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Abstract.The theory of apartness spaces is lifted to the more abstract context of com-
plemented frames with habitation, thereby providing another point-free constructive
approach to topology.

1 Introduction To date, the constructive1 theory of apartness has been developed within
the context of points and sets, in particular within uniform spaces; see, for example, [12,
9, 10, 13, 14]. The theory has reached a stage where it is possible to see the patterns
that might be abstracted to produce a more general theory of apartness on lattices, in
the currently popular “point free” spirit [19, 22, 23, 26]. In this paper, which was written
partly in response to our being asked (by formal topologists and locale theorists) if we could
produce a point-free version of our theory of apartness spaces, we present the foundations of
just such a theory. Specifically, after introducing an axiomatic notion of pre-apartness on a
frame,2 we show how a pre-apartness is related to a topology-like structure, or t-structure,
and how such a structure, in turn, gives rise to a frame pre-apartness. We then show how an
extra condition of local decomposability of the frame leads to the coincidence of its original
pre-apartness with that arising from the associated t-structure. In the final part of the
paper we introduce, and discuss the connections between, various notions of continuity for
maps between frames that carry pre-apartness structures.

We emphasise that the work presented here is just a beginning of the abstraction of
the theory of set-set apartness spaces; we are laying the foundations of what may be a
substantial edifice, not erecting an entire kit-set building in one go. Further work, dealing
with product frames and nearness, will appear in print soon [6]; much, though, remains to
be explored.

Since each part of our foundation is based on the model of the theory of (point-set and)
set-set apartness, it makes sense for us to begin with the axioms and some fundamental
notions of that theory. The basic structure therein is an inhabited set X equipped with a
binary relation �= of inequality satisfying the conditions

x �= y ⇒ ¬ (x = y) ,

x �= y ⇒ y �= x.

A subset S of X has two natural complementary subsets:

2000 Mathematics Subject Classification. 03F60, 54E05.
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1For background on constructive mathematics—by which we mean Bishop-style mathematics, carried
out with intuitionistic logic and an appropriate set-theoretic foundation such as Friedman’s IZF—we refer
the reader to [2, 4, 5, 8, 11, 15, 20, 25]. By using IZF we admit the possibility of impredicativity; however,
we believe that large parts of the paper could be formalised in the predicative constructive set theory (CST)
of Aczel–Myhill–Rathjen [1, 20].

2For a classical theory of nearness in frames see [18]. That theory is quite different to ours in spirit and
content.
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� the logical complement

¬S = {x ∈ X : ∀y∈S ¬ (x = y)} ,

� and the complement

∼S = {x ∈ X : ∀y∈S (x �= y)} .

It may seem strange that we distinguish between these complements, since classically they
would coincide in many, if not most, contexts. Classically, every metric space comes
equipped with an inequality relation—namely, the denial inequality; but a metric space
also has a natural metric inequality �= defined by

x �= y ⇔ ρ(x, y) > 0,(1)

which cannot be shown to coincide with the denial one unless we use Markov’s principle:

MP For each binary sequence (an)n�1 for which it is impossible that all terms
are 0, there exists n such that an = 1.

Being independent of Heyting arithmetic and embodying an unbounded search, MP is a
principle that constructive mathematicians prefer to do without (except, perhaps, when
working with the recursive model of Bishop-style constructive mathematics). For that
reason we have both the complements ∼S and ¬S not only in the set–set apartness theory
but, later, in our axiomatic theory of apartness on lattices.

We are interested in an inhabited set X that is equipped with a pre-apartness relation
�� between pairs of subsets of X. Defining the apartness complement of a subset S of X
by

−S = {x ∈ X : {x} �� S} ,(2)

we require that �� satisfy the following four axioms.3

B1 X �� ∅.

B2 −A ⊂ ∼A

B3 (A1 ∪ A2) �� (B1 ∪ B2) ⇔ ∀i,j(Ai �� Bj)

B4 −A ⊂ ∼B ⇒ −A ⊂ −B

We call the pair (X, ��) , or when no confusion is likely, simply the set X itself, a pre-
apartness space. Defining

x �� A ⇔ {x} �� A,(3)

we obtain the so-called “point-set pre-apartness” associated with the given set-set one.
Note that although the apartness complement suffices for many parts of our theory (in

particular, much of the work in Section 3 involving the apartness topology, which, in the
set-set model, is essentially a point-set notion), in order to abstract to the lattice context
the full essence of the set-set apartness theory, we need the relation ��.

By a (set-set) apartness on X we mean a relation �� between subsets of X that satisfies
B1–B3 and

3These axioms differ from the ones in our earlier papers such as [9, 10, 13]. The reason for this is that
we believe that they form a minimal set of axioms capturing the essential expected features of a set-set
apartness. Note, in particular, that the current axioms impose no requirement of symmetry; this is why the
axiom of unions, B3, is more complicated than its earlier counterpart.
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B5 x ∈ −A ⇒ ∃S⊂X(x ∈ −S ∧ X = −A ∪ S).

It then also satisfies B4 and so is a pre-apartness. The canonical example of a set-set
apartness is the one defined on a uniform space X with uniform structure U by

A �� B ⇔ ∃U∈U (A × B ⊂ ∼U ) .

This apartness relation is symmetric: for all A,B ⊂ X we have A �� B ⇔ B �� A.

2 Lattices and a-frames Our aim is to lift the theory of set-set apartness to the context
of a certain type of complemented lattice. Before doing so, however, we provide some
background information about lattices in the constructive setting.

