ANNA AVALLONE AND PAOLO VITOLO

University of Basilicata, Potenza, Italy

Received July 9, 2008

Abstract. We prove that every closed exhaustive vector-valued modular measure on a lattice ordered effect algebra L can be decomposed into the sum of a Lyapunov exhaustive modular measure (i.e. its restriction to every interval of L has convex range) and an "anti-Lyapunov" exhaustive modular measure.

This result extends a Kluvanek-Knowles decomposition theorem for measures on Boolean algebras.

1. Introduction.

In 1974 I. Kluvanek and G. Knowles (see [K-K]) proved a decomposition theorem for a closed σ -additive measure μ on a σ -algebra with values in a quasi-complete locally convex linear space. Precisely, μ can be expressed as the sum of a Lyapunov vector measure and an anti-Lyapunov vector measure.

The decomposition theorem of [K-K] is based on a characterization of Lyapunov measures given in [K-R] and in [K]. In [A- B_1] a similar characterization has been proved for modular measures on D-lattices (i.e. lattice ordered effect algebras), extending a result of [D-W] for measures on σ -algebras. Then a natural question which arises is if for modular measures on D-lattices a Kluvanek-Knowles type decomposition theorem also holds.

In this paper we give a positive answer to this question.

Precisely, we prove (see Theorem (3.16)) that, if X is a Hausdorff locally convex linear space, every closed exhaustive X-valued modular measure on a D-lattice can be decomposed into the sum of a Lyapunov exhaustive modular measure and an "anti-Lyapunov" exhaustive modular measure.

We recall that effect algebras have been introduced by D.J. Foulis and M.K. Bennett in 1994 (see [B-F]) for modelling unsharp measurement in a quantum mechanical system. They are a generalization of many structures which arise in quantum physics (see [B-C]) and in Mathematical Economics (see [B-K], [G-M] and [E-Z]), in particular of orthomodular lattices in non-commutative measure theory and MV-algebras in fuzzy measure theory. After 1994, there have been a great number of papers concerning effect algebras. We refer to [D-P] for a bibliography.

²⁰⁰⁰ Mathematics Subject Classification. 28A12, 06C15.

Keywords and phrases. Effect algebras, D-lattices, Central elements, Measures, Modular functions, Lyapunov decomposition.

2. Preliminaries.

We will fix some notations.

Definition (2.1). Let (L, \leq) be a partial ordered set (a poset for short). A partial binary operation \ominus on L such that $b \ominus a$ is defined if and only if $a \leq b$ is called a difference on (L, \leq) if the following conditions are satisfied:

- (1) If $a \leq b$, then $b \ominus a \leq b$ and $b \ominus (b \ominus a) = a$.
- (2) If $a \leq b \leq c$, then $c \ominus b \leq c \ominus a$ and $(c \ominus a) \ominus (c \ominus b) = b \ominus a$.

Definition (2.2). Let $(L, \leq \ominus)$ be a poset with difference. If L has greatest and smallest elements 1 and 0, respectively, the structure (L, \leq, \ominus) is called a difference poset (D-poset for short), or a difference lattice (D-lattice for short) if L is a lattice.

An alternative structure to a D-poset is that of an effect algebra introduced by Foulis and Bennett in [B-K]. These two structures, D-posets and effect algebras, are equivalent as shown in [D-P, Theorem 1.3.4].

We recall that a D-lattice is complete (σ -complete) if every set (countable set) has a supremum and an infimum.

We write $a_{\alpha} \uparrow a$ (respectively, $a_{\alpha} \downarrow a$) whenever (a_{α}) is an increasing net in L and $a = \sup_{\alpha} a_{\alpha}$ (respectively, (a_{α}) is a decreasing net in L and $a = \inf_{\alpha} a_{\alpha}$).

If $a, b \in L$, we set $a \triangle b = (a \lor b) \ominus (a \land b)$. If $a \le b$, we set $[a, b] = \{c \in L : a \le c \le b\}$. Moreover we set $\Delta = \{(a, b) \in L \times L : a = b\}$.

If $a \in L$, we set $a^{\perp} = 1 \ominus a$. By (1) of (2.1), we have $(a^{\perp})^{\perp} = a$ for every $a \in L$. It is easy to see that, if L is a D-lattice, then $(a \lor b)^{\perp} = a^{\perp} \land b^{\perp}$.

We say that a and b are orthogonal if $a \leq b^{\perp}$ (or, equivalently, if $b \leq a^{\perp}$), and we write $a \perp b$. If $a \perp b$, we set $a \oplus b = (a^{\perp} \oplus b)^{\perp}$. Thus $a \oplus b$ exists and equals c if and only if $b \oplus c$ exists and equals a. This sum is commutative and associative.

