\eta\|_{H}$.
(2) We keep the notations in the proof of (1). Set

$$
\chi^{\prime}\left(g_{1}, g_{2}, h_{1}\right)=\chi_{K_{1}}\left(g_{1} h_{1}\right) \chi_{K_{2}}\left(p_{2}\left(g_{2} h_{1}\right)\right)
$$

for $h_{1} \in G_{1}$ and $\left(g_{1}, g_{2}\right) \in \mathcal{T}_{r_{G}\left(h_{1}\right)}$. For $\left(h_{1}, h_{2}\right) \in \mathcal{T}$, set

$$
\begin{aligned}
F^{\prime}\left(h_{1}, h_{2}\right) & =\int_{\mathcal{T}}\left|\eta\left(p_{1}\left(g_{2} h_{1}\right), h_{2} p_{2}\left(g_{2} h_{1}\right)^{-1}\right)\right|^{2} \chi^{\prime}\left(g_{1}, g_{2}, h_{1}\right) d \lambda_{r_{G}\left(h_{1}\right)}\left(g_{1}, g_{2}\right), \\
\tilde{\chi}^{\prime}\left(h_{1}\right) & =\int_{\mathcal{T}} \chi^{\prime}\left(g_{1}, g_{2}, h_{1}\right) d \lambda_{r_{G}\left(h_{1}\right)}\left(g_{1}, g_{2}\right) .
\end{aligned}
$$

Then we have

$$
\|\eta \bullet \xi\|_{H}^{2} \leq\|\xi\|_{\infty}^{2} \int_{\mathcal{T}} F^{\prime}\left(h_{1}, h_{2}\right) \tilde{\chi}^{\prime}\left(h_{1}\right) d \lambda\left(h_{1}, h_{2}\right) .
$$

It follows from the condition (A1) that we have $\tilde{\chi}^{\prime}\left(h_{1}\right) \leq M_{1} M_{2}$ and that we have

$$
F^{\prime}\left(h_{1}, h_{2}\right) \leq M_{1} \int_{G_{2}}\left|\eta\left(\rho_{1}\left(h_{1}, g_{2}\right), h_{2} g_{2}^{-1}\right)\right|^{2} \chi_{K_{2}}\left(g_{2}\right) d \tilde{\lambda}_{2, s_{G}\left(h_{1}\right)}\left(g_{2}\right) .
$$

It follows from the condition (B1) that we have, for $g_{2} \in G_{2, x}$,

$$
\int_{\mathcal{T}}\left|\eta\left(\rho_{1}\left(h_{1}, g_{2}\right), h_{2} g_{2}^{-1}\right)\right|^{2} d \lambda_{x}\left(h_{1}, h_{2}\right)=\int_{\mathcal{T}}|\eta(u)|^{2} d \lambda_{r_{G}\left(g_{2}\right)}(u) .
$$

Since μ is G_{2}-invariant, we have

$$
\begin{aligned}
\int_{G_{2}}\|\eta\|_{r_{G}\left(g_{2}\right)}^{2} \chi_{K_{2}}\left(g_{2}\right) d \tilde{\lambda}_{2}\left(g_{2}\right) & =\int_{G_{2}}\|\eta\|_{s_{G}\left(g_{2}\right)}^{2} \chi_{K_{2}^{-1}}\left(g_{2}\right) d \tilde{\lambda}_{2}\left(g_{2}\right) \\
& \leq M_{2}^{\prime}\|\eta\|_{H}^{2} .
\end{aligned}
$$

Therefore we have $\|\eta \bullet \xi\|_{H} \leq M_{1} M_{2}^{1 / 2} M_{2}^{\prime 1 / 2}\|\xi\|_{\infty}\|\eta\|_{H}$.
A triplet $\left(\rho_{1}, \rho_{2}, \mu\right)$ is called an invariant system for $\left(G_{1}, G_{2}\right)$ if ρ_{i} satisfies conditions (Ai) and (Bi) for $i=1,2$ and μ is G_{1} - and G_{2}-invariant. Let $\left(G_{1}, G_{2}\right)$ be a matched pair with an invariant system $\left(\rho_{1}, \rho_{2}, \mu\right)$. It follows from Theorem 3.4 (1) that there exists a homomorphism $\pi_{1}: \mathcal{A}_{1} \rightarrow \mathcal{B}(H)$ as algebras over \mathbb{C} such that $\pi_{1}(\xi) \eta=\eta * \xi$ for $\xi, \eta \in C_{c}(\mathcal{T})$. We denote by A_{1} the C^{*}-subalgebra of $\mathcal{B}(H)$ generated by $\pi_{1}\left(\mathcal{A}_{1}\right)$. It follows from Theorem $3.4(2)$ that there exists a homomorphism $\pi_{2}: \mathcal{A}_{2} \rightarrow \mathcal{B}(H)$ as algebras over \mathbb{C} such that $\pi_{2}(\xi) \eta=\eta \bullet \xi$ for $\xi, \eta \in C_{c}(\mathcal{T})$. We denote by A_{2} the C^{*}-subalgebra of $\mathcal{B}(H)$ generated by $\pi_{2}\left(\mathcal{A}_{2}\right)$.

4 Preserving actions induced by a matched pair

Definition 4.1. Let $\left(G_{1}, G_{2}\right)$ be a matched pair with an invariant system $\left(\rho_{1}, \rho_{2}, \mu\right)$. Then the induced action $\triangleright($ resp. $\triangleleft)$ of $\left(G_{1}, G_{2}\right)$ is said to be preserving if $\rho_{1}\left(g_{1}, g_{2}\right)=\left(g_{2} \triangleright g_{1}^{-1}\right)^{-1}$ (resp. $\left.\rho_{2}\left(g_{1}, g_{2}\right)=g_{2} \triangleleft g_{1}^{-1}\right)$ for every $\left(g_{1}, g_{2}\right) \in \mathcal{T}$.

If $\triangleright($ resp. $\triangleleft)$ is preserving, then ρ_{1} (resp. ρ_{2}) always satisfies (B1) (resp. (B2)).
For $i=1,2, C_{c}\left(G_{i}\right)$ is a $*$-algebra with the following product and involution;

$$
\begin{aligned}
(a b)(g) & =\int_{G_{i}} a\left(g h^{-1}\right) b(h) d \tilde{\lambda}_{i, s_{G}(g)}(h) \\
a^{*}(g) & =\overline{a\left(g^{-1}\right)}
\end{aligned}
$$

for $a, b \in C_{c}\left(G_{i}\right)$ and $g \in G_{i}$. For $x \in G^{(0)}$, set $\tilde{H}_{i, x}=L^{2}\left(G_{i, x}, \tilde{\lambda}_{i, x}\right)$. Define a $*$-representation $\tilde{\pi}_{i, x}: C_{c}\left(G_{i}\right) \rightarrow \mathcal{B}\left(\tilde{H}_{i, x}\right)$ by

$$
\left(\tilde{\pi}_{i, x}(a) \zeta\right)(g)=\int_{G_{i}} a\left(g h^{-1}\right) \zeta(h) d \tilde{\lambda}_{i, x}(h)
$$

for $a \in C_{c}\left(G_{i}\right), \zeta \in \tilde{H}_{i, x}$ and $g \in G_{i, x}$. Define the reduced norm $\|a\|$ by $\|a\|=\sup \left\{\left\|\tilde{\pi}_{i, x}(a)\right\| ;\right.$ $\left.x \in G^{(0)}\right\}$. The reduced groupoid C^{*}-algebra $C_{r}^{*}\left(G_{i}\right)$ is the completion of $C_{c}\left(G_{i}\right)$ by the reduced norm. We can extend $\tilde{\pi}_{i, x}$ to the $*$-representation of $C_{r}^{*}\left(G_{i}\right)$ on $\tilde{H}_{i, x}$, which we denote again by $\tilde{\pi}_{i, x}$.