A lattice is a set L together with

� two distinguished elements 0, 1 and

� total binary functions4 ∨ (“join”) and ∧ (“meet”)

that satisfy standard axioms, as found in [3, 16]. Using also the standard notations of lattice
theory, we define a partial order � on the lattice L by

x � y ⇔ x ∧ y = x.

This partial order has such properties as the following:

• consistency: x � y ⇔ x ∨ y = y;

• x ∧ y � x � x ∨ y;

• (z � x & z � y) ⇒ z � x ∧ y;

• (x � z & y � z) ⇒ x ∨ y � z.

We say that the lattice L is distributive if

∀x,y,z∈L (x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)) ;

and modular if

∀x,y,z (x � z ⇒ x ∧ (y ∨ z) = (x ∧ y) ∨ z) .

Every distributive lattice is modular. If L is distributive, then

∀x,y,z∈L (x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)) .

Throughout this paper, the motivating example of a lattice is the lattice of subsets of an
inhabited metric space X, with ∅, X, union, and intersection playing the roles of 0, 1, join,
and meet, respectively. The presence there of the notion of complement which we mentioned
earlier shows that this example is complemented in the sense of our next definition.

If our lattice L has a unary function ∼ with the following axiomatic properties, then
it is called a complemented lattice, and ∼x is called the complement of the element
x ∈ L.

4We use “&” and “or” to denote the logical “and” and “or” respectively, to avoid confusion with the
lattice-theoretic symbols “∧” and “∨”.
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C1 x ∧ ∼x = 0

C2 x ∧ ∼∼x = x

C3 ∼(x ∨ y) = ∼x ∧ ∼y

In that case,

x � y ⇒ ∼y � ∼x.

For if x � y, then ∼y = ∼ (x ∨ y) = ∼x ∧ ∼y, by C3. Moreover, x � ∼∼x, ∼1 = 0, and

∼∼ (x ∨ ∼x) = ∼0 = 1.

In view of the metric space model, we would not expect to have either x ∨ ∼x = 1 or
x = ∼∼x. In fact, the reader may prove that in a modular complemented lattice L,

∀x∈L (x = ∼∼x) ⇔ ∀x∈L (x ∨ ∼x = 1) .

The metric space model also shows us that we cannot prove that

∀x,y∈L (∼(x ∧ y) = ∼x ∨ ∼y) .

However, we have the following replacement (without requiring modularity):

∀x,y∈L (∼x ∨ ∼y � ∼(x ∧ y)) .

If L is a distributive complemented lattice and a � ∼a ∨ b, then a � b: for then

a = a ∧ (∼a ∨ b)
= (a ∧∼a) ∨ (a ∧ b) = 0 ∨ (a ∧ b) = a ∧ b.

We define the join and meet of an arbitrary family (xi)i∈I of elements of a lattice
in the standard way:

x =
∨
i∈I

xi ⇔ ∀i∈I (xi � x) & ∀y (∀i∈I (xi � y) ⇒ x � y) ,

x =
∧
i∈I

xi ⇔ ∀i∈I (x � xi) & ∀y (∀i∈I (y � xi) ⇒ y � x) .

These elements need not exist when I is an infinite index set. Note that

∀i∈I

(∧
i∈I

xi � xi �
∨
i∈I

xi

)

whenever the appropriate elements exist.
We say that our lattice L is habitive if it has a unary habitation relation, denoted

by hab, whose axiomatic requirements mirror those of inhabitedness for sets:

H1 hab(x) ⇒ ¬(x = 0).

H2 (hab(x) & x � y) ⇒ hab(y).
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H3 The join-existential property: For any family (xi)i∈I of elements of L, if
∨
i∈I

xi exists

and hab

(∨
i∈I

xi

)
, then there exists i ∈ I such that hab (xi) .

H4 hab (1) .

If hab(x), we say that x is an inhabited element of L.
The habitation relation corresponds to the notion of “openness” in a locale (see [19, 26])

and to that of “positivity” in formal topology (see [22, 23]).
In the context of a complemented lattice L with a habitation relation, we define an

analogue of the metric inequality by

x �= y ⇔ (hab(x ∧∼y) or hab(∼x ∧ y) .

We then have

x �= 0 ⇔ (hab(x ∧ ∼0) or hab(∼x ∧ 0))
⇔ hab(x) or hab(0)
⇔ hab(x),

in view of H1. Clearly,

x �= y ⇔ y �= x.

Also,

((x �= y) ∧ (x = y)) ⇒ (hab(x ∧ ∼x) or hab(∼x ∧ x))
⇒ hab(0),

which is absurd, by H1; so

x �= y ⇒ ¬(x = y)

and the relation �= is a genuine inequality relation. Note that since 1 ∧ ∼0 = 1, it follows
from H4 that 0 �= 1.

A lattice L is said to be complete if the join exists for any family of elements of L; in
that case, the meet of any family of elements of L also exists (see [26], Proposition 3.5.2).

Each element x of a complete lattice L has a pseudocomplement, which (in line with
the name it is given in the set-set model) we may also call the logical complement, defined
by

¬x =
∨

{y ∈ L : y ∧ x = 0} .

The pseudocomplement5 of x is the unique element z of L such that

z ∧ x = 0 & ∀y∈L (y ∧ x = 0 ⇒ y � z) .

Classically, in a distributive lattice, the pseudocomplement of x is the unique element x′

of L such that x ∧ x′ = 0 and x ∨ x′ = 1. Constructively, in view of the set-set model, we
cannot prove that x ∨ ¬x = 1 or that ¬x = ∼x.