If a_1, \dots, a_n are in L, we inductively define $a_1 \oplus \dots \oplus a_n = (a_1 \oplus \dots \oplus a_{n-1}) \oplus a_n$ if the right-side exists. The definition is independent on any permutation of the elements. We say that a finite family (a_1, \dots, a_n) is *orthogonal* if $a_1 \oplus \dots \oplus a_n$ exists. We say that a family (a_α) is *orthogonal* if every finite subfamily is orthogonal. If (a_α) is orthogonal, we define $\bigoplus_{\alpha \in A} a_\alpha = \sup\{\bigoplus_{\alpha \in F} a_\alpha : F \subseteq A \text{ finite}\}.$

We need the following result of [D-P] (see 1.1.2 and 1.1.6).

Proposition (2.3).

- (1) If $a \leq b$ and $b \leq c$, then $b \ominus a \leq c \ominus a$ and $(c \ominus a) \ominus (b \ominus a) = c \ominus b$.
- (2) If $a \perp b$ and $b \leq c$, then $a \oplus b \leq a \oplus c$ and $(a \oplus c) \ominus (a \oplus b) = c \ominus b$.

An element c in a D-poset is said to be *central* if, for every $a \in L$, both $a \wedge c$ and $a \wedge c^{\perp}$ exist and $a = (a \wedge c) \vee (a \wedge c^{\perp})$. By [A-V] (Lemma 5.1), if L is a D-lattice, $c \in L$ is central if and only if, for each $a \in L$, $a = (a \wedge c) \oplus (a \wedge c^{\perp})$. The set C(L) of all central elements of L is called *centre* of L and is a Boolean algebra, as proved in [D-P, 1.9.14].

A subset I of L is said to be a *D*-ideal if the following conditions are satisfied:

- (1) For every $a, b \in I$ with $a \perp b, a \oplus b \in I$.
- (2) For every $a \in I$ and $c \in L$, $(a \lor c) \ominus c \in I$.

We will need the following result of [A-V] (see 4.4 and 5.3).

Theorem (2.4). If I is a D-ideal and $\sup I$ exists, then it is central.

A *D*-congruence on a D-lattice *L* is a lattice congruence *N* which satisfies the following condition: if $(a, b) \in N$, $(c, d) \in N$, $c \leq a$ and $d \leq b$, then $(a \ominus c, b \ominus d) \in N$.

If (G, +) is an Abelian group and L is a D-lattice, a function $\mu : L \to G$ is said to be modular if, for every $a, b \in L$, $\mu(a \lor b) + \mu(a \land b) = \mu(a) + \mu(b)$ and it said to be a measure if, for every $a, b \in L$, with $a \perp b$, $\mu(a \oplus b) = \mu(a) + \mu(b)$. It is easy to see that μ is a measure if and only if, for every $a, b \in L$, with $a \leq b$, $\mu(b \oplus a) = \mu(b) - \mu(a)$.

If G is a topological Abelian group, by 4.2 of $[A-B_2]$, every modular measure $\mu : L \to G$ generates a *D*-uniformity $\mathcal{U}(\mu)$, i.e. a uniformity on L which makes \lor, \land, \ominus and \oplus uniformly continuous.

A measure μ is said to be σ -additive if, for every orthogonal sequence (a_n) in L such that $a = \bigoplus_n a_n$ exists, $\mu(a) = \sum_{n \in N} \mu(a_n)$. Moreover μ is said to be completely additive if, for every orthogonal family $(a_\alpha)_{\alpha \in A}$ in L such that $a = \bigoplus_\alpha a_\alpha$ exists, the family $(\mu(a_\alpha) : \alpha \in A)$ is summable and $\mu(a) = \sum_\alpha \mu(a_\alpha)$. We say that μ is σ -order continuous (σ -o.c. for short) if $a_n \uparrow a$ implies that $(\mu(a_n))$ converges to $\mu(a)$ and order-continuous (o.c. for short) if $a_\alpha \uparrow a$ implies that $(\mu(a_\alpha))$ converges to $\mu(a)$. By [A-B₂, 2.4], a measure μ is σ -additive if and only if it is σ -o.c. We say that μ is exhaustive if, for every orthogonal sequence (a_n) in L, the sequence $(\mu(a_n))$ converges to 0. By 2.3 of [A], a modular measure μ is exhaustive if and only if μ is exhaustive in the sense of [A-B₁] (i.e. every monotone sequence in L is Cauchy in $\mathcal{U}(\mu)$).

Throughout this paper, X is a Hausdorff locally convex linear space and L is a D-lattice.