In this section, we will prove the following theorem.
Theorem 4.2. Let $\left(G_{1}, G_{2}\right)$ be a matched pair with an invariant system $\left(\rho_{1}, \rho_{2}, \mu\right)$ and suppose that the actions \triangleright and \triangleleft are preserving. Then, A_{1} and A_{2} are $*$-isomorphic to the reduced groupoid C^{*}-algebras $C_{r}^{*}\left(G_{1}\right)$ and $C_{r}^{*}\left(G_{2}\right)$ respectively.
Proof. Since μ is $G_{1^{-}}$and G_{2}-invariant, we have

$$
\begin{aligned}
\int_{\mathcal{T}} \xi(u) d \lambda(u) & =\int_{G^{(0)}} \int_{G_{1}} \int_{G_{2}} \xi\left(g_{1}^{-1}, g_{2}\right) d \tilde{\lambda}_{2, r_{G}\left(g_{1}\right)}\left(g_{2}\right) \tilde{\lambda}_{1, x}\left(g_{1}\right) d \mu(x) \\
& =\int_{G^{(0)}} \int_{G_{2}} \int_{G_{1}} \xi\left(g_{1}, g_{2}^{-1}\right) d \tilde{\lambda}_{1, r_{G}\left(g_{2}\right)}\left(g_{1}\right) \tilde{\lambda}_{2, x}\left(g_{2}\right) d \mu(x)
\end{aligned}
$$

for $\xi \in C_{c}(\mathcal{T})$. Then we can define unitary operators T_{1} and T_{2} in $\mathcal{B}(H)$ by

$$
\left(T_{1} \xi\right)\left(g_{1}, g_{2}\right)=\xi \circ \kappa_{1}\left(g_{1}, g_{2}\right)=\xi\left(g_{1}^{-1}, \rho_{2}\left(g_{1}, g_{2}\right)\right)
$$

and

$$
\left(T_{2} \xi\right)\left(g_{1}, g_{2}\right)=\xi \circ \kappa_{2}\left(g_{1}, g_{2}\right)=\xi\left(\rho_{1}\left(g_{1}, g_{2}\right), g_{2}^{-1}\right)
$$

for $\xi \in H$ and $\left(g_{1}, g_{2}\right) \in \mathcal{T}$ respectively. It follows from Lemma 3.2 that we have $T_{i}^{2}=I$ for $i=1,2$. Thus we have $T_{i}^{*}=T_{i}$.

For $x \in G^{(0)}$, set $H_{x}=L^{2}\left(\mathcal{T}, \lambda_{x}\right)$. Note that we have $H_{x}=\tilde{H}_{1, x} \otimes \tilde{H}_{2, x}$ and $H=\int^{\oplus} H_{x} d \mu(x)$. Define a $*$-representation $\tilde{\pi}_{1, x} \otimes \iota: C_{r}^{*}\left(G_{1}\right) \rightarrow \mathcal{B}\left(H_{x}\right)$ by $\left(\tilde{\pi}_{1, x} \otimes \iota\right)(a)=\tilde{\pi}_{1, x}(a) \otimes I$ for $a \in C_{r}^{*}\left(G_{1}\right)$ and define a $*$-representation $\tilde{\pi}_{1}: C_{r}^{*}\left(G_{1}\right) \rightarrow \mathcal{B}(H)$ by $\tilde{\pi}_{1}=\int^{\oplus}\left(\tilde{\pi}_{1, x} \otimes \iota\right) d \mu(x)$. Similarly define *-representations $\iota \otimes \tilde{\pi}_{2, x}: C_{r}^{*}\left(G_{2}\right) \rightarrow \mathcal{B}\left(H_{x}\right)$ and $\tilde{\pi}_{2}: C_{r}^{*}\left(G_{2}\right) \rightarrow \mathcal{B}(H)$. Since the support of μ is $G^{(0)}, \tilde{\pi}_{1}$ and $\tilde{\pi}_{2}$ are faithful. Define a linear map $\varphi_{1}: C_{c}(\mathcal{T}) \rightarrow C_{c}\left(G_{1}\right)$ by

$$
\varphi_{1}(\xi)\left(g_{1}\right)=\int \xi\left(g_{1}^{-1}, g_{2}\right) d \tilde{\lambda}_{2, r_{G}\left(g_{1}\right)}\left(g_{2}\right)
$$

for $\xi \in C_{c}(\mathcal{T})$ and $g_{1} \in G_{1}$ and define a linear map $\varphi_{2}: C_{c}(\mathcal{T}) \rightarrow C_{c}\left(G_{2}\right)$ by

$$
\varphi_{2}(\xi)\left(g_{2}\right)=\int \xi\left(g_{1}, g_{2}^{-1}\right) d \tilde{\lambda}_{1, r_{G}\left(g_{2}\right)}\left(g_{1}\right)
$$

for $\xi \in C_{c}(\mathcal{T})$ and $g_{2} \in G_{2}$. Using the conditions (A1) and (A2), we have, for $\xi \in C_{c}(\mathcal{T}), \eta \in H$ and $\left(g_{1}, g_{2}\right) \in \mathcal{T}$,

$$
\begin{aligned}
& \left(\pi_{1}(\xi) \eta\right)\left(g_{1}, g_{2}\right) \\
& =\int_{G_{1} \times G_{2}} \xi\left(h_{1}, h_{2}\right) \eta\left(g_{1} h_{1}^{-1}, \rho_{2}\left(h_{1}, g_{2}\right)\right) d \tilde{\lambda}_{1, s_{G}\left(g_{2}\right)}\left(h_{1}\right) d \tilde{\lambda}_{2, s_{G}\left(g_{2}\right)}\left(h_{2}\right), \\
& \left(\pi_{2}(\xi) \eta\right)\left(g_{1}, g_{2}\right) \\
& =\int_{G_{1} \times G_{2}} \xi\left(h_{1}, h_{2}\right) \eta\left(\rho_{1}\left(g_{1}, h_{2}\right), g_{2} h_{2}^{-1}\right) d \tilde{\lambda}_{1, s_{G}\left(g_{1}\right)}\left(h_{1}\right) d \tilde{\lambda}_{2, s_{G}\left(g_{1}\right)}\left(h_{2}\right) .
\end{aligned}
$$

It follows from Lemma 2.2 that we have $T_{i} \pi_{i}(\xi) T_{i}=\tilde{\pi}_{i}\left(\varphi_{i}(\xi)\right)$ for $i=1,2$ and $\xi \in C_{c}(\mathcal{T})$. Therefore $T_{i} A_{i} T_{i}$ is contained in $\tilde{\pi}_{i}\left(C_{r}^{*}\left(G_{i}\right)\right)$ for $i=1,2$.