We state two facts about pseudocomplements, leaving aside the elementary proofs.
5Note that the pseudocomplement satisfies the axioms C1–C4 for a complement on �. However, to keep

our theory in parallel with the set-set model, we normally consider lattices that have a separate relation of
complementation satisfying those axioms.
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Lemma 1 If L has pseudocomplements and x � y, then ¬y � ¬x. If also L is distributive,
then ¬ (x ∨ y) = ¬x ∧ ¬y and x ∨ y � ¬ (¬x ∧ ¬y) .

In connection with the last conclusion of this lemma, note that if the (classically true)
proposition

¬ (¬S ∩ ¬T ) = S ∪ T

held constructively for all subsets S, T of N, then by taking

S = T = {n ∈ N : P}

for any syntactically correct proposition P such that ¬¬P is provable, we could prove the
law of excluded middle in the form (¬¬P ⇒ P ) .

By a frame we mean a complete, complemented lattice with the property that ∧ is
infinitely distributive over ∨ : that is,

x ∧
∨
i∈I

ui =
∨
i∈I

(x ∧ ui)

for all x ∈ L and all families (ui)i∈I of elements of L. For arbitrary families (ui)i∈I and
(vj)j∈J of elements of a frame L we have

(∨
i∈I

ui

)
∧
⎛
⎝∨

j∈J

vj

⎞
⎠ =

∨
i∈I,j∈J

(ui ∧ vj) .

Acknowledging the importance and success of locale theory and formal topology as
constructive foundations for topology, we now introduce something completely new, not
found in standard presentations of those theories such as [19, 22, 23, 26].

Let L be a habitive frame. Our novelty consists of a binary relation �� on L and an
associated unary function −, where for each x ∈ L,

−x =
∨

{y ∈ L : y �� x} .

For �� to be a frame pre-apartness we require that the following axioms, clearly reflecting
B1–B3, be satisfied:

A1 1 �� 0

A2 −x � ∼x

A3 (x1 ∨ x2) �� (y1 ∨ y2) ⇔ ∀i,j (xi �� yj)

If x �� y, we say that x and y are apart, and we call −x the apartness complement of
x. Taken with a frame pre-apartness, L becomes an apartness frame, or an a-frame for
short.

Proposition 2 The following hold in an a-frame L.

(i) −0 = 1 and −1 = 0.

(ii) (x1 � y1 & x2 � y2 & y1 �� y2) ⇒ x1 �� x2.
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(iii) −(x ∨ y) = −x ∧ −y.

Proof. It follows from A1 that 1 � −0; whence 1 = −0; moreover, by A2, −1 � ∼1 = 0
and therefore −1 = 0. Thus (i) holds. To prove (ii) we note that if xi � yi, then yi = xi∨yi;
so if also y1 �� y2, then x1∨y1 �� x2∨y2; whence x1 �� x2, by A3. For (iii), first note that if
t �� x∨y, then, by A3, t � −x and t � −y; whence t � −x∧−y. Thus −(x∨y) � −x∧−y.
On the other hand, if z �� x and z′ �� y, then by (ii), z ∧ z′ �� x and z ∧ z′ �� y; whence, by
A3, z ∧ z′ �� x ∨ y. Since

−x ∧ −y = −y ∧
∨

{z ∈ L : z �� x}
=
∨

{−y ∧ z : z �� x}
=
∨

{z ∧ −y : z �� x}
=
∨{

z ∧
∨

{z′ ∈ L : z′ �� y} : z �� x
}

=
∨

{z ∧ z′ : z �� x & z′ �� y} ,

it follows that −x ∧−y � − (x ∨ y) . Hence −x ∧ −y = − (x ∨ y) .

In the set model the analogue of the following Lodato property is required (as axiom
B4) of a pre-apartness between sets.

A4 −x � ∼y ⇒ −x � −y.

If this holds, we say that �� is a Lodato pre-apartness on L, and that L is a Lodato
a-frame.

Everything we have done so far with lattices is point-free. However, we can introduce
“points”—known as “atoms”—into our theory as follows: an atom of a habitive lattice L
is an element x with the properties

x �= 0 & ∀y (0 �= y � x ⇒ y = x) .

It should be clear that atoms correspond to the singleton subsets of the set-set apartness
model.6 We call L an atomic lattice if

∀x∈L

(
x �= 0 ⇒ x =

∨
{y ∈ L : y is an atom and y � x}

)
.

For future reference we now prove some elementary properties of atoms.

Lemma 3 If L is a habitive distributive lattice, x is an atom, and x � u ∨ v, then x � u
or x � v.

Proof. Since

0 �= x = x ∧ (u ∨ v)) = (x ∧ u) ∨ (x ∧ v) ,

it follows from axiom H3 that either x∧u �= 0 or x∧ v �= 0. In the first case, 0 �= x∧u � x,
so, as x is an atom, x ∧ u = x and therefore x � u. In the second case, a similar argument
gives x � v.

6We contemplated writing “t ∈ x” to signify that t is an atom and t � x. We would then have described

an element x of our lattice as “set-like” if 0 �= x =
�

t∈x

t.
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Lemma 4 If L is a habitive frame, x is an atom, and x �
∨
i∈I

ui, then there exists i such

that x � ui.

