
Scientiae Mathematicae Japonicae Online, e-2007, 663–670 663

THE SHANNON FIELD OF NON-NEGATIVE INFORMATION FUNCTIONS

E. GSELMANN AND GY. MAKSA
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Abstract. Motivating the known result that there are non-negative information functions different
from the Shannon information function, we investigate how large the set is on which every non-negative
information function coincides with the Shannon’s one. The structure of this set is also discussed.

1. Introduction

The characterizations of the Shannon entropy

Hn (p1, . . . , pn) = −
n∑

k=1

pk log2 pk, (p1, . . . , pn ∈ [0, 1],
n∑

k=1

pk = 1, 0 log2 0 = 0)

based upon its recursive and symmetric (or just semisymmetric) properties lead to the so-called funda-
mental equation of information

f(x) + (1 − x)f
(

y

1 − x

)
= f(y) + (1 − y)f

(
x

1 − y

)
(1.1)

where f : [0, 1] → R (the reals) and (1.1) holds for all x, y ∈ [0, 1[, x + y ≤ 1. The solutions f of (1.1)
satisfying f(0) = f(1) and f

(
1
2

)
= 1 are the information functions. The basic reference concerning

the characterization problems of information measures (like the Shannon entropy) and the fundamental
equation of information is the monograph of Aczél and Daróczy [2]. In this book several results on (1.1)
are collected which state that f = S on [0, 1] if f satisfies one of the following conditions: (i) continuous,
(ii) continuous at 0, (iii) increasing on [0, 1/2], (iv) Lebesgue integrable, (v) measurable, (iv) non-negative
and bounded from above, where

S(x) = −x log2 x− (1 − x) log2(1 − x) (x ∈ [0, 1])

is the Shannon information function. Furthermore, the general form of the information functions is
determined there, as well, by proving that f is an information function if, and only if,

f(x) = ϕ(x) + ϕ(1 − x) (x ∈ [0, 1])(1.2)

with some function ϕ : [0,+∞[→ R satisfying the functional equation

ϕ(xy) = xϕ(y) + yϕ(x) (x, y ∈ [0,+∞[)(1.3)

and ϕ
(

1
2

)
= 1

2 . Obviously, if ϕ(x) = −x log2 x, x ∈ [0,+∞[ then ϕ
(

1
2

)
= 1

2 , ϕ satisfies (1.3), and (1.2)
implies that f = S. However, as it was pointed out in [1], f does not determine ϕ unambiguously by
(1.2). Indeed, if d : R → R is a real derivation, that is, d satisfies both functional equations

d(x+ y) = d(x) + d(y) and d(xy) = xd(y) + yd(x)

for all x, y ∈ R and d is not identically zero (such a function does exist, see e.g. Kuczma [6], pp. 352,
Theorem 2.) then (1.2) implies that f = S also with the choice ϕ(x) = −x log2 x + d(x), x ∈ [0,+∞[.
This is the main difficulty in deriving the particular solutions of (1.1) from the general one.
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The non-negativity property of an information function is very natural also from information theoretical
point of view, since f(x) is the measure of information belonging to the probability distribution {x, 1 − x}.

Throughout the paper IF+ will denote the set of all non-negative information functions. In [4], Daróczy
and Kátai proved that f(r) = S(r) for all f ∈ IF+ and r ∈ [0, 1] ∩ Q (Q denotes the set of the rational
numbers), and they showed that f = S on [0, 1] under the additional supposition that f is bounded from
above. In [5], Daróczy and Maksa proved that f(x) ≥ S(x) for all IF+ and for all x ∈ [0, 1] (the same
was proved independently also in Lawrence–Mess–Zorzitto [8]) but there exists f0 ∈ IF+ different from
S, namely

f0(x) =

{
S(x) + d(x)2

x(1−x) , if x ∈]0, 1[
0, if x ∈ {0, 1}(1.4)

defines such a function, where d is a not identically zero real derivation.
In [7], Lawrence introduced the concept of the Shannon kernel for f ∈ IF+ as

Kf = {x ∈ [0, 1]|f(x) = S(x)} ,
formulating the conjecture that a subset K ⊂ [0, 1] is the Shannon kernel of some f ∈ IF+ if, and only
if, K = L ∩ [0, 1], where L ⊂ R is a subfield of R, algebraically closed in R (real closed ), and discussed
what progress had been made towards proving this conjecture.