3. Lyapunov decomposition theorem.

Let $\mu:L\to X$ be an exhaustive modular measure. Set

$$I(\mu) = \{a \in L : \mu([0, a]) = \{0\}\}\$$

and

$$N(\mu) = \{(a, b) \in L : \forall c \le a \triangle b, \ \mu(c) = 0\}$$

By 3.1 of [W], 4.3 of [A-B₂] and 4.5 of [A-V₂], $N(\mu)$ is a D-congruence, $I(\mu)$ is a D-ideal and the quotient $\hat{L} = L/N(\mu)$ is a D-lattice. Moreover the function $\hat{\mu} : \hat{L} \to X$ defined as $\hat{\mu}(\hat{a}) = \mu(a)$ for $a \in \hat{a} \in \hat{L}$ clearly is a modular measure, too.

We say that μ is *closed* if \hat{L} is complete with respect to the uniformity $\mathcal{U}(\hat{\mu})$ generated by $\hat{\mu}$.

We need the following result of $[A-B_1]$ (see 4.2).

Lemma (3.1).

- (1) μ is closed iff $\hat{\mu}$ is o.c. and (\hat{L}, \leq) is complete.
- (2) If μ is o.c., then μ is completely additive.
- (3) If X is metrizable, then μ is closed.

Definition (3.2). We say that μ is semiconvex with respect to $h \in L$ if, for every $a \leq h$, there exists $b \leq a$ such that $\mu(b) = 2\mu(c)$.

Definition (3.3). We say that μ is pseudo-injective with respect to $h \in L$ if, for every $b, c \notin I(\mu)$ with $b \perp c$ and $b \oplus c \leq h$, $\mu(b) \neq \mu(c)$.

Definition (3.4). We say that μ is pseudo non-injective with respect to $h \in L$ if, for every $a \leq h$ with $a \notin I(\mu)$, μ is not pseudo-injective with respect to a.

Definition (3.5). We say that μ is Lyapunov with respect to $h \in L$ if, for every $a \leq h$, $\mu([0, a])$ is convex.

Definition (3.6). We say that μ is anti-Lyapunov with respect to $h \in L$ if, for every $a \leq h$ with $a \notin I(\mu)$, μ is not Lyapunov with respect to a.

Observe that μ is Lyapunov (or anti-Lyapunov, or pseudo non-injective or semiconvex, respectively) with respect to $h \in L$ if and only if, for every $k \leq h$, μ is Lyapunov (or anti-Lyapunov, or pseudo non-injective or semiconvex, respectively) with respect to k.

If μ is Lyapunov (anti-Lyapunov, respectively) with respect to 1 (and therefore with respect to any element of L), we say that μ is Lyapunov (anti-Lyapunov, respectively).

In the sequel, we need the following result.

Lemma (3.7). Let $(b_{\alpha})_{\alpha \in A}$ be a family of elements of L and suppose that the supremum $b = \sup_{\alpha} b_{\alpha}$ exists in L. The following conditions hold:

- (1) Let $a \in L$ be such that $a \perp b$. Then $c = \sup_{\alpha} (a \oplus b_{\alpha})$ exists in L and $c = a \oplus b$.
- (2) Let $c \in L$ be such that $c \geq b$. Then $a = \inf_{\alpha} (c \ominus b_{\alpha})$ exists in L and $a = c \ominus b$.

Proof. (1) is proved in 1.8.7 of [D-P].

(2) Let $d \in L$ be such that $d \leq c \ominus b_{\alpha}$ for every α . Then $d \perp b_{\alpha}$ and $d \oplus b_{\alpha} \leq c$ for every α . Therefore $d \perp b$ and, by (1), $d \oplus b = \sup_{\alpha} (d \oplus b_{\alpha})$. Hence we obtain that $d \oplus b \leq c$, whence $d \leq c \ominus b$. Since $c \ominus b \leq c \ominus b_{\alpha}$ for every α , we have that $\inf(c \ominus b_{\alpha})$ exists and equals $c \ominus b$. \Box

¿From 4.5 of $[A-B_1]$, the following result can be derived.

Theorem (3.8). Let μ be closed. Then μ is pseudo non-injective with respect to $h \in L$ if and only if μ is Lyapunov with respect to h.

Proof. By 4.5 of $[A-B_1]$, the assertion holds for h = 1. Then, since [0, h] is clearly a D-lattice, it is sufficient to prove that the restriction $\overline{\mu}$ of μ to [0, h] is closed.