Proof. Since

0 �= x = x ∧
∨
i∈I

ui =
∨
i∈I

(x ∧ ui) ,

axiom H3 shows that there exists i such that x ∧ ui �= 0. The same argument as in the
conclusion of the proof of Lemma 3 completes the proof in this case also.

Proposition 5 If L is a habitive a-frame, and x is an atom of L such that x � −y, then
x �� y.

Proof. Since

x � −y =
∨

{z ∈ L : z �� y} ,

it follows from Lemma 4 that there exists z ∈ L such that x � z and z �� y; whence x �� y,
by Proposition 2(ii).

3 Topology-like structures Referring to the set-set case [9], we define the nearly open
elements of a frame L with a pre-apartness to be those of the form

∨
i∈I

−ui for some index

set I. The join of any family of nearly open elements is then nearly open. Both 0 (= −1)
and 1 (= −0) are nearly open. If a =

∨
i∈I

− ui and b =
∨
j∈J

− vj are nearly open, then a ∧ b

is nearly open, since by the generalised distributive law and Proposition 2(iii),

(∨
i∈I

− ui

)
∧
⎛
⎝∨

j∈J

− vj

⎞
⎠ =

∨
i∈I,j∈J

(−ui ∧ −vj) =
∨

i∈I,j∈J

− (ui ∨ vj) .

The set of nearly open elements of L is denoted by τL.
In a uniform apartness space (that is, a uniform space taken with the canonical apartness

defined at the end of Section 1), the closure of a subset S relative to the uniform topology
is the unique set T with the property7

∀U⊂X ((U is open and T ∩ U �= ∅) ⇒ S ∩ U �= ∅) .

Given that uniformly open sets are just unions of apartness complements (see [13]), this
suggests the following definition.

The closure of an element x of a habitive a-frame L is the element

x =
∨

{t ∈ L : ∀u∈L (t ∧−u �= 0 ⇒ x ∧ −u �= 0)} .

Clearly, x � x. Also, for each y ∈ L,

x � x ∨ y.

7We write “S �= �” to signify that the set S is inhabited, not the weaker property that ¬(S = �).
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For if

∀u∈L (t ∧−u �= 0 ⇒ x ∧ −u �= 0)

and t ∧ −u �= 0, then

0 �= x ∧ −u � (x ∨ y) ∧ −u;

so, by H3, (x ∨ y) ∧ −u �= 0; whence t � x ∨ y.
Our next proposition is further demonstration that the closure of an element in an

a-frame behaves like the closure in a topological space.

Proposition 6 In a habitive a-frame L, if y � x, then

∀u∈τL
(y ∧ u �= 0 ⇒ x ∧ u �= 0) .

Proof. Let u =
∨
i∈I

− ai ∈ τL and

0 �= y ∧ u = y ∧
∨
i∈I

− ai =
∨
i∈I

(y ∧ −ai) .

Then by H3, there exists i0 such that y ∧ −ai0 �= 0. Since y � x and L is a frame,

0 �= x ∧ −ai0 =
∨

{t ∧−ai0 : ∀v∈L (t ∧ −v �= 0 ⇒ x ∧ −v �= 0)} .

Again applying H3, we obtain t such that

∀v∈L (t ∧ −v �= 0 ⇒ x ∧ −v �= 0)

and t ∧ −ai0 �= 0; whence x ∧ −ai0 �= 0.

Now consider any frame L with a family τ of elements satisfying the following three
properties:

TL1 0 ∈ τ and 1 ∈ τ.

TL2 If (ui)i∈I is a family of elements of τ, then
∨
i∈I

ui ∈ τ.

TL3 If u, v ∈ τ, then u ∧ v ∈ τ.

We call τ a topology-like structure, or a t-structure, on L; the pair (L, τ) a topological
frame; and the elements of τ the corresponding open elements of L. Trivially, the family
comprising all elements of L is a t-structure on L. Of more interest and significance is
the fact that (as follows from the first paragraph of this section) if L is equipped with a
pre-apartness, then τL is a t-structure on L.

Given a topological frame (L, τ) , we define a relation ��τ on L as follows:

x ��τ y ⇔ ∃u∈τ (x � u � ∼y) .

We also define

−τx =
∨

{z ∈ L : z ��τ x} .
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To show that the relation ��τ is a pre-apartness on L, first observe that, since 1 � 1 = ∼0
and 0, 1 ∈ τ, we have 1 ��τ 0—that is, A1. Next, if z ��τ x, then there exists u ∈ τ such
that z � u � ∼x, so z � ∼x; whence −x � ∼x, and A2 holds. To deal with A3, suppose
first that (x1 ∨ x2) ��τ (y1 ∨ y2) . Then there exists u ∈ τ such that

x1 ∨ x2 � u � ∼ (y1 ∨ y2) = ∼y1 ∧ ∼y2.

Hence xi � u � ∼yj and therefore xi ��τ yj . Next suppose, conversely, that xi ��τ yj for
i, j = 1, 2. For such i, j there exists uij ∈ τ such that xi � uij � ∼yj. Then

xi � ui1 ∧ ui2 � ∼y1 ∧ ∼y2 = ∼(y1 ∨ y2),

so

x1 ∨ x2 � (u11 ∧ u12) ∨ (u21 ∧ u22) � ∼(y1 ∨ y2).

Since

(u11 ∧ u12) ∨ (u21 ∧ u22) ∈ τ,

we now see that (x1 ∨ x2) ��τ (y1 ∨ y2) . This completes the proof that ��τ is a pre-apartness,
which we call the topological pre-apartness, on L. When we regard a topological frame
as an a-frame, it is this topological pre-apartness that we have in mind.