We denote by $\chi_{G^{(0)}}$ the characteristic function of $G^{(0)}$ in G. Since G is r-discrete, $\chi_{G^{(0)}}$ is a continuous function on G. For $f_{i} \in C_{c}\left(G_{i}\right)$, define an element $\psi_{1}\left(f_{1}\right)$ (resp. $\psi_{2}\left(f_{2}\right)$) of $C_{c}(\mathcal{T})$ by $\psi_{1}\left(f_{1}\right)\left(g_{1}, g_{2}\right)=f_{1}\left(g_{1}^{-1}\right) \chi_{G^{(0)}}\left(g_{2}\right)$ (resp. $\left.\psi_{2}\left(f_{2}\right)\left(g_{1}, g_{2}\right)=\chi_{G^{(0)}}\left(g_{1}\right) f_{2}\left(g_{2}^{-1}\right)\right)$. We have $\varphi_{i}\left(\psi_{i}\left(f_{i}\right)\right)=f_{i}$. Therefore we have $T_{i} \pi_{i}\left(\psi_{i}\left(f_{i}\right)\right) T_{i}=\tilde{\pi}_{i}\left(f_{i}\right)$. This implies that $\tilde{\pi}_{i}\left(C_{r}^{*}\left(G_{i}\right)\right)$ is contained in $T_{i} A_{i} T_{i}$ for $i=1,2$.

Corollary 4.3. For $i=1,2, A_{i}$ is the closure of the set of elements $\pi_{i}\left(\psi_{i}(f)\right)$ with $f \in C_{c}\left(G_{i}\right)$.
$5 \quad C^{*}$-algebras arising from $C_{c}(\mathcal{T})$ Let $\left(G_{1}, G_{2}\right)$ be a matched pair with an invariant system $\left(\rho_{1}, \rho_{2}, \mu\right)$. Moreover, suppose that the actions \triangleright and \triangleleft are preserving. In this section, we define a map $\pi: C_{c}(\mathcal{T}) \rightarrow \mathcal{B}(H)$ and show that the closure of $\pi\left(C_{c}(\mathcal{T})\right)$ is a C^{*}-algebra.

For $\xi \in C_{c}(\mathcal{T})$, define $\psi(\xi) \in C_{c}\left(\mathcal{T} *_{r} \mathcal{T}\right)$ by

$$
\psi(\xi)\left(\left(g_{1}, g_{2}\right),\left(h_{1}, h_{2}\right)\right)=\xi\left(g_{1}, h_{2}^{-1}\right) \chi_{G^{(0)}}\left(h_{1}\right) \chi_{G^{(0)}}\left(g_{2}\right) .
$$

For $\xi, \eta \in C_{c}(\mathcal{T})$, define $\pi(\xi) \eta \in C_{c}(\mathcal{T})$ by

$$
(\pi(\xi) \eta)(w)=\int_{\mathcal{T}} \int_{\mathcal{T}}(\eta \otimes \psi(\xi))\left(\left(\mathcal{W} *_{r} I\right)^{-1} \mathcal{W}_{(13)}(u, v, w)\right) d \lambda_{r(w)}(v) d \lambda_{q(w)}(u)
$$

for $w \in \mathcal{T}$. Then we will show the following proposition.
Proposition 5.1. For every $\xi \in C_{c}(\mathcal{T})$, there exists a positive number M such that $\|\pi(\xi) \eta\|_{H} \leq$ $M\|\eta\|_{H}$ for every $\eta \in C_{c}(\mathcal{T})$.

The above proposition implies that we can extend $\pi(\xi)$ to a bounded linear operator on H, which we denote again by $\pi(\xi)$. Therefore we have a linear map $\pi: C_{c}(\mathcal{T}) \rightarrow \mathcal{B}(H)$. From the proof of theorem 4.2, we have the following lemma.

Lemma 5.2. For $f_{i} \in C_{c}\left(G_{i}\right)(i=1,2), \eta \in H$ and $\left(g_{1}, g_{2}\right) \in \mathcal{T}$, the following equations hold;

$$
\begin{aligned}
& \left(\pi_{1}\left(\psi_{1}\left(f_{1}\right)\right) \eta\right)\left(g_{1}, g_{2}\right)=\int_{G_{1}} f_{1}\left(h_{1}^{-1}\right) \eta\left(g_{1} h_{1}^{-1}, p_{2}\left(g_{2} h_{1}^{-1}\right)\right) d \tilde{\lambda}_{1, s_{G}\left(g_{2}\right)}\left(h_{1}\right) \\
& \left(\pi_{2}\left(\psi_{2}\left(f_{2}\right)\right) \eta\right)\left(g_{1}, g_{2}\right)=\int_{G_{2}} f_{2}\left(h_{2}^{-1}\right) \eta\left(p_{1}\left(h_{2} g_{1}^{-1}\right)^{-1}, g_{2} h_{2}^{-1}\right) d \tilde{\lambda}_{2, s_{G}\left(g_{1}\right)}\left(h_{2}\right)
\end{aligned}
$$

For $\left(g_{1}, g_{2}\right) \in \mathcal{T}, h_{1} \in G_{1, s_{G}\left(g_{2}\right)}$ and $h_{2} \in G_{2, r_{G}\left(h_{1}\right)}$, set

$$
\theta_{1}\left(g_{1}, g_{2} ; h_{1}, h_{2}\right)=\left(p_{1}\left(h_{2} h_{1} g_{1}^{-1}\right)^{-1}, p_{2}\left(g_{2}\left(h_{2} h_{1}\right)^{-1}\right)\right) \in \mathcal{T},
$$

and for $\left(g_{1}, g_{2}\right) \in \mathcal{T}, h_{2} \in G_{2, s_{G}\left(g_{1}\right)}$ and $h_{1} \in G_{2, r_{G}\left(h_{2}\right)}$, set

$$
\theta_{2}\left(g_{1}, g_{2} ; h_{1}, h_{2}\right)=\left(p_{1}\left(h_{1} h_{2} g_{1}^{-1}\right)^{-1}, p_{2}\left(g_{2}\left(h_{1} h_{2}\right)^{-1}\right)\right) \in \mathcal{T}
$$

Proof of Proposition 5.1. By using the conditions (A1) and (A2) and the fact that the induced actions are preserving, we have

$$
\begin{align*}
& (\pi(\xi) \eta)\left(g_{1}, g_{2}\right) \tag{5.1}\\
& =\int_{G_{2}} \int_{G_{1}} \xi\left(h_{1}, h_{2}^{-1}\right) \eta\left(\theta_{2}\left(g_{1}, g_{2} ; h_{1}, h_{2}\right)\right) d \tilde{\lambda}_{1, r_{G}\left(h_{2}\right)}\left(h_{1}\right) d \tilde{\lambda}_{2, s_{G}\left(g_{1}\right)}\left(h_{2}\right) .
\end{align*}
$$

