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Abstract. We propose a fast algorithm for computing Jones polynomials of Mon-
tesinos links. The Jones polynomial is a useful invariant and Montesinos links are
one of the fundamental classes in knot theory. Given the Tait graph of a Montesinos
diagram with n edges, our algorithm runs with O(n) additions and multiplications in
polynomials of degree O(n), namely in O(n2 log n) time.

1 Introduction Knot theory is a subfield of topology. A knot is a simple (non-self-
intersecting) closed curve embedded in R3. More generally, one may study links. A link is
a finite collection of disjointly embedded knots. Works on knot theory have led to many
important advances in other areas, biology, chemistry, physics and so on [1].

For classifying and characterizing links, various invariants have been defined and pro-
foundly studied in knot theory. The Jones polynomial [4] is a useful invariant. L.H. Kauff-
man [5] gave a combinatorial method for calculating the Jones polynomial by means of
the Kauffman bracket polynomial. By using Kauffman’s method, the Jones polynomial is
computable with O(2O(n)) additions and multiplications in polynomials of degree O(n),
where n is the number of the edges in the input Tait graph. F. Jaeger, D.L. Vertigan and
D.J.A. Welsh showed that computing the Jones polynomial is generally #P–hard [3, 12].
It is expected to require exponential time in the worst case.

Recently, it has been recognized that it is important to compute Jones polynomials for
links with reasonable restrictions. J.A. Makowsky [6, 7] showed that Jones polynomials are
computable in polynomial time if treewidths of input Tait graphs are bounded by a constant.
J. Mighton [8] showed that Jones polynomials are computable with O(n4) operations in
polynomials of degree O(n) if treewidths of input Tait graphs are at most two, where n is
the number of the edges in the input Tait graph. M. Hara, S. Tani and M. Yamamoto [2]
showed that Jones polynomials of arborescent links are computable with O(n3) operations
in polynomials of degree O(n), where n is the number of the edges in the input Tait graph.
T. Utsumi and K. Imai [11] showed that Jones polynomials of pretzel links are computable
in O(n2) time, where n is the number of the edges in the input Tait graph. M. Murakami,
M. Hara, M. Yamamoto and S. Tani [10] showed that Jones polynomials of 2–bridge links
and closed 3–braid links are computable with O(n) operations in polynomials of degree
O(n), where n is the number of the edges in the input Tait graph.

In this paper, we propose a fast algorithm for computing Jones polynomials of Mon-
tesinos links. Montesinos links, introduced by J.M. Montesinos [9], are one of the fun-
damental classes in knot theory and a generalization of pretzel links and 2–bridge links.
Montesinos diagrams, defined below, are standard link diagrams representing Montesinos
links and represented by sequences of integer sequences because every Montesinos diagram
consists of rational tangles and every rational tangle is represented by an integer sequence.
Given the Tait graph of a Montesinos diagram, our algorithm recognizes the rational tangles
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of the diagram, constructs the integer sequences representing the tangles and computes the
Kauffman bracket polynomial of the diagram. The Jones polynomial is directly computable
from the Kauffman bracket polynomial.

We characterize Tait graphs of Montesinos diagrams in order to recognize rational tangles
of Montesinos diagrams in linear time. The recognition algorithm can be modified to a lin-
ear time algorithm for constructing sequences of integer sequences representing Montesinos
diagrams. We show a recurrence formula of Kauffman bracket polynomials of Montesinos
diagrams represented by sequences of integer sequences. By using the formula, Kauffman
bracket polynomials of Montesinos diagrams are computable with O(n) additions and mul-
tiplications in polynomials of degree O(n), where n is the number of the edges in the input
Tait graph. Therefore, Jones polynomials of Montesinos links are computable with O(n)
additions and multiplications in polynomials of degree O(n), namely in O(n2 log n) time.
Although treewidths of Tait graphs of Montesinos diagrams are two, our algorithm is faster
than Mighton’s algorithm.