The relation ��τ satisfies not only A4 but even the stronger property

∀x,y∈L (−τx � ∼y ⇒ ∀z∈L (z ��τ x ⇒ z ��τ y)) .(4)

To show this, let −τx � ∼y. For each z with z ��τ x construct u ∈ τ such that z � u � ∼x.
Then u � u � ∼x, so u ��τ x and therefore u � −τx. Hence z � u � ∼y and so z ��τ y.

Our primary motivating example of an a-frame was the power set of a set-set pre-
apartness space. Another example is provided by the topology τ on an inhabited set X with
an inequality relation. Relative to the operations of union and intersection, τ itself is both
a complete, habitive frame and a t-structure on that frame; so we have the corresponding
pre-apartness ��τ and apartness complement −τ on τ , defined by

U ��τ V ⇔ ∃W∈τ (U ⊂ W ⊂ ∼V )

and

−τU ≡ (∼U)◦ .

These turn τ into a Lodato a-frame. Note that the nearly open sets of this a-frame all
belong to the original topology τ .

For any element x of a topological frame, the interior of x is defined by

x◦ =
∨

{u ∈ τ : u � x} .

Then x◦ ∈ τ, by TL2; and the definition of “join” shows that x◦ � x. If x ∈ τ, then since
x � x, we also have x � x◦ and therefore x = x◦.

Proposition 7 Let (L, τ) be a topological frame, and ��τ ,−τ the corresponding topological
pre-apartness and apartness complement. Then −τx = (∼x)◦ for each x ∈ L.
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Proof. If z ��τ x, then there exists u ∈ τ such that z � u � ∼x; since u � (∼x)◦ by
definition of “interior”, it follows that z � (∼x)◦ . Hence −τx � (∼x)◦ . Conversely, if u ∈ τ
and u � ∼x, then, by definition of ��τ , u ��τ x and therefore u � −τx. Hence (∼x)◦ � −τx.

Starting with an a-frame, we produce the corresponding t-structure, which, in turn,
gives rise to a pre-apartness satisfying the (strong Lodato-type) condition (4). How is this
pre-apartness related to the original one?

Proposition 8 Let L be a habitive a-frame, τ the corresponding t-structure, and ��τ the
pre-apartness induced on L by τ. For all x, y ∈ L, if x �� y, then x ��τ y. Conversely, if L
also has the Lodato property and x is an atom such that x ��τ y, then x �� y.

Proof. If x �� y, then x � −y � ∼y, so x ��τ y. Conversely, suppose that x is an atom
satisfying x ��τ y. Then there exists a family (ai)i∈I of elements of L such that

x �
∨
i∈I

− ai � ∼y.

By Lemma 4, there exists i ∈ I such that x � −ai � ∼y. It follows from the Lodato
property that −ai � −y; whence x � −y. Since x is an atom, we conclude that x �� y.

Again, let (L, τ) be a topological frame. Now that we have a lattice pre-apartness ��τ

and an apartness complement −τ on L, we have the corresponding nearly open elements of
L : namely, the joins of elements of the form −τx. Every nearly open element is open: for,
by Proposition 7, ∨

i∈I

−τ ui =
∨
i∈I

(∼ui)
◦ =

∨
i∈I

∨
{v ∈ τ : v � ∼ui} ,

which is a join of open elements. However, as the set model shows, we cannot expect to
prove that every open element of L is nearly open; see Section 2.2 of [12].8 If that property
does hold, then we call L topologically consistent. We now consider conditions that
guarantee topological consistency.

We say that a frame L with a pre-apartness and an apartness complement is locally
decomposable if

∀x∈L(−x =
∨

{−y ∈ L : −x ∨ y = 1} .

In the context of a set-set pre-apartness space (X, ��) this property becomes

∀A⊂X

(
−A =

⋃
{−S : X = −A ∪ S}

)
(5)

is equivalent to (and a point-free expression of) axiom B5, and so turns the pre-apartness
into an apartness. For that reason, we say that a locally decomposable pre-apartness on a
frame is an apartness.

Proposition 9 Every habitive, locally decomposable a-frame has the Lodato property.
8The paper [17], where a generalisation of point-set apartness spaces is considered, has a particularly

illuminating discussion of the constructive plurality of topologies compatible with a given point-set pre-
apartness.
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Proof. Let L be a habitive, locally decomposable a-frame, and let x, y be elements of L
such that −x � ∼y. For each z ∈ L with −x ∨ z = 1 we have

y = (y ∧−x) ∨ (y ∧ z) = 0 ∨ (y ∧ z) = y ∧ z

—that is, y � z; whence −z � −y. It follows that

−x =
∨

{−z : −x ∨ z = 1} � −y.

Thus the Lodato condition holds in L.

Proposition 10 If L is a habitive, locally decomposable a-frame, then for each atom x ∈ L
and each u ∈ L with x � −u, there exists v ∈ L such that x � −v and −u ∨ v = 1.

Proof. Let x be an atom with x � −u. Since L is locally decomposable,

0 �= x �
∨

{−v : −u ∨ v = 1} .

Since x is an atom, it follows from Lemma 4 that there exists v ∈ L such that −u ∨ v = 1
and x � −v.

Lemma 11 In an a-frame L, if −a � a ∨ b, then −a � b.