For $i=1,2$, let K_{i} be a compact subset of G_{i} such that the support of ξ is contained in $K_{1} \times K_{2}$. We can define $\pi_{i}\left(\psi_{i}\left(\chi_{K_{i}}\right)\right) \in \mathcal{B}(H)$ by a similar formula to that in Lemma 5.2. Then we have $\left\|\pi_{i}\left(\psi\left(\chi_{K_{i}}\right)\right)\right\| \leq M_{i}^{1 / 2} M_{i}^{\prime 1 / 2}$, where $M_{i}=\sup \left\{\tilde{\lambda}_{i, x}\left(K_{i}\right) ; x \in G^{(0)}\right\}$ and $M_{i}^{\prime}=\sup \left\{\tilde{\lambda}_{i, x}\left(K_{i}^{-1}\right) ; x \in\right.$ $\left.G^{(0)}\right\}$. Since we have, for $u \in \mathcal{T}$,

$$
|(\pi(\xi) \eta)(u)| \leq\|\xi\|_{\infty}\left(\pi_{2}\left(\psi\left(\chi_{K_{2}}\right)\right) \pi_{1}\left(\psi_{1}\left(\chi_{K_{1}^{-1}}\right)\right)|\eta|\right)(u)
$$

we have

$$
\|\pi(\xi) \eta\|_{H} \leq\|\xi\|_{\infty}\left\|\pi_{1}\left(\psi_{1}\left(\chi_{K_{1}^{-1}}\right)\right)\right\|\left\|\pi_{2}\left(\psi_{2}\left(\chi_{K_{2}}\right)\right)\right\|\|\eta\|_{H}
$$

For $f_{i} \in C_{c}\left(G_{i}\right)(i=1,2)$, define $\check{f}_{i} \in C_{c}\left(G_{i}\right)$ by $\check{f}_{i}\left(g_{i}\right)=f_{i}\left(g_{i}^{-1}\right)$. We denote by $f_{1} \otimes f_{2}$ the restriction of $f_{1} \otimes f_{2} \in C_{c}\left(G_{1} \times G_{2}\right)$ to \mathcal{T} by abuse of notation. Recall that $\kappa: \mathcal{T} \rightarrow \mathcal{T}$ is the homeomorphism introduced in Lemma 3.2. Then we have the following proposition.

Proposition 5.3. For $f_{i} \in C_{c}\left(G_{i}\right)(i=1,2)$, the following equations hold;

$$
\begin{aligned}
& \pi_{2}\left(\psi_{2}\left(f_{2}\right)\right) \pi_{1}\left(\psi_{1}\left(f_{1}\right)\right)=\pi\left(\check{f}_{1} \otimes f_{2}\right) \\
& \pi_{1}\left(\psi_{1}\left(f_{1}\right)\right) \pi_{2}\left(\psi_{2}\left(f_{2}\right)\right)=\pi\left(\left(f_{1} \otimes \check{f}_{2}\right) \circ \kappa\right)
\end{aligned}
$$

Proof. By Lemma 5.2, we have

$$
\begin{aligned}
& \left(\pi_{1}\left(\psi_{1}\left(f_{1}\right)\right) \pi_{2}\left(\psi_{2}\left(f_{2}\right)\right) \eta\right)\left(g_{1}, g_{2}\right) \\
& =\int_{G_{1}} \int_{G_{2}} f_{1}\left(h_{1}^{-1}\right) f_{2}\left(h_{2}^{-1}\right) \eta\left(\theta_{1}\left(g_{1}, g_{2} ; h_{1}, h_{2}\right)\right) d \tilde{\lambda}_{2, r_{G}\left(h_{1}\right)}\left(h_{2}\right) d \tilde{\lambda}_{1, s_{G}\left(g_{2}\right)}\left(h_{1}\right) \\
& \left(\pi_{2}\left(\psi_{2}\left(f_{2}\right)\right) \pi_{1}\left(\psi_{1}\left(f_{1}\right)\right) \eta\right)\left(g_{1}, g_{2}\right) \\
& =\int_{G_{2}} \int_{G_{1}} f_{1}\left(h_{1}^{-1}\right) f_{2}\left(h_{2}^{-1}\right) \eta\left(\theta_{2}\left(g_{1}, g_{2} ; h_{1}, h_{2}\right)\right) d \tilde{\lambda}_{1, r_{G}\left(h_{2}\right)}\left(h_{1}\right) d \tilde{\lambda}_{2, s_{G}\left(g_{1}\right)}\left(h_{2}\right)
\end{aligned}
$$

Note that we have $\left(h_{2}^{-1} \triangleright h_{1}^{-1}\right)^{-1} h_{2}^{-1} h_{1}^{-1}=h_{2}^{-1} \triangleleft h_{1}^{-1}$. By using the conditions (A1) and (B1) and the fact that \triangleright is preserving, we have

$$
\begin{aligned}
& \left(\pi_{1}\left(\psi_{1}\left(f_{1}\right)\right) \pi_{2}\left(\psi_{2}\left(f_{2}\right)\right) \eta\right)\left(g_{1}, g_{2}\right) \\
& =\iint f_{1}\left(h_{2}^{-1} \triangleright h_{1}^{-1}\right) f_{2}\left(h_{2}^{-1} \triangleleft h_{1}^{-1}\right) \eta\left(\theta_{2}\left(g_{1}, g_{2} ; h_{1}, h_{2}\right)\right) d \tilde{\lambda}_{1, r_{G}\left(h_{2}\right)}\left(h_{1}\right) d \tilde{\lambda}_{2, s_{G}\left(g_{1}\right)}\left(h_{2}\right) .
\end{aligned}
$$

Using (5.1), we have the equations in the proposition.
We denote by $A_{1} A_{2}$ the set of elements $a_{1} a_{2}$ with $a_{i} \in A_{i}(i=1,2)$ and by $\overline{\operatorname{span}} A_{1} A_{2}$ the closed linear span of $A_{1} A_{2}$. Set $A=\overline{\operatorname{span}} A_{1} A_{2}$.

Theorem 5.4. The closed linear space A is a C^{*}-algebra.
The above theorem is an immediate consequence of the following proposition.
Proposition 5.5. $\overline{\operatorname{span}} A_{1} A_{2}=\overline{\operatorname{span}} A_{2} A_{1}$.

Proof. For $f_{i} \in C_{c}\left(G_{i}\right)(i=1,2), F=\left(f_{1} \otimes \check{f}_{2}\right) \circ \kappa$ is an element of $C_{c}(\mathcal{T})$. For every $\varepsilon>0$, there exist $f_{i j} \in C_{c}\left(G_{i}\right)(i=1,2, j=1, \cdots n)$ such that $\left\|F-\sum f_{1, j} \otimes f_{2, j}\right\|_{\infty}<\varepsilon$ and the supports of F and $\sum f_{1, j} \otimes f_{2, j}$ are contained in some compact set K of $G_{1} \times G_{2}$. It follows from Proposition 5.3 and the proof of Proposition 5.1 that we have

$$
\left\|\pi_{1}\left(\psi_{1}\left(f_{1}\right)\right) \pi_{2}\left(\psi_{2}\left(f_{2}\right)\right)-\sum_{j=1}^{n} \pi_{2}\left(\psi_{2}\left(f_{2, j}\right)\right) \pi_{1}\left(\psi_{1}\left(\check{f}_{1, j}\right)\right)\right\| \leq \varepsilon M
$$

where M is a constant that depends only on K. This implies that $\overline{\operatorname{span}} A_{1} A_{2} \subset \overline{\operatorname{span}} A_{2} A_{1}$. By taking adjoint, we have the reverse inclusion.