This paper is organized in the following way. Section 2 contains some basic notations
and definitions of knot theory. In section 3, we characterize Tait graphs of Montesinos
diagram. Section 4 deals with the algorithm for recognizing rational tangles of Montesinos
diagrams from its Tait graphs and the algorithm for computing sequences of integer sequence
of Montesinos diagrams. In Section 5, we provide the algorithm for computing Kauffman
bracket polynomials of Montesinos diagrams from its sequences of integer sequences.

2 Preliminaries In this section, we give some basic notations and definitions of knot
theory. For details, see C.C. Adams [1].

A link of n components is n mutually disjoint simple closed curves embedded in R3. A
link of one component is a knot. A link diagram is an image of a link by an orthogonal pro-
jection from R3 to a plane which has finitely many traverse double points, called crossings,
and no other multiple points, together with information specifying which arc is on top at
each crossing (see Figure 1).

Given any link diagram, we can color the faces black and white in such a way that no
two faces with a common arc are the same color. We color the unique unbounded face
white. Such a coloring is called the Tait coloring of the diagram (see Figure 2). We can
get the edge-labeled planar graph. Its vertices are the black faces of the Tait coloring and
two vertices are joined by a labeled edge if they share a crossing. The label of the edge is
+1 or −1 according to the (conventional) rule. We may call the label the sign. We call the
graph the Tait graph of the diagram. Note that the number of the edges in the graph is
equal to the number of the crossings of the diagram. A Tait graph G is isomorphic to a
Tait graph G′ if there exists a bijection f from the vertex set of G to the vertex set of G′

satisfying that the number of the edges labeled “+1” joining u and v in G is equal to the
number of the edges labeled “+1” joining f(u) and f(v) in G′ and the number of the edges
labeled “−1” joining u and v in G is equal to the number of the edges labeled “−1” joining
f(u) and f(v) in G′ for any pair of vertices u and v in G. Such a function f is called an
isomorphism from G to G′.

Let G = (V, E, s) be a Tait graph, where V is the vertex set of G, E is the edge set of
G and s is the edge-labeling function from E to {−1, +1}. degG(v) denotes the degree of
v in G and NG(v) denotes the set of the neighbors of v in G for any vertex v ∈ V . For
any subset V ′ of V , the induced subgraph G[V ′] is the subgraph of G consisting of V ′ and
the edges in E whose endvertices are both in V ′. A Hamilton cycle of G is an alternating
sequence v1e1v2 · · · vnenv1 of all vertices in V and edges in E satisfying that v1, . . . , vn are
distinct, en is incident to v1 and vn, and ei is incident to vi and vi+1 for i = 1, . . . , n − 1.
We define a function edge sumG from V × V to Z satisfying that edge sumG(u, v) is the
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Figure 1: A link and a link diagram.

sum of the signs of all edges in G whose endvertices are u and v for any adjacent pair of
vertices u and v in G. We denote the size of S by |S| for a set S.

A continuous bijection f from R3 to R3 is called homeomorphism if f has a continuous
inverse mapping. A link L is ambient isotopic or equivalent1 to a link L′ if there exists a
homeomorphism ht from R3 to R3 for any real number t in the closed interval [0, 1] satisfying
the following:

(i) h0 is the identity.

(ii) h1(L) = L′.

(iii) The mapping fp from the open interval (0, 1) to R3 satisfying fp(t) = ht(p) is contin-
uous for any point p ∈ R3.

Definition 2.1 The Kauffman bracket polynomial is a function from link diagrams to the
Laurent polynomial ring with integer coefficients in an indeterminate A. It maps a link
diagram L̃ to 〈L̃〉 ∈ Z[A±1] and is characterized by

(i) 〈©〉 = 1,

(ii) 〈L̃ �©〉 = (−A−2 − A2)〈L̃〉 and

(iii) 〈���〉 = A〈 )( 〉 + A−1〈 � 〉.
1Intuitively, a link L is equivalent to a link L′ if L can be continuously deformed to L′ without ever

having any one of the loops intersects itself or any of the other loops in the process. Therefore, we can
regard a link as “rubber bands” and deform it topologically.
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Figure 2: A Tait coloring, a Tait graph and signs of edges in Tait graphs.