It is easy to see that we can replace L by $\hat{L} = L/N(\mu)$, since μ is closed iff $\hat{\mu}$ is closed and μ is pseudo non-injective (respectively, Lyapunov) with respect to $h \in L$ iff $\hat{\mu}$ is pseudo non-injective (respectively, Lyapunov) with respect to $\hat{h} \in \hat{L}$. Hence we can suppose $N(\mu) = \Delta$. Moreover, since μ is closed and the infimum in L of every subset of [0, h] coincides with the infimum in [0, h], by (3.1) it is clear that [0, h] is complete and $\overline{\mu}$ is o.c. Then, again by (3.1), $\overline{\mu}$ is closed. \Box

Corollary (3.9). Let μ be closed. Then:

- (1) μ is anti-Lyapunov with respect to $h \in L$ if and only if, for every $a \leq h$ with $a \notin I(\mu)$, there exists $b \leq a$ such that $b \notin I(\mu)$ and μ is pseudo-injective with respect to b.
- (2) If μ is pseudo-injective with respect to $h \in L$, then μ is anti-Lyapunov with respect to h.

In a similar way as in (3.8), the following result can be derived by 4.3 of $[A-B_1]$, but we prefer to give here an alternative proof based on transfinite induction.

Theorem (3.10). Let L be complete and μ o.c. Then μ is pseudo non-injective with respect to $h \in L$ if and only if μ is semiconvex with respect to h.

Proof. \leftarrow Let $h \in L$ and $a \notin I(\mu)$ with $a \leq h$. We can suppose that $\mu(a) \neq 0$, otherwise we replace a by an element $r \leq a$ with $\mu(r) \neq 0$. By assumption, we can find $b \leq a$ such that $\mu(a) = 2\mu(b)$. Set $c = a \ominus b$. Then $\mu(c) = \mu(a) - \mu(b) = \mu(b)$, $b, c \notin I(\mu)$, $b \perp c$ and $b \oplus c = a$. Hence μ is pseudo non-injective with respect to h.

⇒ Suppose that μ is not semiconvex with respect to h. Then we can find $a \leq h$ such that, for every $b \leq a$, $2\mu(b) \neq \mu(a)$. It follows that $a \notin I(\mu)$.

We construct four sequences by transfinite induction.

Set $\lambda = |L|$ and let χ be a cardinal greater then λ . We prove that, for every ordinal $\beta < \chi$, there exist $a_{\beta}, c_{\beta}, d_{\beta}$ and r_{β} such that $(a_{\beta})_{\beta < \chi}, (c_{\beta})_{\beta < \chi}$ and $(d_{\beta})_{\beta < \chi}$ are strictly increasing, $(r_{\beta})_{\beta < \chi}$ is strictly decreasing, and the following properties hold:

- (1) $c_{\beta} \perp d_{\beta}$ and $c_{\beta} \oplus d_{\beta} = a_{\beta}$.
- (2) $a_{\beta} \perp r_{\beta}$ and $a_{\beta} \oplus r_{\beta} = a$.
- (3) $\mu(c_{\beta}) = \mu(d_{\beta}).$

From (1), (2) and (3) it follows that $c_{\beta} \leq a$, $d_{\beta} \leq a$ and $2\mu(c_{\beta}) = \mu(c_{\beta}) + \mu(d_{\beta}) = \mu(c_{\beta} \oplus d_{\beta}) = \mu(a \oplus r_{\beta}) = \mu(a) - \mu(r_{\beta}).$

Let $\beta = 0$. Since μ is pseudo non-injective and $a \leq h$, we can find $c_0, d_0 \notin I(\mu)$ such that $c_0 \perp d_0, c_0 \oplus d_0 \leq a$ and $\mu(c_0) = \mu(d_0)$. Set $a_0 = c_0 \oplus d_0$ and $r_0 = a \oplus a_0$. Then the assertion is true for $\beta = 0$. Now suppose by induction that (1), (2) and (3) are true for every β less than an ordinal $\alpha > 0$ and that $(a_\beta)_{\beta < \alpha}, (c_\beta)_{\beta < \alpha}$ and $(d_\beta)_{\beta < \alpha}$, are strictly increasing, while $(r_\beta)_{\beta < \alpha}$ is strictly decreasing. We construct $c_\alpha, d_\alpha, a_\alpha$ and r_α .

We distinguish two cases:

- (i) α is a limit ordinal.
- (ii) α is a successor ordinal.

(i) In this case, we set

$$c_{\alpha} = \sup\{c_{\beta} : \beta < \alpha\}, d_{\alpha} = \sup\{d_{\beta} : \beta < \alpha\}.$$

Since $c_{\beta} \perp d_{\beta}$ for every $\beta < \alpha$, we have also $c_{\alpha} \perp d_{\alpha}$. Set $a_{\alpha} = c_{\alpha} \oplus d_{\alpha}$. Applying (1) of (3.7), we have

$$a_{\alpha} = c_{\alpha} \oplus \sup_{\gamma < \alpha} d_{\gamma} = \sup_{\gamma < \alpha} (c_{\alpha} \oplus d_{\gamma}) =$$

$$= \sup_{\gamma < \alpha} (\sup_{\beta < \alpha} (c_{\beta} \oplus d_{\gamma})) = \sup_{\beta < \alpha, \gamma < \alpha} (c_{\beta} \oplus d_{\gamma}) = \sup_{\beta < \alpha} (c_{\beta} \oplus d_{\beta}) = \sup_{\beta < \alpha} a_{\beta}.$$