Proof. It is enough to prove that if z �� a, then z � b. Our hypotheses ensure that z � a∨b.
Since the lattice is distributive and z ∧ a � −a ∧ a = 0, it follows that

z = z ∧ (a ∨ b) = (z ∧ a) ∨ (z ∧ b) = z ∧ b;

whence z � b.

Proposition 12 Let (L, τ) be a topological frame such that

∀u∈τ

(
u =

∨
{v ∈ τ : u ∨ ∼v = 1}

)
.(6)

Then (L, ��τ) is locally decomposable.

Proof. Let x ∈ L. Then (by Proposition 7) −τx = (∼x)◦ ∈ τ ; so, by (6),

−τx =
∨

{v ∈ τ : −τx ∨ ∼v = 1} .

Given v ∈ τ such that −τx∨∼v = 1, set z = ∼v. Then v � ∼∼v = ∼z and v ∈ τ, so v ��τ z
and therefore v � −τz. Thus

v �
∨

{−τy : −τx ∨ y = 1}
and therefore

−τx =
∨

{v ∈ τ : −τx ∨ ∼v = 1} �
∨

{−τy : −τx ∨ y = 1} .

Since, by Lemma 11, ∨
{−τy : −τx ∨ y = 1} � −τx,

it follows that

−τx =
∨

{−τy : −τx ∨ y = 1} ,

so (L, ��τ ) is locally decomposable.
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Proposition 13 Let (L, ��) be a frame with a locally decomposable pre-apartness, and let
τ denote the t-structure comprising the nearly open elements of L. Then (6) holds.

Proof. Let u ∈ τ. Then there exists a family (ui)i∈I of elements of L with u =
∨
i∈I

− ui.

For each i ∈ I, by local decomposability we have

−ui =
∨

{−z : −ui ∨ z = 1} .(7)

Let −ui ∨ z = 1; then −z � −ui, by Lemma 11. Moreover,

1 = −ui ∨ z � u ∨ ∼∼z � u ∨ ∼− z,

so u ∨ ∼− z = 1. It follows from this, (7), and Lemma 11 that

−ui �
∨

{v ∈ τ : u ∨ ∼v = 1} � u.

Hence

u =
∨
i∈I

− ui �
∨

{v ∈ τ : u ∨ ∼v = 1} � u

and therefore

u =
∨

{v ∈ τ : u ∨ ∼v = 1} ,

as we required.

Proposition 14 Every topological frame satisfying (6) is topologically consistent.

Proof. Let L be a frame with a t-structure τ that satisfies (6), and consider any u, v in
τ such that u ∨ ∼v = 1. Since v � ∼∼v and v ∈ τ, we have v � (∼∼v)◦ and therefore
v � −τ∼v. Moreover,

∼∼v � 1 = u ∨ ∼v,

so, by Lemma 11, ∼∼v � u; whence −τ∼v � u. It follows that

v �
∨

{−x : −x � u} � u.

Applying (6), we now obtain

u =
∨

{v ∈ τ : u ∨∼v = 1} �
∨

{−x : −x � u} � u

and therefore

u =
∨

{−x : −x � u} ,

which is a nearly open element of L.
Next, we show that local decomposability implies a lattice version of the point-set prop-

erty

∀x∈X∀U⊂X (x ∈ −U ⇒ ∀y∈X (x �= y or y ∈ −U )) ,

which is one of the axioms for a point-set apartness (see [9] or Chapter 2 of [12]) and is
easily seen to be equivalent to

∀U⊂X

(
−U =

⋃
{T ⊂ X : −U ∪∼T = X}

)
.
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Proposition 15 Let L be a locally decomposable a-frame. Then

∀x∈L

(
−x =

∨
{z ∈ L : −x ∨ ∼z = 1}

)
.(8)

Proof. Fix x in L. Since L is locally decomposable,

−x =
∨

{−u ∈ L : −x ∨ u = 1} .

Given u ∈ L with −x ∨ u = 1, we have −x ∨ ∼∼u = 1, so

−u � ∼u �
∨

{z ∈ L : −x ∨ ∼z = 1} .

Moreover, if −x ∨ ∼z = 1, then z � −x ∨ ∼z, so, by Lemma 11, z � −x. Hence

−u �
∨

{z ∈ L : −x ∨ ∼z = 1} � −x.

It follows that

−x =
∨

{−u ∈ L : −x ∨ u = 1} �
∨

{z ∈ L : −x ∨∼z = 1} � −x

from which we deduce (8).

4 Join homomorphisms and continuity Consider a mapping f : X → Y between
two sets with inequalities. For any family (Ai)i∈I of subsets of X we have

f

(⋃
i∈I

Ai

)
=
⋃
i∈I

f(Ai)

and

f

(⋂
i∈I

Ai

)
⊂
⋂
i∈I

f(Ai),

but generally not

⋂
i∈I

f(Ai) ⊂ f

(⋂
i∈I

Ai

)
.

Note also that for any A ⊂ X, f(A) is inhabited if and only if A is inhabited. These
observations motivate the following definitions.

Let L,M be habitive frames. We call a mapping f : L → M a join homomorphism if

� for each family (xi)i∈I of elements of L,

f

(∨
i∈I

xi

)
=
∨
i∈I

f(xi),

and

� for all x ∈ L, x �= 0 in L if and only if f(x) �= 0 in M.
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Such a map is order-preserving: if a � b, then a ∨ b = b, so f(a) ∨ f(b) = f(a ∨ b) = f(b)
and therefore f(a) � f(b). It follows that

f

(∧
i∈I

xi

)
�
∧
i∈I

f(xi)

for all families (xi)i∈I of elements of L.
Comparing our notion of join homomorphism with the standard notion of frame homo-

morphism (see page 39 of [19]), we see that the former is, in one respect, more general, as
it does not require the mapping to preserve finite meets; but in another, it is less general,
as it requires that nonzero elements be mapped to nonzero elements.