It is easy to show that A_{i} is contained in $\overline{A_{1} A_{2}}(i=1,2)$. In particular A_{i} is a C^{*}-subalgebra of A. By Proposition 5.3 we have the following corollary.
Corollary 5.6. The C^{*}-algebra A is the closure of $\pi\left(C_{c}(\mathcal{T})\right)$.
6 A *-algebraic structure for $C_{c}(\mathcal{T})$ In this section, we prove that A is isomorphic to the groupoid C^{*}-algebra $C_{r}^{*}(G)$. To prove this fact, we introduce a *-algebraic structure for $C_{c}(\mathcal{T})$.

Let \mathcal{S} be a closed subset of $\left(G_{1} \times G_{2}\right)^{2}$ consisting of elements $\left(g_{1}, g_{2}, h_{1}, h_{2}\right)$ such that $s_{G}\left(g_{1}\right)=$ $s_{G}\left(g_{2}\right), r_{G}\left(g_{2}\right)=s_{G}\left(h_{2}\right)$ and $s_{G}\left(h_{1}\right)=r_{G}\left(h_{2}\right)$. Let \mathcal{S}^{\prime} be a closed subset of \mathcal{T}^{2} consisting of elements (u, v) such that $q(u)=r(v)$. Define a homeomorphism $\alpha: \mathcal{S} \rightarrow \mathcal{S}^{\prime}$ by

$$
\alpha\left(g_{1}, g_{2}, h_{1}, h_{2}\right)=\left(h_{1}, h_{2}^{-1}, p_{1}\left(g_{1} g_{2}^{-1}\left(h_{1} h_{2}\right)^{-1}\right), p_{2}\left(g_{1} g_{2}^{-1}\left(h_{1} h_{2}\right)^{-1}\right)^{-1}\right)
$$

The inverse of α is given by

$$
\alpha^{-1}\left(g_{1}, g_{2}, h_{1}, h_{2}\right)=\left(p_{1}\left(h_{1} h_{2}^{-1} g_{1} g_{2}^{-1}\right), p_{2}\left(h_{1} h_{2}^{-1} g_{1} g_{2}^{-1}\right)^{-1}, g_{1}, g_{2}^{-1}\right)
$$

For $\xi, \eta \in C_{c}(\mathcal{T})$, define an element $\xi \eta \in C_{c}(\mathcal{T})$ by

$$
(\xi \eta)\left(g_{1}, g_{2}\right)=\iint(\xi \otimes \eta)\left(\alpha\left(g_{1}, g_{2}, h_{1}, h_{2}\right)\right) d \tilde{\lambda}_{1, r_{G}\left(h_{2}\right)}\left(h_{1}\right) d \tilde{\lambda}_{2, r_{G}\left(g_{2}\right)}\left(h_{2}\right)
$$

For $\xi \in C_{c}(\mathcal{T})$, define an element $\xi^{*} \in C_{c}(\mathcal{T})$ by $\xi^{*}=\bar{\xi} \circ \kappa$. We will show that $C_{c}(\mathcal{T})$ is a $*$-algebra with respect to the product $\xi \eta$ and the involution ξ^{*} defined above.
Lemma 6.1. For $\xi, \eta \in C_{c}(\mathcal{T})$, the following equation holds; $\pi(\xi) \pi(\eta)=\pi(\xi \eta)$.
Proof. For $f_{i} \in C_{c}\left(G_{i}\right)(i=1,2)$ and $\zeta \in C_{c}(\mathcal{T})$, define $f_{i} \zeta \in C_{c}(\mathcal{T})$ by

$$
\begin{aligned}
& \left(f_{1} \zeta\right)\left(g_{1}, g_{2}\right)=\int_{G_{1}} f_{1}\left(h_{1}^{-1}\right) \zeta\left(h_{1} g_{1}, g_{2}\right) d \tilde{\lambda}_{1, r_{G}\left(g_{1}\right)}\left(h_{1}\right) \\
& \left(f_{2} \zeta\right)\left(g_{1}, g_{2}\right)=\int_{G_{2}} f_{2}\left(h_{2}^{-1}\right) \zeta\left(g_{1}, h_{2} g_{2}\right) d \tilde{\lambda}_{2, r_{G}\left(g_{2}\right)}\left(h_{2}\right)
\end{aligned}
$$

Then we have $\pi_{1}\left(\psi_{1}\left(f_{1}\right)\right) \pi(\zeta)=\pi\left(\left(f_{1}(\zeta \circ \kappa)\right) \circ \kappa\right)$ and $\pi_{2}\left(\psi_{2}\left(f_{2}\right)\right) \pi(\zeta)=\pi\left(f_{2} \zeta\right)$. It follows from Proposition 5.3 that we have

$$
\pi\left(f_{1} \otimes f_{2}\right) \pi(\eta)=\pi\left(f_{2}\left(\check{f}_{1}(\eta \circ \kappa)\right) \circ \kappa\right)=\pi\left(\left(f_{1} \otimes f_{2}\right) \eta\right)
$$

For $\xi_{1}, \xi_{2} \in C_{c}(\mathcal{T})$, we have $\left\|\xi_{1} \xi_{2}\right\|_{\infty} \leq M\left\|\xi_{1}\right\|_{\infty}\left\|\xi_{2}\right\|_{\infty}$, where M is a constant that depends only on the supports of ξ_{1} and ξ_{2}. For every $\varepsilon>0$, there exist $f_{i j} \in C_{c}\left(G_{i}\right)(i=1,2, j=1, \cdots, n)$ such that $\left\|\xi-\sum f_{1 j} \otimes f_{2 j}\right\|_{\infty}<\varepsilon$ and the supports of ξ and $\sum f_{1 j} \otimes f_{2, j}$ are contained in some compact set K of $G_{1} \times G_{2}$. It follows from the proof of Proposition 5.1 that we have

$$
\begin{aligned}
& \|\pi(\xi) \pi(\eta)-\pi(\xi \eta)\|_{\infty} \\
& \leq\left\|\pi(\xi) \pi(\eta)-\sum \pi\left(f_{1 j} \otimes f_{2, j}\right) \pi(\eta)\right\|_{\infty}+\left\|\sum \pi\left(\left(f_{1 j} \otimes f_{2, j}\right) \eta\right)-\pi(\xi \eta)\right\|_{\infty} \\
& \leq \varepsilon M^{\prime}\|\eta\|_{\infty}
\end{aligned}
$$

where M^{\prime} depends only on K and the support of η. This implies that $\pi(\xi) \pi(\eta)=\pi(\xi \eta)$.