In this paper we show that, for all f ∈ IF+, the Shannon kernel Kf has the form [0, 1]∩Lf where Lf is
a subfield of R containing the square roots of its non-negative elements. We should remark that, in [7] it
was announced, without proof and references, that this statement had been proved by ’K. Davidson and
G. Maksa (independently)’. However, to the best of our knowledge, the proof has not been published till
now.

In the present paper we also prove that all elements of K =
⋂ {Kf |f ∈ IF+} are algebraic over Q and

K contains all the algebraic elements of [0, 1] of degree at most 3. Throughout the paper, by algebraic
number, we mean a real number algebraic over Q.

2. Preliminary results

One of our tools is the following result which is a consequence of Theorem 1. in [5] that describes the
general form of the non-negative information functions, Theorem 2. in the same paper about the minimal
property of the Shannon information function and the mentioned Daróczy–Kátai’s result in [4]. See also
Theorem 1. and its proof in [8].

Theorem 2.1. f ∈ IF+ if, and only if, there exists a function ϕ : [0,+∞[→ R satisfying (1.3) such that

ϕ(x+ y) ≤ ϕ(x) + ϕ(y), (x, y ∈ [0,+∞[)(2.1)

ϕ(r) = 0, (r ∈ [0,+∞[∩Q)(2.2)

and

f(x) = S(x) + ϕ(x) + ϕ(1 − x). (x ∈ [0, 1])(2.3)

Proof. Due to Theorem 1. in [5], f ∈ IF+ if, and only if, there exists a function ψ : [0,+∞[→ R with
ψ

(
1
2

)
= 1

2 such that

ψ(xy) = xψ(y) + yψ(x) and ψ(x+ y) ≤ ψ(x) + ψ(y) (x, y ∈ [0,+∞[)(2.4)

and

f(x) = ψ(x) + ψ(1 − x). (x ∈ [0, 1])(2.5)

First suppose that f ∈ IF+ and define the function ϕ on [0,+∞[ by

ϕ(x) = x log2 x+ ψ(x).(2.6)



THE SHANNON FIELD OF NON-NEGATIVE INFORMATION FUNCTIONS 665

Then ψ satisfies (1.3) and (2.5) implies (2.3). Furthermore, by Theorem 2. in [5] and by [4], f ≥ S on
[0, 1] and f = S on [0, 1]∩Q, respectively. Thus it follows from (2.5) and (2.6) that ϕ(x) +ϕ(1− x) ≥ 0,
x ∈ [0, 1] and ϕ(r) + ϕ(1 − r) = 0, r ∈ [0, 1] ∩ Q. On the other hand, (1.3) yields that

ϕ

(
x

x+ y

)
+ ϕ

(
1 − x

x+ y

)
=

1
x+ y

[ϕ(x) + ϕ(x) − ϕ(x+ y)] (x, y ∈ [0,+∞[, x+ y > 0)

whence (2.1) and the equation

ϕ(x+ y) = ϕ(x) + ϕ(y) (x, y ∈ [0,+∞[∩Q)

follow. Therefore ϕ(r) = rϕ(1) = 0 for all r ∈ [0,+∞[∩Q, i.e., (2.2) holds true, as well.
Conversely, if ϕ is a function with the properties listed in Theorem 2.1. and f is defined by (2.3), then

we have (2.4) for the function ψ defined by ψ(x) = ϕ(x) − x log2 x, x ∈ [0,+∞[. Since ϕ (1/2) = 1/2 we
obtain that f ∈ IF+.

The function −ϕ, where ϕ : [0,+∞[→ R has the properties (1.3), (2.1) and (2.2) is called near-
derivation in [8]. In [9], we gave a representation of the near-derivations (See Theorems 1. and 2. ). The
following theorem is an easy consequence of this result and Theorem 2.1.