For each v ∈ M define

f−∞(v) =
∨

{x ∈ L : f(x) � v} .

In our theory the element f−∞(x) plays the role of the inverse image of a set in the set
model. For example, in that model, topological continuity of a mapping f between set-set
apartness spaces X and Y means that f−1(V ) is nearly open in X for each nearly open
V ⊂ Y. But

f−1(V ) = {x ∈ X : f(x) ∈ V } =
⋃

{U ⊂ X : f(U) ⊂ V } ,

which is precisely the counterpart of the element f−∞(v) that appears in the definition of
topologically continuous given below. We have used the special notation f−∞(v) in order
to avoid confusion with

f−1(v) = {x ∈ L : f(x) = v} .

We introduce several types of continuity for a join homomorphism. With the exception
of the first, these properties are based on their counterparts in the set-set theory. The
first property here is similar to that of near continuity in the set-set theory, but a better
correspondent to the latter can be introduced once we have a good notion of nearness in
an a-frame; in turn, that requires an understanding of product apartness structures on
a-frames, a topic that will is covered in some detail in [6].

Before defining continuity types, we need one more definition. Let x, y be elements of
an a-frame L. We say that x approximates y if

∀u∈τL
(x � u ⇒ y ∧ u �= 0) ,

and we then write apr (x, y) .
Let f : L → M be a join homomorphism between a-frames. We say that f is

� approximately continuous if

∀x,y∈L (apr (x, y) ⇒ apr(f(x), f(y))) ;

� continuous if

∀u,v∈M

(
u � −v ⇒ f−∞(u) � −f−∞(v)

)
;

� topologically continuous if

∀v∈τM

(
f−∞(v) ∈ τL

)
;
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� strongly continuous if

∀u,v∈M

(
u �� v ⇒ f−∞(u) �� f−∞(v)

)
.

The elementary proofs of the next two lemmas are left to the reader.

Lemma 16 If L,M are a-frames, f : L → M is a join homomorphism, and b ∈ M, then
f(f−∞(b)) � b.

Lemma 17 Let L,M,N be a-frames, and let f : L → M and g : M → N be join homo-
morphisms. Then (g ◦ f)−∞ = f−∞ ◦ g−∞.

Using Lemma 17, it is easy to see that the composition of two join homomorphisms of
the same continuity type is also of that continuity type.

What relations do we have between our various notions of continuity? To answer this,
we first prove

Lemma 18 If an a-frame L satisfies (8), and z ∈ L is nearly open, then ¬z = ∼z.

Proof. Since ∼z � ¬z, it is enough to prove that ¬z � ∼z. Pick a family (ai)i∈I of elements
of L such that z =

∨
i∈I

− ai. Consider any y ∈ L with y ∧ z = 0. For any i ∈ I and any t ∈ L

with −ai ∨∼t = 1 we have

y = y ∧ (−ai ∨∼t) = (y ∧ −ai) ∨ (y ∧ ∼t) = y ∧∼t,

so y � ∼t. It follows from this and (8) that

y �
∧

{∼t : −ai ∨ ∼t = 1}
� ∼

∨
{t : −ai ∨ ∼t = 1} = ∼− ai.

Hence

y �
∧
i∈I

∼− ai = ∼
∨
i∈I

− ai = ∼z.

Thus

¬z =
∨

{y : y ∧ z = 0} � ∼z

and the proof is complete.

Proposition 19 Let L,M be a-frames, and f : L → M a topologically continuous join
homomorphism. Then f is approximately continuous.

Proof. Consider elements x, y of L such that apr (x, y) . Let v be a nearly open element
of M such that f(x) � v. By the topological continuity of f, f−∞(v) is nearly open in L.
Since x � f−∞(v) and apr (x, y) , we have y ∧ f−∞(v) �= 0; so, by the defining properties of
a join homomorphism and Lemma 16,

0 �= f(y ∧ f−∞(v)) � f(y) ∧ f(f−∞(v)) � f(y) ∧ v.

Hence f(y) ∧ v �= 0.
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We say that the inequality �= on a complemented lattice L with a habitation relation is
zero-tight if

∀x∈L (¬ (x �= 0) ⇒ x = 0) .

Note that this does not imply that the inequality is tight in the sense that

∀x,y∈L (¬ (x �= y) ⇒ x = y) .

To see this, consider the lattice L of subsets of X = {1, 2} , where the complement of a
subset S of X is

∼S = {x ∈ X : ∀y∈S (|x − y| > 0)}
and the habitation predicate is the usual one of inhabitedness:

hab(S) ⇔ ∃x (x ∈ S) .

If ¬ (S �= ∅) , then S = ∅, so the inequality on L is zero-tight. Suppose it is tight. Given
any syntactically correct statement P, define

S = {1} and T = {x ∈ X : x = 1 and P ∨ ¬P} .

Then ¬ (S �= T ) ; but if S = T, then P ∨ ¬P.

Proposition 20 Let L be a Lodato a-frame that satisfies (8) and has a zero-tight inequality.
Then every topologically continuous join homomorphism from L to an a-frame is continuous.

