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Abstract. Borrowing a technique due to Ando-Li-Mathias, we define a geometric mean
of (k + 1) (positive invertible) operators from that of k (or a k-tuple of) operators with
a parameter λ ∈ (0, 1]. If λ = 1, then the corresponding geometric mean Gλ(= G1) of
(k + 1) operators is one defined by Ando-Li-Mathias, and if λ = 2/3, then Gλ is one
given by one of the authors in the preceding paper. We also show that a formula due
to Yamazaki of the geometric mean for a 3-tuple of 2 × 2 matrices satisfying a trace
condition does not depend on any choice of a parameter in construction.

1. Introduction

Borrowing a technique presented in Ando-Li-Mathias [2], based on the Riccati equation,
one of the authors defined new geometric means of more than two (positive invertible)
operators on a Hilbert space [9]. In succession of the paper we shall define such geometric
means with parameters.

Let A and B be operators on a Hilbert space H. Then the weighted geometric (or α-
power) mean A�αB for α ∈ (0, 1] is defined [6] by

A�αB = A
1
2 (A− 1

2BA− 1
2 )αA

1
2 .

The usual geometric mean A�B is given as the case α = 1/2. For three operators A,B,C
and for λ ∈ (0, 1], let us define three sequences {Aλ,n}, {Bλ,n} and {Cλ,n}, by Aλ,1 =
A, Bλ,1 = B, Cλ,1 = C,

Aλ,n+1 = Aλ,n�λ(Bλ,n�Cλ,n),

Bλ,n+1 = Bλ,n�λ(Cλ,n�Aλ,n) and

Cλ,n+1 = Cλ,n�λ(Aλ,n�Bλ,n) for n ≥ 1.
(1.1)

Then we shall obtain a common limit of them, which we define a geometric mean Gλ =
Gλ(A,B,C) with a parameter λ. If λ = 1, then the geometric mean Gλ(= G1) is one defined
in [2], and if λ = 2/3, then Gλ is one defined in [9].

The above technical device using sequential limits due to Ando-Li-Mathias causes the
geometric mean Gλ to satisfy a property, permutation invariance (P3, below) for three
operators. In [2], Ando-Li-Mathias stated the following ten postulates for a geometric mean
G(A1, ..., Ak) of k (or a k-tuple of) operators A1, ..., Ak to be a reasonable one, (the usual
geometric mean G(A1, A2) = A1�A2 is reasonable):

P1 Consistency with scalars. If A1, A2, . . . , Ak commute then

G(A1, A2, . . . , Ak) = (A1A2 . . . Ak)
1
k .
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P1’ This implies G(

k︷ ︸︸ ︷
A, . . . , A) = A.

P2 Joint homogeneity. G(a1A1, a2A2, . . . , akAk) = (a1a2 · · · ak)
1
kG(A1, A2, . . . , Ak) for

ai ≥ 0 with i = 1, . . . , k.

P2’ This implies G(aA1, aA2, . . . , aAk) = aG(A1, A2, . . . , Ak) (a ≥ 0).

P3 Permutation invariance. For any permutation π(A1, A2, . . . , Ak) of (A1, A2, . . . , Ak),
G(A1, A2, . . . , Ak) = G(π(A1, A2, . . . , Ak)).

P4 Monotonicity. The map (A1, A2, . . . , An) �→ G(A1, A2, . . . , An) is monotone, i.e., if
Ai ≥ Bi for i = 1, . . . , k, then G(A1, A2, . . . , Ak) ≥ G(B1, B2, . . . , Bk).

P5 Continuity from above. If {A(n)
1 }, {A(n)

2 }, . . . , {A(n)
k } are monotonic decreasing

sequences converging to A1, A2, . . . , Ak, respectively, then {G(A(n)
1 , A

(n)
2 , . . . , A

(n)
k )}

converges to G(A1, A2, . . . , Ak).

P6 Congruence invariance. For any invertible S,

G(S∗A1S, S
∗A2S, . . . , S

∗AkS) = S∗G(A1, A2, . . . , Ak)S.

P7 Joint concavity. The map (A1, A2, . . . , Ak) �→ G(A1, A2, . . . , Ak) is jointly concave:

G(λA1 + (1 − λ)A′
1, λA2 + (1 − λ)A′

2, . . . , λAk + (1 − λ)A′
k)

≥ λG(A1, A2, . . . , Ak) + (1 − λ)G(A′
1, A

′
2, . . . , A

′
k) (0 < λ < 1).