Theorem 2.2. f ∈ IF+ if, and only if, there exists a function A : R2 → R satisfying the conditions

A(x, y) = A(y, x), (x, y ∈ R)(2.7)

A(x+ y, z) = A(x, z) +A(y, z), (x, y, z ∈ R)(2.8)

A(x, x) ≥ 0, (x ∈ R)(2.9)

A(xy, z) + zA(x, y) = A(x, yz) + xA(y, z), (x, y, z ∈ R)(2.10)

A

(
x,

1
x

)
≤ 0 (0 �= x ∈ R)(2.11)

such that the series
∑

2n−1x1−2−n

A
(
x2−n

, x2−n
)

is convergent for all x ≥ 0 (with the convention 00 = 0)
and

f(x) = S(x) +
∞∑

n=1

2n−1
[
x1−2−n

A
(
x2−n

, x2−n
)

+ (1 − x)1−2−n

A
(
(1 − x)2

−n

, (1 − x)2
−n

)]
(2.12)

holds for all x ∈ [0, 1].

3. The main results

First we prove the following

Lemma 3.1. Suppose that the function A : R2 → R has the properties (2.7)–(2.11). Then the set
F = {x ∈ R|A(x, x) = 0} is a subfield of R containing the square roots of its non-negative elements.

Proof. Inequalities (2.9) and (2.11) imply that 1 ∈ F . Since A is a symmetric, positive semi-definite
bilinear form on the Q-vector space R × R, we have that Q ⊂ F and A satisfies the Cauchy-Schwarz
inequality

|A(x, y)| ≤
√
A(x, x)

√
A(y, y). (x, y ∈ R)(3.1)

Therefore x ∈ F implies that A(x, y) = A(y, x) = 0 for all y ∈ R. Thus, it follows from the identity

A(x− y, x− y) = A(x, x) − 2A(x, y) +A(y, y) (x, y ∈ R)
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that x − y ∈ F if x, y ∈ F . Furthermore, if x, y ∈ F, y �= 0 then substituting x
y2 instead of x and x

y

instead of z, respectively into (2.10) we have that

A

(
x

y
,
x

y

)
+
x

y
A

(
x

y2
, y

)
= A

(
x

y2
, x

)
+

x

y2
A

(
y,
x

y

)

whence A
(

x
y ,

x
y

)
= 0, i.e., x

y ∈ F follows. Thus we have proved that F is a field. Finally, let 0 < x ∈ F ,

y = 1√
x

and z =
√
x. Then by (2.9), (2.10), (2.7) and (2.11),

0 ≤ A
(√
x,

√
x
)

= A

(
x

1√
x
,
√
x

)
+
√
xA

(
x,

1√
x

)
= A(x, 1) + xA

(
1√
x
,
√
x

)
= xA

(√
x,

1√
x

)
≤ 0,

hence
√
x ∈ F .

One of our main results is the following

Theorem 3.2. Let f ∈ IF+. Then there exists a unique subfield Lf of R containing the square roots of
its non-negative elements such that [0, 1] ∩ Lf is the Shannon kernel of f .

Proof. Theorem 2.2. implies that there exists a function A : R2 → R satisfying (2.7)–(2.11) such that
(2.12) holds for all x ∈ [0, 1]. Let Lf = {x ∈ R|A(x, x) = 0}. Then, by Lemma 3.1., Lf is a subfield of
R containing the square roots of its elements. Therefore, if x is an element of the Shannon kernel Kf of
f then, by (2.12),

√
x ∈ Lf thus x ∈ Lf . On the other hand, if x ∈ [0, 1] ∩ Lf then 1 − x ∈ [0, 1] ∩ Lf ,

moreover x2−n

, (1 − x)2
−n ∈ [0, 1] ∩ Lf for each positive integer n. Hence x ∈ Kf follows from (2.12).

The uniqueness in obvious.

For f ∈ IF+ the field Ff will be called the Shannon field of f . So, Theorem 3.2. can be formulated
as follows: The Shannon kernel of any non-negative information function is the closed unit interval of its
Shannon field.