Therefore we have $a_{\alpha} \leq a$. Set $r_{\alpha} = a \ominus a_{\alpha}$. From (2) of (3.7), we have

$$r_{\alpha} = \inf\{r_{\beta} : \beta < \alpha\}.$$

Since $c_{\beta} \uparrow c_{\alpha}$ and μ is o.c., $\mu(c_{\alpha}) = \lim \mu(c_{\beta}) = \lim \mu(d_{\beta}) = \mu(d_{\alpha})$. Moreover $c_{\alpha} > c_{\beta}$, $d_{\alpha} > d_{\beta}, a_{\alpha} > a_{\beta}$ for every $\beta < \alpha$ and $r_{\alpha} < r_{\beta}$ for every $\beta < \alpha$ by the inductive assumption.

(ii) In this case, there exists an ordinal γ such that $\alpha = \gamma + 1$. Then we know $a_{\gamma}, c_{\gamma}, d_{\gamma}$ and r_{γ} and we have to construct a_{α}, c_{α} and d_{α} greater then a_{γ}, c_{γ} and d_{γ} , respectively, and $r_{\alpha} < r_{\gamma}$.

Since μ is not semiconvex, we have $2\mu(c_{\gamma}) \neq \mu(a)$. Then, from $2\mu(c_{\gamma}) = \mu(a) - \mu(r_{\gamma})$, we obtain $\mu(r_{\gamma}) \neq 0$. Therefore $r_{\gamma} \notin I(\mu)$. Since μ is pseudo non-injective, we can find $h_{\gamma}, k_{\gamma} \notin I(\mu)$ such that $h_{\gamma} \perp k_{\gamma}, h_{\gamma} \oplus k_{\gamma} \leq r_{\gamma}$ and $\mu(h_{\gamma}) = \mu(k_{\gamma})$. Note that, since r_{γ} is orthogonal to a_{γ} and $c_{\gamma}, d_{\gamma} \leq a_{\gamma}$, then r_{γ} is also orthogonal to c_{γ} and d_{γ} . Since $h_{\gamma} \leq r_{\gamma}$ and $k_{\gamma} \leq r_{\gamma}$, we have that h_{γ} and k_{γ} are orthogonal to c_{γ} and d_{γ} . Set

$$c_{\alpha} = c_{\gamma} \oplus h_{\gamma}, d_{\alpha} = d_{\gamma} \oplus k_{\gamma}.$$

Note that $c_{\alpha} > c_{\gamma}$ and $d_{\alpha} > d_{\gamma}$ since $h_{\gamma}, k_{\gamma} \notin I(\mu)$. Since r_{γ} is orthogonal to a_{γ} and $h_{\gamma} \oplus k_{\gamma} \leq r_{\gamma}$, we have $h_{\gamma} \oplus k_{\gamma} \perp a_{\gamma}$. Hence there exists

$$\begin{split} (h_{\gamma} \oplus k_{\gamma}) \oplus a_{\gamma} &= (h_{\gamma} \oplus k_{\gamma}) \oplus (c_{\gamma} \oplus d_{\gamma}) = \\ &= (c_{\gamma} \oplus h_{\gamma}) \oplus (d_{\gamma} \oplus k_{\gamma}) = c_{\alpha} \oplus d_{\alpha}. \end{split}$$

Set $a_{\alpha} = c_{\alpha} \oplus d_{\alpha}$. Since $a = r_{\gamma} \oplus a_{\gamma} \ge a_{\alpha}$, $r_{\alpha} = a \ominus a_{\alpha}$ exists. Since $c_{\alpha} > c_{\gamma}$ and $d_{\alpha} > d_{\gamma}$, we have $a_{\alpha} > a_{\gamma}$ and then $r_{\alpha} < r_{\gamma}$. Moreover

$$\mu(c_{\alpha}) = \mu(c_{\gamma} \oplus h_{\gamma}) = \mu(c_{\gamma}) + \mu(h_{\gamma}) = \mu(b_{\gamma}) + \mu(k_{\gamma}) = \mu(b_{\gamma} \oplus k_{\gamma}) = \mu(d_{\alpha})$$

This completes the construction of the four sequences.

Now set $A = \{a_{\alpha} : \alpha \in \chi\}$. Since $(a_{\alpha})_{\alpha < \chi}$ is strictly increasing, we have $|A| = \chi$, which is impossible since $\chi > \lambda = |L|$. \Box

We will need the following result.