P8 Self-duality. G(A1, A2, . . . , Ak)∗ = G(A1, A2, . . . , Ak). The dual G(A1, A2, . . . , Ak)∗ is
defined by

G(A1, A2, . . . , Ak)∗ = G(A−1
1 , A−1

2 , . . . , A−1
k )−1.

P9 (In case A1, A2, . . . , Ak are matrices.) Determinant identity.

detG(A1, A2, . . . , Ak) = (detA1 · detA2 · · · · · detAk)
1
k

P10 The arithmetic-geometric-harmonic mean inequaility.

A1 +A2 + · · · +Ak

k
≥ G(A1, A2, · · · , Ak) ≥

(A−1
1 +A−1

2 + · · · +A−1
k

k

)−1

.

In this note, we define a geometric mean of (k+1) operators with a parameter λ which still
satisfies the above properties P1-P10 from a given geometric mean of k operators satisfying
all properties. Based on a method in [2], Yamazaki [11] obtained a formula of the geometric
mean of 2 × 2 matrices under a trace condition. We shall show that the formula does not
depend on any special choice of a parameter in the process of construction.

Without occurrence of ambiguity, we shall often abbreviate the letter λ. All operators
(or matrices) are assumed to be positive invertible (or positive definite) if stated otherwise.

2. Definition of geometric means of more than two operators

Let Ω be the set of all (positive invertible) operators on H. Then the Thompson metric
on Ω is defined ([10], [3], [4]) by

d(A,B) = max{logM(A/B), logM(B/A)} for A,B ∈ Ω,

where
M(A/B) = inf{µ > 0 : A ≤ µB} (=‖ B−1/2AB−1/2 ‖).
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We remark that Ω is complete with respect to the Thompson metric topology. As a basic
inequality with respect to the metric, the following inequality for a weighted geometric mean
of two operators holds [3], [4]:

d(A1�αA2, B1�αB2) ≤ (1 − α)d(A1, B1) + αd(A2, B2)

for A1, A2, B1, B2 ∈ Ω and α ∈ (0, 1).
(2.1)

Now in order to define our geometric mean Gλ(A1, ..., Ak+1) of (k + 1) operators from a
given one of k (≥ 2) operators, we want to assume a useful inequality:

d(G(A1, ..., Ak), G(B1, ..., Bk)) ≤ 1
k

k∑
i=1

d(Ai, Bi)(2.2)

for another k-tuple of operators B1, ..., Bk.

Theorem 2.1. The geometric mean Gλ(A1, ..., Ak+1) is always defined as the common
limit of the following (k+ 1) sequences {A(r)

1 }, ..., {A(r)
k+1} of (k+ 1) operators A1, ..., Ak+1:

A
(1)
i = Ai for i = 1, ..., k + 1, and

A
(r+1)
i = A

(r)
i �λG((A(r)

j )j �=i)(= A
(r)
i �λG(A(r)

1 , ..., A
(r)
i−1, A

(r)
i+1, ..., A

(r)
k+1))

for r ≥ 1, i = 1, ..., k + 1.

(2.3)

where λ ∈ (0, 1] and G(A1, ..., Ak) is a geometric mean of k operators satisfying P1-P10
and the inequality (2.2). The geometric mean Gλ(A1, ..., Ak+1) satisfies P1-P10, and fur-
thermore, the following inequality holds:

d(Gλ(A1, ..., Ak+1), Gλ(B1, ..., Bk+1)) ≤ 1
k + 1

k+1∑
i=1

d(Ai, Bi)(2.4)

corresponding to (2.2) for another (k + 1)-tuple B1, ..., Bk+1 of operators.

Proof. To see that all sequences {A(r)
i } are convergent with a common limit we first

show that for i, j = 1, ..., k + 1, i �= j

d(A(r+1)
i , A

(r+1)
j ) ≤

(
1 − k − 1

k
λ

)r

d(Ai, Aj).(2.5)

By the definition (2.3) of A(r)
i and the inequalities (2.1) and (2.4), we have

d(A(r+1)
i , A

(r+1)
j ) = d(A(r)

i �λG((A(r)
� )� �=i), A

(r)
j �λG((A(r)

� )� �=j))

≤ (1 − λ)d(A(r)
i , A

(r)
j ) + λd(G((A(r)

� )� �=i), G((A(r)
� )� �=j))

≤ (1 − λ)d(A(r)
i , A

(r)
j ) + λ · 1

k
d(A(r)

i , A
(r)
j )

=
(

1 − k − 1
k

λ

)
d(A(r)

i , A
(r)
j ).