The Shannon field of the Shannon information function is, of course, R itself. However, the Shannon
field of f0 ∈ IF+ defined in (1.4) with a non identically zero derivation d, is a proper subfield of R. The
following theorem shows that some more is true.

Theorem 3.3. Let Lf be the Shannon field of f ∈ IF+. Then all the elements of the field L =⋂ {Lf |f ∈ IF+} are algebraic.

Proof. Suppose, in the contrary, that there is a transcendental element α in L. We may (and do) suppose
that α ∈]0, 1[. It follows from [6] (pp. 352, Theorem 1. ) that there is a derivation d so that d(α) = 1.
Define f0 ∈ IF+ by (1.4). Then α /∈ Lf0 and so α /∈ L which is a contradiction.

In the remaining part of the paper we show that the intersection of all the Shannon fields in not too
small since it contains the algebraic numbers of degree at most three. To do this, we need a consequence
of a Hahn–Banach type theorem and the aid of the computer algebra package Maple V Release 9.

First we prove the following

Lemma 3.4. Let n > 1 be a fixed integer, suppose that the function A : R2 → R has the properties
(2.7)–(2.11), and A(1, 1) = 0. Furthermore, let α ∈ R be an algebraic number of degree n and F = Q(α)
be the smallest subfield of R containing α. Then there exist functions a1, . . . , an−1 : F → R such that ak

is additive, i.e.,

ak(x+ y) = ak(x) + ak(y), (x, y ∈ F )

ak(αj) = 0(3.2)
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for all k = 1, . . . , n− 1; j = 0, . . . , k − 1, and

A(x, y) =
n−1∑
k=1

ak(x)ak(y). (x, y ∈ F )(3.3)

Proof. Due to the Cauchy–Schwarz inequality (3.1) the function p : F → R defined by p(x) =
√
A(x, x),

x ∈ F is sublinear in the sense of Definition 1.1. in Berz [3] (see also Remark 2.1. there), that is,
p(x+ y) ≤ p(x) + p(y) and p(mx) = mp(x) hold for all x, y ∈ F and non-negative integers m. Therefore,
by Lemma 1.3. in [3], there exists an additive function a1 : F → R such that

a1(α)2 = A(α,α)(3.4)

and a1(x) ≤ √
A(x, x) for all x ∈ F . Since a1 is odd and x 
→ √

A(x, x), x ∈ F is even function, this
inequality implies that a1(x)2 ≤ A(x, x), x ∈ F . Obviously, a1(1) = 0.

This argument can be repeated also for the function (x, y) 
→ A(x, y) − a1(x)a1(y) (x, y ∈ L) and for
α2 instead of α. We obtain that there exists an additive function a2 : F → R such that

a1(α2)2 + a2(α2)2 = A(α2, α2)

and

a1(x)2 + a2(x)2 ≤ A(x, x). (x ∈ F )

Obviously, a1(1) = 0 and, by (3.4), a2(α) = 0.
Repeating the argument again and again, finally we find additive functions a1, . . . , an−1 : F → R such

that

a1(αk)2 + . . .+ ak(αk)2 = A(αk, αk), (k = 1, . . . , n− 1)(3.5)

a1(x)2 + . . .+ ak(x)2 ≤ A(x, x), (x ∈ F )

and

ak(αj) = 0. (k = 1, . . . , n− 1; j = 0, . . . , k − 1)(3.6)

Now we show that (3.3) holds. Indeed, define the function B on F × F by

B(x, y) = A(x, y) −
n−1∑
k=1

ak(x)ak(y).

Then B is a symmetric, positive semi-definite bilinear form on the n-dimensional Q-vector space F × F ,
furthermore it follows from (3.5), (3.6) and the Cauchy-Schwarz inequality for B that B(αi, αj) = 0 for
all i, j ∈ {0, . . . , n− 1}. Since

{
1, α, . . . , αn−1

}
is a base for F as a Q-linear vector space we get that

B ≡ 0 on F × F , consequently (3.3) holds.

Now we are ready to prove the following

Theorem 3.5. The intersection of all the Shannon fields contains the algebraic numbers of degree at
most three.