Lemma (3.11). Suppose that L is complete. If I is a D-ideal and $h = \sup I$, then for every $a \in L \ a \land h = \sup \{a \land b : b \in I\}$.

Proof. Recall that by (2.4) h is central.

Let $a \in L$ and set $I_a = \{a \land b : b \in I\}$. Observe that $I_a = \{c \in I : c \leq a\}$. Let $r = \sup I_a$. Since $h = \sup I$, we have that $r \leq a \land h$. Then the assertion follows if we prove that there exists $H \subseteq I_a$ such that $\sup H = a \land h$.

Since h is central, from 5.1 of [A-V₁] we have $a \wedge h = a \ominus (a \wedge h^{\perp})$. Set

$$H = \{ (b \lor a^{\perp}) \ominus a^{\perp} : b \in I \}.$$

Therefore $H \subseteq I_a$ since, if $s = (b \lor a^{\perp}) \ominus a^{\perp} \in H$, with $b \in I$, then $s \in I$ since I is a D-ideal and $s \leq 1 \ominus (1 \ominus a) = a$. Set $t = \sup H$. By 5.2 of [A- V_1] and 2.3, recalling that h is central, we have

$$t = \sup\{(a^{\perp} \lor b) \ominus a^{\perp} : b \in J\} = (a^{\perp} \lor h) \ominus a^{\perp} = a \ominus (a \land h^{\perp}) = a \land h.$$

Now we set

 $J = \{a \in L : \mu \text{ is semiconvex with respect to } a\},\$

$$J_1 = \{a \in L : \mu \text{ is pseudo non-injective with respect to } a\}$$

and

$$J_2 = \{a \in L : \mu \text{ is anti-Lyapunov with respect to } a\}.$$

By (3.10), if L is complete and μ is o.c., then $J = J_1$.

The following is a crucial result.

Theorem (3.12). The set J is a D-ideal.

Proof. We have to prove that J is closed with respect to \oplus and that, for every $r \in L$ and $a \in J$, $(a \lor r) \ominus r \in J$.

(i) Let $a_1, a_2 \in J$ with $a_1 \perp a_2$ and set $a = a_1 \oplus a_2$. We prove that $a \in J$. Let $b \leq a$ and set

 $b_1 = b \wedge a_1, \ d_2 = (a_1 \lor b) \ominus a_1.$

Since $b_1 \leq a_1, d_2 \leq a \ominus a_1 = a_2$ and $a_1, a_2 \in J$, we can find $c_1 \leq b_1$ and $e_2 \leq d_2$ such that

$$\mu(b_1) = 2\mu(c_1)$$
 and $\mu(d_2) = 2\mu(e_2)$.

Set

$$s_1 = (a_1 \lor b) \ominus e_2$$

Since $s_1 \leq a_1 \vee b$ and $s_1 \geq (a_1 \vee b) \ominus d_2 = (a_1 \vee b) \ominus ((a_1 \vee b) \ominus a_1) = a_1$, we obtain $a_1 \vee b = s_1 \vee b$. Therefore we have $(s_1 \vee b) \ominus s_1 = (a_1 \vee b) \ominus ((a_1 \vee b) \ominus e_2) = e_2$. Set

$$t_2 = b \ominus (b \wedge s_1).$$

Observe that, since $b \wedge s_1 \ge b \wedge a_1 = b_1$, we have $t_2 \le b \ominus b_1$. Then, since $c_1 \le b_1$, we obtain that $t_2 \perp c_1$. Set

$$c = c_1 \oplus t_2.$$

From $c_1 \leq b_1$ and $t_2 \leq b \ominus b_1$, we obtain $c \leq b$. Moreover, since μ is modular, we have

$$\mu(t_2) = \mu(b \ominus (b \land s_1)) = \mu((b \lor s_1) \ominus s_1) = \mu(e_2).$$

Since μ is a modular measure, we have

$$\mu(b) = \mu((a_1 \lor b) \ominus a_1) + \mu(a_1 \land b) = \mu(d_2) + \mu(b_1) =$$

$$= 2\mu(e_2) + 2\mu(c_1) = 2\mu(t_2) + 2\mu(c_1) = 2\mu(c).$$

Hence $a \in J$.