Hence by iteration with respect to r we can obtain the desired inequality. Next we show

d(A(r+1)
i , A

(r)
i ) ≤ λ

k

(
1 − k − 1

k
λ

)r−1

Ki,(2.6)
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where Ki =
k+1∑

�=1,� �=i

d(Ai, A�). Note that

A
(r)
i = A

(r)
i �λG(

k︷ ︸︸ ︷
A

(r)
i , ..., A

(r)
i ).

Using (2.2), we have

d(A(r+1)
i , A

(r)
i ) ≤ λd(G((A(r)

� )� �=i), G(

k︷ ︸︸ ︷
A

(r)
i , ..., A

(r)
i )) ≤ λ · 1

k

k+1∑
�=1,� �=i

d(A(r)
i , A

(r)
� ).

Hence from (2.5)

d(A(r+1)
i , A

(r)
i ) ≤ λ

k
·

k+1∑
�=1,� �=i

(
1 − k − 1

k
λ

)r−1

d(A�, Ai) =
λ

k

(
1 − k − 1

k
λ

)r−1

Ki,

which is the desired inequality. Now we see that for any i, the sequence {A(r)
i } is convergent,

or a Cauchy sequence. In fact, for r ≤ s

d(A(r+1)
i , A

(s+1)
i ) ≤

s∑
�=r+1

d(A(�)
i , A

(�+1)
i ) ≤ λ

k
Ki

s∑
�=r+1

(
1 − k − 1

k
λ

)�−1

≤ λ

k
Ki ·

(
1 − k − 1

k
λ

)r

/

(
k − 1
k

λ

)
=

Ki

k − 1

(
1 − k − 1

k
λ

)r

.

Hence d(A(r+1)
i , A

(s+1)
i ) → 0 as r(< s) → ∞, so that {A(r)

i } is convergent. From (2.5), we
easily see that all {A(r)

i } have the same limit, which guarantees the desired geometric mean
to be defined.

It is not difficult to see that the geometric mean Gλ(A1, ..., Ak+1) satisfies all proper-
ties P1-P10. For example, to see P3, let π(A1, A2, . . . , Ak+1) = (Aπ(1), ..., Aπ(k+1)) be a
permutation of (A1, A2, . . . , Ak+1), and let

B
(1)
i = A

(1)
π(i) = Aπ(i), B

(r+1)
i = B

(r)
i �λG((Bj)

(r)
j �=i)

for i = 1, ..., k + 1, r ≥ 1.

Then we see that B(r)
i = A

(r)
π(i). In fact, assuming that B(r)

i = A
(r)
π(i) (i = 1, ..., k + 1), we

have

B
(r+1)
i = A

(r)
π(i)�λG((Aπ(j))j �=i) = A

(r+1)
π(i) .

Hence {B(r)
i } and {A(r)

π(i)} coincide, so that they converge to the same limit, which is desired.

For the inequality (2.4), let the sequences {B(r)
1 }, ..., {B(r)

k+1} be defined corresponding
to B1, ..., Bk+1, similarly as (2.3) for A1, ..., Ak+1. Then for each i, from (2.1) and the
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assumption (2.2), we have

d(A(r+1)
i , B

(r+1)
i ) = d(A(r)

i �λG((A(r)
j )j �=i), B

(r)
i �λG((B(r)

j )j �=i))

≤ (1 − λ)d(A(r)
i , B

(r)
i ) + λd(G((A(r)

j )j �=i), G((B(r)
j )j �=i))

≤ (1 − λ)d(A(r)
i , B

(r)
i ) + λ · 1

k

k+1∑
j=1,j �=i

d(A(r)
j , B

(r)
j )

=
(

1 − k + 1
k

λ

)
d(A(r)

i , B
(r)
i ) +

λ

k

k+1∑
j=1

d(A(r)
j , B

(r)
j ).

Summing up all d(A(r+1)
i , B

(r+1)
i ) with respect to i, we have

σr+1 :=
k+1∑
i=1

d(A(r+1)
i , B

(r+1)
i )

≤
(

1 − k + 1
k

λ

) k+1∑
i=1

d(A(r)
i , B

(r)
i ) +

k + 1
k

λ

k+1∑
j=1

d(A(r)
j , B

(r)
j )

=
k+1∑
i=1

d(A(r)
i , B

(r)
i ) (= σr).