Proof. The statement follows from Theorem 3.2. for algebraic numbers of degree at most two. Let α ∈ R

be algebraic of degree three. Then there exist unique rational numbers R0, R1, R2 such that 0 �= R0,

α3 +R2α
2 +R1α+R0 = 0,(3.7)

and
{
1, α, α2

}
forms a base for the field L = Q(α) as a Q-vector space. Since L is a field 0 �= x ∈ L

implies that 1
x ∈ L. To apply the property

A

(
x,

1
x

)
≤ 0, (0 �= x ∈ L)(3.8)
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firstly we look for 1
x in the form

1
x

= s2α
2 + s1α+ s0,

with certain s0, s1, s2 ∈ Q. However, before this, let us observe that

α3 = −R2α
2 −R1α−R0

and

α4 =
(
R2

2 −R1

)
α2 + (R2R1 −R0)α+R2R0.

Let 0 �= x ∈ L, then x = r2α
2 + r1α+ r0, with certain r0, r1, r2 ∈ Q, therefore

(3.9) 1 = x
1
x

= (r2α2 + r1α+ r0)(s2α2 + s1α+ s0)

= r2s2α
4 + (r2s1 + r1s2)α3 + (r2s0 + r1s1 + r0s2)α2 + (r1s0 + r0s1)α+ r0s0

=
[
r2s2(R2

2 −R1) −R2(r2s1 + r1s2) + (r2s0 + r1s1 + r0s2)
]
α2

+ [r2s2(R2R1 −R0) −R1(r2s1 + r1s2) + (r1s0 + r0s1)]α

+ [r2s2R2R0 −R0(r2s1 + r1s2) + r0s0] .

Thus the following system of equations has to hold.⎧⎨
⎩

r2s2(R2
2 −R1) −R2(r2s1 + r1s2) + (r2s0 + r1s1 + r0s2) = 0

r2s2(R2R1 −R0) −R1(r2s1 + r1s2) + (r1s0 + r0s1) = 0
r2s2R2R0 −R0(r2s1 + r1s2) + r0s0 = 1.

To solve this we use the computer algebra package Maple V Release 9. Therefore, first we give the system
of equations that will be solved

> eq_1:=((R_2^2-R_1)*r_2-R_2*r_1+r_0)*s_2+(r_1-R_2*r_2)*s_1+r_2*s_0=0;
> eq_2:=((R_2*R_1-R_0)*r_2-R_1*r_1+r_0)*s_2+(r_0-R_1*r_2)*s_1+r_1*s_0=0;
> eq_3:=(R_2*R_0*r_2-R_0*r_1)*s_2-R_0*r_2*s_1+r_0*s_0=1;
Then we determine its solutions by the help of the command
> solve({eq_1, eq_2, eq_3}, {s_0, s_1, s_2});
This produces

s0 = − (−r1R0r2 +R2R0r2
2 − r0

2 − r0R2r2 − r0r2R2
2

+2r0R1r2 + r0R2r1 −R1
2r2

2 − r1
2R1 + r0r1 + r1r2R2R1

)
N−1,

s1
(−R0r

2
2 + r22R2R1 + r0r2 − r2R

2
2r1 + r21R2 − r0r1

)
N−1

and

s2
(
r21 −R2r2r1 − r0r2 +R1

)
N−1,

where

N = −2r20R1r2 + r20R2r2 + r20r2R
2
2 − r0r1r2R2R1 − r0R0r

2
2 + r0R

2
1r

2
2 + 3r0r2R0r1

− 2r0R2R0r
2
2 + r0r

2
1R1 + r30 + r21R2R0r2 − r31R0 +R2

0r
3
2 − r20R2r1 − r20r1 −R0r

2
2R1r1.