(ii) Let $a \in J$ and $r \in L$. We prove that $h = (a \lor r) \ominus r \in J$. Let $h' \leq h$. Set

$$s = (a \lor r) \ominus h'.$$

From $s \leq a \lor r$ and $s \geq (a \lor r) \ominus ((a \lor r) \ominus r) = r$, we get $a \lor r = a \lor s$. Then we have $s = (a \lor s) \ominus h'$, from which we get $h' = (a \lor s) \ominus s$. Now set

$$b = a \ominus (a \wedge s).$$

Since $b \leq a \in J$, we can find $c \leq b$ such that $\mu(b) = 2\mu(c)$. Note that, since $c \leq b$ and $b \perp a \land s$, $q = c \oplus (a \land s)$ exists. From $q \geq a \land s$ and $q \leq b \oplus (a \land s) = a$, we obtain $q \land s = a \land s$ and hence $q \ominus (q \land s) = c$. Now set

$$c' = (q \lor s) \ominus s$$

Since $q \leq a$, we have $c' \leq (a \lor s) \ominus s = h'$. Moreover we have

$$\mu(h') = \mu((a \lor s) \ominus s) = \mu(a \ominus (a \land s)) = \mu(b) =$$

$$= 2\mu(c) = 2\mu(q \ominus (q \land s)) = 2\mu((q \lor s) \ominus s) = 2\mu(c').$$

Therefore $h \in J$. \Box

Proposition (3.13). Suppose that μ is closed and $N(\mu) = \Delta$. Then $p = \sup J_1$ exists and is a central element of L.

Proof. By assumption, $L = L/N(\mu)$. Then, by (3.1), L is complete. Hence p exists. Moreover, by (3.10) and (3.12) $J_1 = J$ is a D-ideal. Then, by (2.4), p is central. \Box **Lemma (3.14).** Suppose that μ is closed and $N(\mu) = \Delta$. Then the following conditions hold:

- (1) If $a \notin J_1$, there exists $b \leq a$ such that $b \neq 0$ and $b \in J_2$.
- (2) If $a \notin J_2$, there exists $b \leq a$ such that $b \neq 0$ and $b \in J_1$.
- (3) $J_1 \cap J_2 = \{0\}.$

Proof. (1) If $a \notin J_1$, μ is not pseudo non-injective with respect to a. Then we can find $b \leq a$ such that $b \neq 0$ and μ is pseudo-injective with respect to b. By (3.9)-(2), we obtain that $b \in J_2$.

(2) If $a \notin J_2$, we can find $b \leq a$ with $b \neq 0$ such that μ is Lyapunov with respect to b. Then, by (3.8), $b \in J_1$.

(3) If $a \in J_2$, we have that, for every $b \leq a$ with $b \neq 0$, $b \notin J_1$. In particular, if $a \neq 0$, $a \notin J_1$. \Box

Proposition (3.15). Suppose that μ is closed and $N(\mu) = \Delta$. Set $p = \sup J_1$. Then:

- (1) $a \in J_2$ if and only if $a \wedge p = 0$
- (2) $J_2 = [0, p^{\perp}].$
- (3) $a \in J_1$ if and only if $a \wedge p^{\perp} = 0$.
- (4) $J_1 = [0, p].$

Proof. (1) \Leftarrow Suppose that $a \notin J_2$. Then, by (3.14), we can find $b \leq a$ with $b \neq 0$ and $b \in J_1$. Therefore, since $p = \sup J_1$, we have $b \leq a \wedge p = 0$, a contradiction.

⇒ If $a \in J_2$, we have $a \land b = 0$ for every $b \in J_1$ since by (3.14) $J_1 \cap J_2 = \{0\}$. By (3.11) we get $a \land p = \sup\{a \land b : b \in J_1\} = 0$.

(2) Since by (3.13) p is central, we have $a = (a \land p) \lor (a \land p^{\perp})$. Then we obtain that $a \in J_2$ if and only if $a = a \land p^{\perp}$, i.e. $a \leq p^{\perp}$. Therefore $J_2 = [0, p^{\perp}]$.

(3) \Leftarrow Suppose that $a \notin J_1$. Then, by (3.14) we can find $b \leq a$ such that $b \neq 0$ and $b \in J_2$. Hence, by (2), we have $b \leq a \wedge p^{\perp} = 0$, a contradiction.

⇒ If $a \in J_1$, by (2) we have that $a \wedge p^{\perp} \in J_1 \cap J_2$ and therefore, by (3.14)-(3), $a \wedge p^{\perp} = 0$. (4) In a similar way as in (2), we obtain by (3) that $a \in J_1$ if and only if $a \leq p$. \Box

Notation.

For $h \in L$, denote by μ_h the function defined as

$$\mu_h(a) = \mu(a \wedge h), \ a \in L.$$

It is easy to see that, if h is central, then μ_h is a modular measure and $\mu = \mu_h + \mu_{h^{\perp}}$. Moreover, if μ is exhaustive (respectively, o.c.), then μ_h and $\mu_{h^{\perp}}$ are exhaustive (o.c., respectively), too.

Now we can prove the main result.