Lemma 6.2. For $\xi \in C_{c}(\mathcal{T})$, the following equation holds; $\pi(\xi)^{*}=\pi\left(\xi^{*}\right)$.
Proof. Let $f_{i} \in C_{c}\left(G_{i}\right),(i=1,2)$. In the proof of Theorem 4.2, we show that $T_{i} \pi\left(\psi_{i}\left(f_{i}\right)\right) T_{i}=$ $\tilde{\pi}_{i}\left(f_{i}\right)$. Since $\tilde{\pi}_{i}$ is a $*$-representation, we have $\pi\left(\psi\left(f_{i}\right)\right)^{*}=\pi\left(\psi_{i}\left(f_{i}^{*}\right)\right)$. It follows from Proposition 5.3 that we have $\pi\left(f_{1} \otimes f_{2}\right)^{*}=\pi\left(\left(f_{1} \otimes f_{2}\right)^{*}\right)$. As in the proof of Lemma 6.1, we can show that $\pi(\xi)^{*}=\pi\left(\xi^{*}\right)$ for every $\xi \in C_{c}(\mathcal{T})$.
Proposition 6.3. The map $\pi: C_{c}(\mathcal{T}) \rightarrow A$ is injective.
Proof. Let $\xi \in C_{c}(\mathcal{T})$. Suppose that $\pi(\xi)=0$. It follows from Lemmas 6.1 and 6.2 that we have $\pi\left(\xi^{*} \xi\right)=\pi(\xi)^{*} \pi(\xi)=0$. Take $\eta \in C_{c}(\mathcal{T})$ whose support is contained in $G^{(0)} \times G^{(0)}$. Then we have $\left(\pi\left(\xi^{*} \xi\right) \eta\right)(x, x)=\left(\xi^{*} \xi\right)(x, x) \eta(x, x)$ for every $x \in G^{(0)}$. Therefore we have $\left(\xi^{*} \xi\right)(x, x)=0$ for $x \in G^{(0)}$. Since we have

$$
\left(\xi^{*} \xi\right)(x, x)=\iint\left|\xi \circ \kappa\left(h_{1}, h_{2}^{-1}\right)\right|^{2} d \tilde{\lambda}_{1, r_{G}\left(h_{2}\right)}\left(h_{1}\right) d \tilde{\lambda}_{2, x}\left(h_{2}\right)
$$

we have $\xi \circ \kappa=0$. This implies that $\xi=0$
Theorem 6.4. The set $C_{c}(\mathcal{T})$ is $a *$-algebra with respect to the product $\xi \eta$ and the involution ξ^{*} and π becomes an injective $*$-homomorphism.

Proof. The statement follows from Lemmas 6.1 and 6.2 and Proposition 6.3.
Theorem 6.5. The C^{*}-algebra A is isomorphic to $C_{r}^{*}(G)$.
Proof. For $i=1,2$, define a Hilbert space \tilde{H}_{i} by $\tilde{H}_{i}=\int^{\oplus} \tilde{H}_{i, x} d \mu(x)$ and define a faithful $*$ representation $\tilde{\pi}_{(i)}: C_{r}^{*}\left(G_{i}\right) \rightarrow \mathcal{B}\left(\tilde{H}_{i}\right)$ by $\tilde{\pi}_{(i)}=\int^{\oplus} \tilde{\pi}_{i, x} d \mu(x)$. Define a measure $\tilde{\lambda}$ on G by $\tilde{\lambda}=\int \tilde{\lambda}_{x} d \mu(x)$ and define a Hilbert space K by $K=L^{2}(G, \tilde{\lambda})$. We denote by $\pi_{G}: C_{r}^{*}(G) \rightarrow \mathcal{B}(K)$ a faithful representation such that $\pi_{G}(f) \eta=f \eta$ for $f, \eta \in C_{c}(G)$, where $f \eta$ is a convolution product in $C_{c}(G)$. Note that we have

$$
\int_{G} f(g) d \tilde{\lambda}_{x}(g)=\int_{G_{2}} \int_{G_{1}} f\left(g_{1} g_{2}\right) d \tilde{\lambda}_{1, r_{G}\left(g_{2}\right)}\left(g_{1}\right) d \tilde{\lambda}_{2, x}\left(g_{2}\right)
$$

for $f \in C_{c}(G)$ and $x \in G^{(0)}$. Since μ is $G_{1^{-}}$and G_{2}-invariant, we can show that μ is G-invariant using the conditions (A1) and (B1).

Define a homeomorphism $\omega: G \rightarrow \mathcal{T}$ by $\omega(g)=\left(p_{1}\left(g^{-1}\right), p_{2}\left(g^{-1}\right)^{-1}\right)$. The inverse of ω is given by $\omega^{-1}\left(g_{1}, g_{2}\right)=g_{2} g_{1}^{-1}$. Define a map $\omega_{*}: C_{c}(G) \rightarrow C_{c}(\mathcal{T})$ by $\omega_{*}(f)=f \circ \omega^{-1}$. Then ω_{*} is a $*$-isomorphism. Define a unitary operator $\tilde{\omega} \in \mathcal{B}(K, H)$ by $\tilde{\omega}(\eta)=\eta \circ \omega^{-1}$. Since we have $\left(\pi(\xi)\left(\eta \circ \kappa_{2}\right)\right) \circ \kappa_{2}=\xi \eta$ for $\xi, \eta \in C_{c}(\mathcal{T})$, we have $\left(T_{2} \tilde{\omega}\right) \pi_{G}(f)\left(T_{2} \tilde{\omega}\right)^{-1}=\pi\left(\omega_{*}(f)\right)$ for $f \in C_{c}(G)$. Then the theorem follows from Corollary 5.6.

7 Conditional expectations Define $P_{1} \in \mathcal{B}\left(H, \tilde{H}_{1}\right)$ (resp. $\left.P_{2} \in \mathcal{B}\left(H, \tilde{H}_{2}\right)\right)$ by $P_{1}(\xi)\left(g_{1}\right)=$ $\xi\left(g_{1}, s_{G}\left(g_{1}\right)\right)$ (resp. $\left.P_{2}(\xi)\left(g_{2}\right)=\xi\left(s_{G}\left(g_{2}\right), g_{2}\right)\right)$ for $\xi \in H$ and $g_{1} \in G_{1}$ (resp. $\left.g_{2} \in G_{2}\right)$. Note that we have $\left(P_{1}^{*} \eta_{1}\right)\left(g_{1}, g_{2}\right)=\eta_{1}\left(g_{1}\right) \chi_{G^{(0)}}\left(g_{2}\right)$ and $\left(P_{2}^{*} \eta_{2}\right)\left(g_{1}, g_{2}\right)=\chi_{G^{(0)}}\left(g_{1}\right) \eta_{2}\left(g_{2}\right)$. For $i=1,2$, recall that T_{i} is a unitary operator defined in the proof of Theorem 4.2 and that $\tilde{\pi}_{(i)}$ is the faithful *-representation of $C_{r}^{*}\left(G_{i}\right)$ defined in the proof of Theorem 6.5. Note that we have $T_{i} A_{i} T_{i}=$ $\tilde{\pi}_{i}\left(C_{r}^{*}\left(G_{i}\right)\right)$ by the proof of Theorem 4.2. Then we have the following lemma.
Lemma 7.1. The image of $\tilde{\pi}_{(i)}$ is $P_{i} T_{i} A T_{i} P_{i}^{*}$ for $i=1,2$.
Proof. For $i=1,2$, Define a linear map $\epsilon_{i}: C_{c}(\mathcal{T}) \rightarrow C_{c}\left(G_{i}\right)$ by $\epsilon_{1}(\xi)\left(g_{1}\right)=\xi\left(g_{1}, s_{G}\left(g_{1}\right)\right)$ and by $\epsilon_{2}(\xi)\left(g_{2}\right)=\xi\left(s_{G}\left(g_{2}\right), g_{2}\right)$ respectively. Then we have