Hence σr+1 ≤ σr ≤ · · · ≤ σ1, that is, σr+1 ≤
k+1∑
i=1

d(Ai, Bi). Taking the limit as r → ∞, we

have the desired inequality since σr+1 → (k + 1)d(Gλ(A1, ..., Ak+1), Gλ(B1, ..., Bk+1)).

Example 2.2 Let

A1 =
[

10 1
1 0.2

]
, A2 =

[
4.1 4.9
4.9 6.1

]
and A3 =

[
1 0
0 1

]
.

Then by numerical computation we have, (discarded less than 10−10,)

G1/3 =
[

1.6472832734 0.6138234917
0.6138234917 0.8357878097

]
(= A

(r)
1 = A

(r)
2 = A

(r)
3 for r ≥ 39),

G1/2 =
[

1.6499095763 0.6157374707
0.6157374707 0.8358837675

]
(= A

(r)
1 = A

(r)
2 = A

(r)
3 for r ≥ 20),

G2/3 =
[

1.6600838645 0.6231334993
0.6231334993 0.8362802552

]
(= A

(r)
1 = A

(r)
2 = A

(r)
3 for r ≥ 4)

and

G1 =
[

1.6970826618 0.6497880663
0.6497880663 0.8380408114

]
(= A

(r)
1 = A

(r)
2 = A

(r)
3 for r ≥ 39).

Now for more convenient expression, denote by (G,λ) = (G,λ)(A1, ..., Ak+1) the geomet-
ric mean constructed as in Theorem 2.1. Then successively we can define

(G,λ1, ..., λ�) = ((G,λ1, ..., λ�−1), λ�).

Let G = �(A1, A2) = A1�A2. Then (�,

k−2︷ ︸︸ ︷
1, ..., 1) is the geometric mean (of k operators)

given by Ando-Li-Mathias in [2], and (�; 2
3 , ...,

k−1
k ) is one given in [9].

Example 2.3. Let
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A1 =
[

2 1
1 1

]
, A2 =

[
1 1
1 2

]
, A3 =

[
3

√
2√

2 1

]
and A4 =

[
1 0
0 1

]
.

Then by numerical computation, we obtain, (discarded less than 10−10,) for r ≥ 4,

(�; 2
3 ,

3
4 )(A1, A2, A3, A4) =

[
1.4126934750 0.7066270669
0.7066270669 1.0331915013

]
(= A

(r)
1 = A

(r)
2 = A

(r)
3 = A

(r)
4 ).

3. Yamazaki’s formura for the geometric mean of three matrices

Let A1, A2 and A3 be 2 × 2 (positive definite) matrices. Write

G3 = (�, 1)(A1, A2, A3) (G2 = A1�A2).

Related to G3, refining a result in [2], Yamazaki [11] presented the following formula : If
detAi = 1 for i = 1, 2, 3, then

G3 =
A1 +A2 +A3√

det(A1 +A2 +A3)
under the trace condition:

τ(A−1
i Aj) = c (a constant) for i, j = 1, 2, 3, i �= j.(3.1)

Here τ(A) is the trace of A. (In [11], Yamazaki further presented the similar formula as
above for more than three matrices.)

With respect to the above result, we show the following fact, which implies that every
parametrized geometric mean G̃3 = (�, λ)(A1, A2, A3) coincides, that is, G̃3 does not depend
on λ under the condition (3.1):

Theorem 3.1. Let A1, A2, A3 be 2×2 matrices with detAi = 1 (i = 1, 2, 3). Then under
the condition (3.1)

G̃3 = (�, λ)(A1, A2, A3) =
A1 +A2 +A3√

det(A1 +A2 +A3)
for any λ ∈ (0, 1].(3.2)

Before we prove the theorem, we want to provide a lemma:

Lemma 3.2. Let A,B be 2 × 2 matrices such that detA = detB = 1, and let λ ∈ (0, 1].
Then

A�λB = φλ(τ(A−1B))A+ ψλ(τ(A−1B))B,(3.3)

where

φλ(t) =
1√
t2 − 4

⎧⎨
⎩
(
t+

√
t2 − 4
2

)1−λ

−
(
t−√

t2 − 4
2

)1−λ
⎫⎬
⎭ ,

ψλ(t) =
1√
t2 − 4

⎧⎨
⎩
(
t+

√
t2 − 4
2

)λ

−
(
t−√

t2 − 4
2

)λ
⎫⎬
⎭ for t > 2

and
φλ(2) = lim

t→2
φλ(t) = 1 − λ, ψλ(2) = lim

t→2
ψλ(t) = λ.