Theorem (3.16) (Lyapunov decomposition theorem). Let μ be closed. Then there exists $p \in L$ such that μ_p is a Lyapunov exhaustive modular measure on L, $\mu_{p^{\perp}}$ is an anti-Lyapunov exhaustive modular measure on L and $\mu = \mu_p + \mu_{p^{\perp}}$. Moreover the equivalence class \hat{p} of p in $\hat{L} = L/N(\mu)$ is a central element of \hat{L} and, if $q \in L$ has the same properties as p, then $\hat{q} = \hat{p}$.

Proof. It is easy to see that it is sufficient to prove the theorem in the case that $N(\mu) = \Delta$. Then, by (3.13), $p = \sup J_1$ is central. Therefore μ_p and $\mu_{p^{\perp}}$ are exhaustive modular measures and $\mu = \mu_p + \mu_{p^{\perp}}$. Moreover, by (3.8) and (3.15), μ is Lyapunov with respect to p and anti-Lyapunov with respect to p^{\perp} . It follows that μ_p is Lyapunov since, for every $a \in L, \mu_p([0, a]) = \mu([0, a \land p]).$

Now we see that $\mu_{p^{\perp}}$ is anti-Lyapunov. First observe that, since $N(\mu) = \Delta$, $I(\mu_{p^{\perp}}) = \{a \in L : \forall b \leq a, b \land p^{\perp} = 0\}$. Hence, by (3.15), $I(\mu_{p^{\perp}}) = J_1$. Now let $a \notin J_1$. Since μ is anti-Lyapunov with respect to p^{\perp} and by (3.15) $a \land p^{\perp} \neq 0$, we can find $b \leq a \land p^{\perp}$ such that $\mu([0,b])$ is not convex. Therefore $\mu_{p^{\perp}}([0,b]) = \mu([0,b])$ is not convex. Then $\mu_{p^{\perp}}$ is anti-Lyapunov.

If q has the same properties as p, then $q \in J_1$ and $q^{\perp} \in J_2$, hence by (3.15) $q \leq p$ and $q^{\perp} \leq p^{\perp}$, from which $q \geq p$ and therefore q = p. \Box

Remark. It is easy to see that, if we introduce the notion of convexity in a group as in [D-W], all the results of this paper also hold if X is a group which does not contain Z_2 as a semigroup.

References

- [A]. A. Avallone, Separating points of measures on effect algebras, Math. Slovaca 57, 129-140 (2007).
- [A-B1]. A. Avallone-G. Barbieri., Lyapunov measures on effect algebras, Comment. Math. Univ. Carolinae 44, 389-397 (2003).
- [A-B₂]. A. Avallone-A. Basile, On a Marinacci uniqueness theorem for measures, J. Math. Anal. Appl. 286, n.2, 378-390 (2003).
- [A-V1]. A. Avallone-P. Vitolo, Congruences and ideals of effect algebras, Order 20, 67-77 (2003).
- [A-V₂]. A. Avallone-P. Vitolo, Decomposition and control theorems in effect algebras, Sci. Math. Japon. 58, 1-14 (2003).
- [B-C]. E.G. Beltrametti-G. Cassinelli, The logic of quantum mechanics, Addison-Wesley Publ. Co., Reading, Mass. (1981).
- [B-F]. M.K. Bennett-D.J. Foulis, Effect algebras and unsharp quantum logics, Found. Phys. 24, no. 10, 1331-1352 (1994).
- [B-K]. D. Butnariu-P. Klement, Triangular norm-based measures and games with fuzzy coalitions, Kluwer Acad. Publ. (1993).
- [D-W]. P. de Lucia-J.D.M. Wright, Group valued measures with the Lyapunoff property, Rend. Circ. Mat. Palermo 40, 442-452 (1991).
- [D-P]. A. Dvurecenskij-S. Pulmannova, New trends in quantum structures, Kluwer Acad. Publ. (2000).
- [E-Z]. L.G. Epstein-J. Zhang, Subjective probabilities on subjectively unambiguous events, Econometrica 69, no. 2, 265–306 (2001).
- [G-M]. P. Ghirardato-M. Marinacci, Ambiguity made precise: a comparative foundation, J. Econom. Theory 102, 251-289 (2002).
- [K-R]. J.F.C. Kingman-A.P. Robertson, On a theorem of Lyapunov, J. London Math. Soc. 43, 347-351 (1968).
- [K-K]. I. Kluvanek-G. Knowles, Liapunov decomposition of a vector measure, Math. Ann. 210, 123-127 (1974).
 - [K]. G. Knowles, Liapunov vector measures, SIAM J. Control 13, 294-303 (1975).
 - [W]. H. Weber, On modular functions, Funct. et Approx. XXIV, 35-52 (1996).

Address: Anna Avallone and Paolo Vitolo, Dipartimento di Matematica.

Universitá della Basilicata. Contrada Macchia Romana. 85100 Potenza (Italy).

E-mail: anna.avallone@unibas.it, paolo.vitolo@unibas.it