$$
P_{1} T_{1} \pi(\xi) T_{1} P_{1}^{*}=\tilde{\pi}_{(1)}\left(\epsilon_{1}(\xi)^{\prime}\right) \quad \text { and } \quad P_{2} T_{2} \pi(\xi) T_{2} P_{2}^{*}=\tilde{\pi}_{(2)}\left(\epsilon_{2}(\xi)\right)
$$

for $\xi \in C_{c}(\mathcal{T})$. These imply that $P_{i} T_{i} A T_{i} P_{i}^{*} \subset \tilde{\pi}_{(i)}\left(C_{r}^{*}\left(G_{i}\right)\right)$ for $i=1,2$. Since we have $\epsilon_{1}\left(\psi_{1}\left(f_{1}\right)\right)^{r}=$ f_{1} for $f_{1} \in C_{c}\left(G_{1}\right)$ and $\epsilon_{2}\left(\psi_{2}\left(\breve{f}_{2}\right)\right)=f_{2}$ for $f_{2} \in C_{c}\left(G_{2}\right)$, the reverse inclusions hold.

Define a $*$-isomorphism $\iota_{i}: A_{i} \rightarrow C_{r}^{*}\left(G_{i}\right)$ by $\iota_{i}(a)=\tilde{\pi}_{i}^{-1}\left(T_{i} a T_{i}\right)$ for $a \in A_{i}$ and define a map $E_{i}: A \rightarrow A_{i}$ by $E_{i}(a)=\iota_{i}^{-1} \circ \tilde{\pi}_{(i)}^{-1}\left(P_{i} T_{i} a T_{i} P_{i}^{*}\right)$ for $a \in A$.
Theorem 7.2. For $i=1,2, E_{i}$ is a faithful conditional expectation.
Proof. For $f_{i}, f_{i}^{\prime} \in C_{c}\left(G_{i}\right)(i=1,2)$, set $a_{i}=\pi_{i}\left(\psi_{i}\left(f_{i}\right)\right)$ and $a_{i}^{\prime}=\pi_{i}\left(\psi_{i}\left(f_{i}^{\prime}\right)\right)$. Then we have

$$
\begin{aligned}
& P_{1} T_{1} a_{2} a_{1} a_{1}^{\prime} T_{1} P_{1}^{*}=P_{1} T_{1} a_{2} a_{1} T_{1} P_{1}^{*} \tilde{\pi}_{(1)}\left(f_{1}^{\prime}\right) \\
& P_{2} T_{2} a_{2}^{\prime} a_{2} a_{1} T_{2} P_{2}^{*}=\tilde{\pi}_{(2)}\left(f_{2}^{\prime}\right) P_{2} T_{2} a_{2} a_{1} T_{2} P_{2}^{*}
\end{aligned}
$$

Since we have $T_{i} a_{i}^{\prime} T_{i}=\tilde{\pi}_{i}\left(f_{i}^{\prime}\right)$ by the proof of Theorem 4.2, we have $E_{1}\left(a_{2} a_{1} a_{1}^{\prime}\right)=E_{1}\left(a_{2} a_{1}\right) a_{1}^{\prime}$ and $E_{2}\left(a_{2}^{\prime} a_{2} a_{1}\right)=a_{2}^{\prime} E_{2}\left(a_{2} a_{1}\right)$. This implies that $E_{1}\left(a a_{1}\right)=E_{1}(a) a_{1}$ and $E_{2}\left(a_{2} a\right)=a_{2} E_{2}(a)$ for every $a \in A$ and $a_{i} \in A_{i}$. Since we have $E_{i}\left(a^{*}\right)=E_{i}(a)^{*}(i=1,2)$, we have $E_{1}\left(a_{1} a\right)=a_{1} E_{1}(a)$ and $E_{2}\left(a a_{2}\right)=E_{2}(a) a_{2}$ for every $a \in A$ and $a_{i} \in A_{i}$. It is easy to show that $E_{i}\left(a_{i}\right)=a_{i}$ for $a_{i} \in A_{i}$ and that $E_{i}\left(a^{*} a\right) \geq 0$.

We show that E_{i} is faithful. Note that elements of $C_{r_{\tilde{2}}}^{*}(G)$ can be viewed as elements of $C_{0}(G)$ ([12], Proposition 4.2) and that the restriction map $\tilde{E}: C_{r}^{*}(G) \rightarrow C_{0}\left(G^{(0)}\right)$ is a faithful conditional expectation (cf. [12], Proposition 4.8). It follows from the proof of Theorem 6.5 that we can define a $*$-isomorphism $\iota: A \rightarrow C_{r}^{*}(G)$ by $\iota(a)=\pi_{G}^{-1}\left(\left(\tilde{\kappa}_{2} \tilde{\omega}\right)^{-1} a\left(\tilde{\kappa}_{2} \tilde{\omega}\right)\right)$. Then we have $\tilde{E} \iota=\iota_{1} E_{1} E_{2}=\iota_{2} E_{2} E_{1}$. This implies that E_{i} is faithful.

Since we have $E_{1}\left(A_{2}\right)=\iota_{1}^{-1}\left(C_{0}\left(G^{(0)}\right)\right)$ and $E_{2}\left(A_{1}\right)=\iota_{2}^{-1}\left(C_{0}\left(G^{(0)}\right)\right)$, we have the following Corollary.
Corollary 7.3. $A_{1} \cap A_{2}=\iota_{1}^{-1}\left(C_{0}\left(G^{(0)}\right)\right)=\iota_{2}^{-1}\left(C_{0}\left(G^{(0)}\right)\right)$.
8 An action of a semi-direct product group Let Γ_{1} and Γ_{2} be countable discrete groups and let $\sigma: \Gamma_{2} \rightarrow \operatorname{Aut}\left(\Gamma_{1}\right)$ be a homomorphism. We denote by Γ the semidirect product group $\Gamma_{1} \times_{\sigma} \Gamma_{2}$. Then Γ_{1} and Γ_{2} are subgroups of Γ and we have $\Gamma=\Gamma_{1} \Gamma_{2}$ and $\Gamma_{1} \cap \Gamma_{2}=\{e\}$. Note that we have $\gamma_{2} \gamma_{1}=\sigma_{\gamma_{2}}\left(\gamma_{1}\right) \gamma_{2}$. Let X be a second countable locally compact Hausdorff space and let $\alpha: \Gamma \rightarrow \operatorname{Homeo}(X)$ be an action of Γ on X by homeomorphisms. We set $\alpha_{\gamma}(x)=\gamma \cdot x$ for $\gamma \in \Gamma$ and $x \in X$. We denote by G the r-discrete groupoid $\Gamma \times X$. The source (rep. range) map is defined by $s_{G}(\gamma, x)=x$ (resp. $\left.r_{G}(\gamma, x)=\gamma \cdot x\right)$ and the product and inverse are defined by $\left(\gamma^{\prime}, \gamma \cdot x\right)(\gamma, x)=\left(\gamma^{\prime} \gamma, x\right)$ and $(\gamma, x)^{-1}=\left(\gamma^{-1}, \gamma \cdot x\right)$ respectively. Let $G_{1}=\Gamma_{1} \times X$ and $G_{2}=\Gamma_{2} \times X$ be clopen subgroupoids of G. Then $\left(G_{1}, G_{2}\right)$ is a matched pair in the sense of Definition 2.1. For $g_{1}=\left(\gamma_{1}, x\right) \in G_{1}$ and $g_{2}=\left(\gamma_{2}, \gamma_{1} \cdot x\right) \in G_{2}$, we have $g_{2} \triangleright g_{1}=\left(\sigma_{\gamma_{2}}\left(\gamma_{1}\right), \gamma_{2} \cdot x\right)$ and $g_{2} \triangleleft g_{1}=\left(\gamma_{2}, x\right)$. We identify $\left(\left(\gamma_{1}, x\right),\left(\gamma_{2}, x\right)\right) \in \mathcal{T}$ with $\left(\gamma_{1}, \gamma_{2}, x\right)$ and identify \mathcal{T} with $\Gamma_{1} \times \Gamma_{2} \times X$. The map \mathcal{W} is given by