In particular, (for λ = 1/2) [2, Proposition 2.1]

A�B =
A+B√

τ(A−1B) + 2

(
=

A+B√
det(A+B)

)
.(3.4)
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Proof. Let C be a 2 × 2 matrix such that C �= I2 and detC = 1. (I2 is the identity
matrix.) Then we can see σ(C) = {p, p−1} (the spectrum of C) with some p > 1. Hence
from [2, p. 310], we have

Cλ =
p1−λ − p−(1−λ)

p− p−1
I2 +

pλ − p−λ

p− p−1
C.(3.5)

It follows from τ(C) = p+ p−1 that p±1 =
τ(C) ±√τ(C)2 − 4

2
. Hence

Cλ = φλ(τ(C))I2 + ψλ(τ(C))C.(3.6)

Now for A,B we may only consider the case A �= B. Then note that A−1/2BA−1/2 �= I2,
det(A−1/2BA−1/2) = det(A−1B) = 1, and that τ(A−1/2BA−1/2) = τ(A−1B) since
σ(A−1/2BA−1/2) = σ(A−1B). Hence, replacing C by A−1/2BA−1/2 in (3.6), we have

(A−1/2BA−1/2)λ = φλ(τ(A−1B))I2 + ψλ(τ(A−1B))A−1/2BA−1/2.

Multiplying by A1/2 both sides of the above identity from the left and the right, we now
obtain the identity(3.3). For λ = 1/2, we can see that φλ(t) = ψλ(t) = 1√

t+2
. We can also

see that

det(A+B) = detA−1 det(A+B) = det(I2 +A−1B) = τ(A−1B) + 2.

This implies the desired identity (3.4).

Proof of Theorem 3.1. What we have to prove is, for all r ≥ 1, and i = 1, 2, 3

A
(r)
i = αrAi + βr

3∑
j=1,j �=i

Aj(3.7)

holds for some scalars αr and βr (each of which does not depend on i): In fact, if (3.7)
holds, then by the similar argument as in [2, p.329-330], or, by direct computation, we have

lim
r→∞αr = lim

r→∞βr = α

for some α, so that G̃3 = α(A1 +A2 +A3), or

α =
1√

det(A1 +A2 +A3)
,

which is desired.
Now our task is to show (3.7) (by induction on r). For r = 1, this is clear, since we can

put α1 = 1 and β1 = 0. Assume that (3.7) holds (for r). Then we have to show that the
identity holds for r + 1 instead of r, that is,

A
(r+1)
i = αr+1Ai + βr+1

3∑
j=1,j �=i

Aj(3.8)

for some scalars αr+1 and βr+1. We devide the proof into four steps.

Step 1. cr := τ((A(r)
i )−1A

(r)
j ) (for i �= j) does not depend on i, j, or, more precisely,

cr = (4 + 2c)αrβr + (2 + 3c)β2
r + cα2

r.(3.9)
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To see this fact, first note that detA� = 1 (for 
 = 1, 2, 3) and detA(r)
i = 1 (by P9), so that

the inverse operation on 2 × 2 matrices assures

(A(r)
i )−1 =

⎛
⎝αrAi + βr

3∑
�=1,� �=i

A�

⎞
⎠−1

= αrA
−1
i + βr

3∑
�=1,� �=i

A−1
� .

Hence, (for example,) for i = 1, j = 2,

(A(r)
1 )−1A

(r)
2 = (αrA

−1
1 + βrA

−1
2 + βrA

−1
3 )(αrA2 + βrA1 + βrA3)

= αrβr(2I2 +A−1
1 A3 +A−1

3 A2) + β2
r (I2 +A−1

2 A1 +A−1
3 A1 +A−1

2 A3) + α2
rA

−1
1 A2.

¿From this and the trace condition, we have

τ((A(r)
1 )−1A

(r)
2 ) = (4 + 2c)αrβr + (2 + 3c)β2

r + cα2
r = cr.

For other pairs of i, j we can obtain the same value cr.

Step 2. Let

dr =
2βr√
2 + cr

and er =
βr + αr√

2 + cr
.

Then from (3.4), (3.7) and Step 1, we have

G((A(r)
j )j �=3) = A

(r)
1 �A

(r)
2 =

1√
τ((A(r)

1 )−1A
(r)
2 ) + 2

(A(r)
1 +A

(r)
2 )

=
1√
cr + 2

[2βrA3 + (βr + αr)(A1 +A2)]

= drA3 + er(A1 +A2).