Due to (3.8),

0 ≥ A (x, 1/x)A
(
r2α

2 + r1α+ r0, s2α
2 + s1α+ s0

)
= r2s2

[
a1(α2)2 + a2(α2)2

]
+ r1s1a1(α)2 + (r2s1 + r1s2)a1(α)a1(α2).
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Therefore,

(3.10) 0 ≥ A(x,
1
x

)

=
(
r2r

2
1B

2 + r2r
2
1C

2 −R2r
2
2r1B

2 −R2r
2
2r1C

2 − r0r
2
2B

2 − r0r
2
2C

2 +R1r
3
2B

2 +R1r
3
2C

2

− r1A
2R0r

2
2 + r1A

2r22R2R1 + r1A
2r0r2 − r21A

2r2R
2
2 + r31A

2R2 − r21A
2r0 −ABR0r

3
2

+ABR2r
3
2R1 +ABr0r

2
2 −ABR2

2r
2
2r1 − 2ABr1r0r2 +ABr31 +ABr1R1r

2
2

)
N−1

holds for all r0, r1, r2 ∈ Q, where we used the notations

A = a1(α), B = a1(α2) and C = a2(α2).

Let us observe that the denominator of A (x, 1/x) is a polynomial of r0 of degree 3 (It can be checked
by using the command > degree(denom(A(x, 1/x)), r_0);). Thus the denominator of A (x, 1/x) has
at least one root having odd multiplicity, say x0. Taking the limit r0 → x0 one can observe that the
denominator of A (x, 1/x) changes sign, nevertheless A (x, 1/x) ≤ 0 . This implies that the numerator of
A(x, 1/x) has to be zero, if we take the limit r0 → x0, that is,

(3.11)(−r22C2 − r21A
2 + r1A

2r2 − r22B
2 − 2ABr1r2 +ABr22

)
x0 + r2r

2
1B

2 + r2r
2
1C

2 −R2r
2
2r1B

2 −R2r
2
2r1C

2

−ABR2
2r

2
2r1 + r1A

2r22R2R1 +R1r
3
2B

2 +R1r
3
2C

2 − r1A
2R0r

2
2 −ABR0r

3
2 − r21A

2r2R
2
2

r31A
2R2 +ABR2r

3
2R1 +ABr1R1r

2
2 +ABr31 = 0

holds for all r1, r2 ∈ Q. Since Q is everywhere dense in R, the same holds for all r1, r2 ∈ R.
Let us observe that (3.11) is a polynomial of r1 of degree at most 3, and it can also be considered

as a polynomial of r2. Furthermore, (3.11) yields that this polynomial is zero for all r1, r2 ∈ R. Thus
its partial derivatives with respect to r1 and r2 have to be zero, as well. If we differentiate (3.11) with
respect to r1 three times, we get that

6AB + 6A2R2 = 0,

the third order partial derivative of (3.11) with respect to r2 has to be also zero, that is,

6R1B
2 + 6R1C

2 − 6ABR0 + 6ABR2R1 = 0,

finally, for instance, differentiate (3.11) two times with respect to r1, then with respect to r2, then we
obtain that

2B2 + 2C2 − 2A2R2
2 = 0.

Therefore A,B and C have to satisfy the system of equations⎧⎨
⎩

A2R2 +AB = 0
R1B

2 +R1C
2 +ABR2R1 −ABR0 = 0

B2 + C2 −R2
2A

2 = 0.

After solving this system of equations we obtain that

A = 0, B = 0 and C = 0,

in case R2 �= 0. If R2 = 0 then the third equation of the system implies that B = C = 0 and A = 0
follows from (3.11) with r1 = r2 = 1, that is,

a1(α) = 0, a1(α2) = 0 and a2(α2) = 0.

This means that the function A : L × L → R is identically zero on the base. The biadditivity of the
function A : L×L→ R implies however, that A is identically zero on L×L. Therefore the field L = Q(α)
is contained in

⋂ {Kf |f ∈ IF+} indeed.
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Similarly to that of Lawrence [7], our conjecture is that this argument will work also for algebraic
numbers of degree greater than three and, in spite of technical difficulties, it will be possible to prove
that the intersection of all the Shannon fields is just the field of the algebraic numbers.
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[4] Z. Daróczy, I. Kátai, Additive zahlentheoretische Funktionen und das Mass der Information, (German) Ann. Univ. Sci.
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