$$
\mathcal{W}\left(\left(\gamma_{1}, \gamma_{2}, \gamma_{1}^{\prime} \cdot x\right),\left(\gamma_{1}^{\prime}, \gamma_{2}^{\prime}, x\right)\right)=\left(\left(\sigma_{\gamma_{2}}\left(\gamma_{1}^{\prime}\right), \gamma_{2}^{\prime} \gamma_{2}^{-1}, \gamma_{2} \cdot x\right),\left(\gamma_{1} \gamma_{1}^{\prime}, \gamma_{2}, x\right)\right)
$$

and the inverse is given by

$$
\mathcal{W}^{-1}\left(\left(\gamma_{1}, \gamma_{2}, \gamma_{2}^{\prime} \cdot x\right),\left(\gamma_{1}^{\prime}, \gamma_{2}^{\prime}, x\right)\right)=\left(\left(\gamma_{1}^{\prime} \gamma^{-1}, \gamma_{2}^{\prime}, \gamma \cdot x\right),\left(\gamma, \gamma_{2} \gamma_{2}^{\prime}, x\right)\right)
$$

where $\gamma=\sigma_{\gamma_{2}^{\prime}}^{-1}\left(\gamma_{1}\right)$. Define $\rho_{1}: \mathcal{T} \rightarrow G_{1}$ by $\rho_{1}\left(\gamma_{1}, \gamma_{2}, x\right)=\left(\sigma_{\gamma_{2}}\left(\gamma_{1}\right), \gamma_{2} \cdot x\right)$ and define $\rho_{2}: \mathcal{T} \rightarrow G_{2}$ by $\rho_{2}\left(\gamma_{1}, \gamma_{2}, x\right)=\left(\gamma_{2}, \gamma_{1} \cdot x\right)$. Let μ be a positive regular Radon measure on $G^{(0)}$ whose support is X. We assume that μ is invariant under the action α. Then $\left(\rho_{1}, \rho_{2}, \mu\right)$ is an invariant system for $\left(G_{1}, G_{2}\right)$. Moreover the induced actions \triangleright and \triangleleft are preserving.

The representations π_{1}, π_{2} and π satisfy the following equations: for $\xi, \eta \in C_{c}(\mathcal{T})$. With respect to the $*$-algebraic structure for $C_{c}(\mathcal{T})$ introduced in Section 6, the product satisfies the following equations;

$$
(\xi \eta)\left(\gamma_{1}, \gamma_{2}, x\right)=\sum_{\gamma_{1}^{\prime} \in \Gamma_{1}} \sum_{\gamma_{2}^{\prime} \in \Gamma_{2}} \xi\left(\gamma_{1}^{\prime}, \gamma_{2} \gamma_{2}^{\prime-1}, \gamma_{2}^{\prime} \cdot x\right) \eta\left(\gamma_{1} \gamma^{-1}, \gamma_{2}^{\prime}, \gamma \cdot x\right)
$$

where $\gamma=\sigma_{\gamma_{2}^{\prime}}^{-1}\left(\gamma_{1}^{\prime}\right)$ and the involution satisfies the following equations;

$$
\xi^{*}\left(\gamma_{1}, \gamma_{2}, x\right)=\overline{\xi\left(\sigma_{\gamma_{2}}\left(\gamma_{1}^{-1}\right), \gamma_{2}^{-1},\left(\gamma_{2} \gamma_{1}\right) \cdot x\right)}
$$

References

[1] S. Baaj and G. Skandalis, Unitaires multiplicatifs et dualité pour les produits croisés de C^{*}-algèbres, Ann. Sci. École. Norm. Sup. 26(1993), 425-488.
[2] S. Baaj, G. Skandalis and S. Vaes, Non-semi-regular quantum groups coming from number theory, Commun. Math. Phys. 235(2003), 139-167.
[3] M. Enock and J. M. Vallin, Inclusions of von Neumann algebras, and quantum groupoïds, J. Funct. Analysis 172(2000), 249-300.
[4] C. Kassel, Quantum groups, Graduate Texts in Mathematics 155, Springer-Verlag, Berlin, Heidelberg, New York, 1995.
[5] S. Majid, A quantum groups primer, London Mathematical Society Lecture Note Series 292, Cambridge University Press, Cambridge, 2002.
[6] M. O'uchi, Pseudo-multiplicative unitaries on Hilbert C^{*}-modules, Far East J. Math. Sci.(FJMS), Special Volume(2001), Part2, (Functional Analysis and its Applications), 229-249.
[7] M. O'uchi, Pseudo-multiplicative unitaries associated with inclusions of finite dimensional C^{*}-algebras, Linear Algebra Appl. 341(2002), 201-218.
[8] M. O'uchi, Pentagonal equations for operators associated with inclusions of C^{*}-algebras, Sci. Math. Japonicae 56(2002), 71-94.
[9] M. O'uchi, Coring structures associated with multiplicative unitary operators on Hilbert C^{*}-modules, Far East J. Math. Sci.(FJMS) 11(2003), 121-136.
[10] M. O'uchi, C^{*}-algebras arising from two homeomorphisms with a certain relation, Sci. Math. Japonicae 63(2006), 361-369.
[11] A. L. P. Paterson, Groupoids, inverse semigroups, and their operator algebras, Progress in Math., Vol. 170, Birkhäuser, Boston, 1999.
[12] J. Renault, A groupoid approach to C^{*}-algebras, Lecture Notes in Math., Vol. 793, Springer-Verlag, New York, 1980.
[13] T. Timmermann, Pseudo-multiplicative unitaries and pseudo-Kac systems on C^{*}-modules, Dissertationsthema, Uiversität Münster, 2005.
[14] J. M. Vallin, Unitaire pseudo-multiplicatif associé à un groupoïde applications à la moyennabilité, J. Operator Theory 44(2000), 347-368.
Department of Mathematics and Information Sciences, Graduate School of Science, Osaka Prefecture University, Sakai City, Osaka 599-8531, Japan.
E-mail : ouchi@mi.s.osakafu-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. 46L89.
 Key words and phrases. r-discrete groupoid, groupoid C^{*}-algebra, trinary relation, pentagonal equation, matched pair .