Similarly, we have G((A(r)
j )j �=1) = drA1 + er(A2 +A3) and G((A(r)

j )j �=2) = drA2 + er(A3 +
A1).

Step 3. We have to show that fr := τ((A(r)
i )−1G((A(r)

j )j �=i)) is independent from i. For
i = 1, by (3.7) and Step 2, we have

fr = τ

((
αrA1 + βr(A2 +A3)

)−1(
drA1 + er(A2 +A3)

))

= τ

((
αrA

−1
1 + βr(A−1

2 +A−1
3 )
)(

drA1 + er(A2 +A3)
))

= τ
(
(αrdr + 2βrer)I + αrer(A−1

1 A2 +A−1
1 A3)

+ βrdr(A−1
2 A1 +A−1

3 A1) + βrer(A−1
2 A3 +A−1

3 A2)
)

= 2αrdr + (4 + 2c)βrer + 2cαrer + 2cβrdr.

For i = 2 and 3, we can obtain the same value fr. This is what we want in this step. Now
in the final step, we show (3.8):
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Step 4. By (3.3), Steps 2 and 3, we have

A
(r+1)
i = A

(r)
i �λG((A(r)

j )j �=i)

= φλ

(
τ((A(r)

i )−1G((A(r)
j )j �=i))

)
A

(r)
i + ψλ

(
τ((A(r)

i )−1G((A(r)
j )j �=i))

)
G((A(r)

j )j �=i)

= φλ(fr)

⎛
⎝αrAi + βr

3∑
j=1,j �=i

Aj

⎞
⎠+ ψλ(fr)

⎛
⎝drAi + er

3∑
j=1,j �=i

Aj

⎞
⎠

= {αrφλ(fr) + drψλ(fr)}Ai + {βrφλ(fr) + erψλ(fr)}
3∑

j=1,j �=i

Aj .

Putting
αr+1 = αrφλ(fr) + drψλ(fr) and βr+1 = βrφλ(fr) + erψλ(fr),

we obtain the desired (3.8).

Remark 3.4. A nontrivial example of a triple of 2× 2 matrices with their determinants
1, satisfying the trace condition (3.1) is given as follows: Let c > 2, and let a, b be positive
numbers such that a(c− a) > 1, b(c− b) > 1, respectively, and further the identity

(c+ 2)(a2 + b2 + 1) − 2c(ab+ a+ b) = 0(3.10)

holds (In fact, the parameters a = 1, b = 2 and c = 3 satisfy these conditions). In case
(a+ b− 1)c− 2ab ≥ 0, we put

A1 =
[

a
√
a(c− a) − 1√

a(c− a) − 1 c− a

]
, A2 =

[
b

√
b(c− b) − 1√

b(c− b) − 1 c− b

]
and A3 = I2. Then it is easy to see that detAi = 1 for all i. For the trace condition, it is
also easy to see τ(A−1

1 A3) = τ(A−1
2 A3) = c. So it suffices to show that τ(A−1

1 A2) = c. Since

τ(A−1
1 A2) = (a+ b)c− 2ab− 2

√
a(c− a) − 1

√
b(c− b) − 1,

we have to show that

(a+ b)c− 2ab− 2
√
a(c− a) − 1

√
b(c− b) − 1 − c (= τ(A−1

1 A2) − c) = 0,

or, equivalently,

{(a+ b− 1)c− 2ab}2 −
(
2
√
a(c− a) − 1

√
b(c− b) − 1

)2

= 0.

Write Q the left side of the above identity. Then

Q ={(a+ b− 1)2 − 4ab}c2 + 4(ab+ a+ b)c− 4(a2 + b2 + 1)

=(c− 2){(c+ 2)(a2 + b2 + 1) − 2c(ab+ a+ b)} = 0

by the assumption (3.10). Hence A1, A2 and A3 are desired matrices.
In case (a+ b− 1)c− 2ab ≤ 0, we define A′

1 by

A′
1 =

[
a −√a(c− a) − 1

−√a(c− a) − 1 c− a

]
.

Then A′
1, A2 and A3 become a desired triple of matrices.

Remark 3.5. By the similar argument as in Theorem 3.1, we can show the similar fact as
(3.2) of the geometric mean for more than three (2×2) matrices, though the trace condition
then becomes very restrictive.
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