Proof. Let f : L → M be a topologically continuous join homomorphism. Consider
elements u, v of M with u � −v. Let y = f−∞(−v). By Lemma 16, f(f−∞(u)) � u � −v,
so f−∞(u) � y. We prove that

f−∞(v) � ∼y.(9)

By Lemma 16,

f(f−∞(v) ∧ y) � f(f−∞(v)) ∧ f(y) � v ∧ −v = 0;

whence f(f−∞(v)∧y) = 0. It follows from the second defining property of a join homomor-
phism that ¬ (f−∞(v) ∧ y �= 0) . Since the inequality on L is zero-tight, f−∞(v)∧ y = 0; so
f−∞(v) � ¬y, from which we obtain (9), by Lemma 18.

Now, the topological continuity of f ensures that y is nearly open, so there exists a
family (ai)i∈I of elements of L such that y =

∨
i∈I

− ai. For each i, since −ai � y we have

f−∞(v) � ∼y � ∼− ai and therefore

−ai � ∼∼− ai � ∼f−∞(v).

It follows from A4 that −ai � −f−∞(v). Hence

f−∞(u) � y =
∨
i∈I

− ai � −f−∞(v)

and therefore f is continuous.
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By a T1 frame we mean an a-frame in which for all x, y with x �= y, either x ∧−y �= 0
or else −x ∧ y �= 0.

We say that a join homomorphism f : L → M between a-frames is strongly exten-
sional if

∀u,v∈M

(
u �= v ⇒ f−∞(u) �= f−∞(v)

)
.

Proposition 21 A continuous join homomorphism of an a-frame into a T1 a-frame is
strongly extensional.

Proof. Let f : L → M be a continuous join homomorphism, where L,M are a-frames and
M is T1. Let u, v be elements of M such that u �= v. Since M is T1, we may assume that
u ∧ −v �= 0. By the continuity of f,

f−∞(u ∧ −v) � −f−∞(v) � ∼f−∞(v).

But, clearly, f−∞(u ∧−v) � f−∞(u). Since f is a join homomorphism,

0 �= f−∞(u ∧ −v) � f−∞(u) ∧ ∼f−∞(v).

Hence f−∞(u) ∧ ∼f−∞(y) �= 0 and therefore f−∞(u) �= f−∞(y).

We now have conditions which ensure the equivalence of continuity and topological
continuity for a join homomorphism.

Proposition 22 Let L and M be a-frames with L atomic and M locally decomposable. Let
f : L → M be a continuous join homomorphism which preserves atoms (that is, takes atoms
in L to atoms in M). Then f is topologically continuous.

Proof. Let v =
∨
i∈I

− si be a nearly open subset of M. If x ∈ L is an atom such that

x � f−∞(v), then f(x) is an atom and f(x) � v. Lemma 4 shows that there exists i such
that f(x) � −si. By Proposition 10, there exists t ∈ M such that f(x) � −t and −si∨t = 1.
Set y = f−∞(t). Then f(y) � t, so f(x) � −t � −f (y); whence, by the continuity of f,
x � −f−∞(f(y)). Since y � f−∞(f(y)), it follows that x � −y.

Now consider any atom z of L with z � −y. Since ¬(z � y) and y = f−∞(t), we have
¬(f(z) � t); but f(z) is an atom in M and

f(z) � 1 = −si ∨ t = 1;

so, by Lemma 3, f(z) � −si and therefore z � f−∞(−si). Since L is atomic, it follows that
−y � f−∞(−si). Thus we have proved that for each atom x � f−∞(v) there exist i ∈ I
and y ∈ L such that x � −y � f−∞(−si) � f−∞(v). It follows that

f−∞(v) =
∨{

x ∈ L : x is an atom and x � f−∞(v)
}

�
∨{−y : y ∈ L and ∃i∈I

(−y � f−∞(−si)
)}

=
∨
i∈I

∨{−y : y ∈ L and − y � f−∞(−si)
}

� f−∞(v),

so

f−∞(−v) =
∨{−y : y ∈ L and ∃i∈I

(−y � f−∞(−si)
)}

,
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which is nearly open in L.

Finally, we turn to strong continuity.

Proposition 23 Let L and M be a-frames with L atomic. Let f : L → M be a strongly
continuous join homomorphism that preserves atoms. Then f is continuous.

Proof. Let u � −v in M, and consider any atom x of L such that x � f−∞(u). We have

f(x) � u = u ∧ −v

= u ∧
∨

{z ∈ M : z �� v}
=
∨

{u ∧ z : z ∈ M, z �� v} .

Since f(x) is an atom, Lemma 4 shows us that there exists z ∈ M with z �� v and f(x) �
u ∧ z � z; whence f(x) �� v. The strong continuity of f now yields f−∞(f(x)) �� f−∞(v);
since x � f−∞(f(x)), it follows that x �� f−∞(v) and therefore x � −f−∞(v). Thus

f−∞(u) =
∨

{x ∈ L : x is an atom & f(x) � u} � −f−∞(v),

as we want.

This completes our laying the foundations of a theory of point-free pre-apartness on
frames. One advantage of our doing this has been to show exactly where we appear to
need points/atoms in the set-set model; for example, axiom B5 of the latter (dealing with
local decomposability) is now seen to be expressible without reference to points, thereby
countering a criticism that our set-set theory appeared, in that one axiom, to be point-
dependent. On the other hand, it is hard to see how Propositions 22 and 23 could have
been proved without the atomic hypotheses.

Further development of the theory can be found in [6] and [7].

Acknowledgement. The authors thank (i) the New Zealand Foundation for Science
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