Here, © is the knot diagram without a crossing and L̃�© is the disjoint sum of L̃ and ©.
In (iii), the formula refers to three link diagrams that are exactly the same except near a
point where they differ in the way indicated.

Note that the degree of the Kauffman bracket polynomial of the diagram is O(n) and
the coefficients of the Kauffman bracket polynomial of the diagram are O(2n) for any link
diagram with n crossings. A link is oriented if each of its components is given an orientation.
The writhe w(L̃) of an oriented link diagram L̃ is the sum of the signs of the crossings of
L̃, where each crossing has sign +1 or −1 as defined (by convention) in Figure 3.

+1 −1

Figure 3: Signs of crossings.

The Jones polynomial V (L) of an oriented link L is defined by

V (L) =
(
(−A)−3w(�L)〈L̃〉

)
t1/2=A−2

∈ Z[t±1/2],

where L̃ is a link diagram of L. It is known that V (L) is well-defined.
A tangle is a portion of a link diagram from which there emerge just four arcs pointing

in the compass directions NW, NE, SW, SE (see Figure 4). The tangle consisting of two
vertical strings without a crossing is called 0-tangle. The 0-tangle twisted k times is called
k-tangle and denoted by Ik. They are called integer tangles (see Figure 4). The tangle
consisting of integer tangles Ia1 , . . . , Iam as shown in Figure 4 is called a rational tangle,
where a1, . . . , am are integers. Let a11, . . . , a1m1 , . . . , al1, . . . , alml

and a be integers. We
denote the link diagram consisting of integer tangles Ia11 , . . . , Ia1m1

, . . . , Ial1 , . . . , Ialml
(l

rational tangles) and Ia as shown in Figure 5 by M̃(a11, . . . , a1m1 | · · · |al1, . . . , alml
||a).
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Figure 4: A tangle, integer tangles and rational tangles.

Definition 2.2 We call a link diagram a Montesinos diagram if the diagram can be
represented by M̃(a11, . . . , a1m1 | · · · |al1, . . . , alml

||a), where l ≥ 3, mi ≥ 3, mi is an
odd number and aij �= 0 for i = 1, . . . , l and j = 1, . . . , mi (see Figure 6). We call
(a11, . . . , a1m1 | · · · |al1, . . . , alml

||a) a normal representation of the diagram.

A link is called a Montesinos link if there exists a Montesinos diagram representing the
link. Montesinos links are a generalization of pretzel links and 2–bridge links. Pretzel links
are Montesinos links represented by Montesinos diagrams all of whose rational tangles are
integer tangles. 2–bridge links are Montesinos links represented by Montesinos diagrams
consisting of at most two rational tangles.

Let (a11, . . . , a1m1 | · · · |al1, . . . , alml
||a) be a normal representation of a Montesinos dia-

gram L̃ and G = (V, E, s) the Tait graph of the diagram. For each i = 1, . . . , l, we call the
induced subgraph G[Vi] a rational subgraph of G where Vi is the set of the endvertices of the
edges in E corresponding to the crossings of Iai1 , . . . , Iaimi

in L̃. If a �= 0, then we call the
induced path G[V0] the top path in G where V0 is the set of the endvertices of the edges in E

corresponding to the crossings of Ia in L̃. Let Vij be the set of the endvertices of the edges
in E corresponding to the crossings of Iaij in L̃ for i = 1, . . . , l and j = 1, . . . , mi. Note that

|⋂mi+1
2

j=1 Vi,2j−1| = 1 and |Vi1| = 2 for i = 1, . . . , l. Let u01 be the vertex in
⋂m1+1

2
j=1 V1,2j−1

and ui1 the vertex in Vi1 − {ui−1,1} for i = 1, . . . , l. Let ni = |Vi| − 1 and uij the j-th
visited vertex where we go along the path G[Vi −{ui−1,1}] from ui1 to the other endvertex
of G[Vi − {ui−1,1}] for i = 1, . . . , l and j = 1, . . . , ni. Note that G[{ui−1,1} ∪ ⋃ni

j=1{uij}]
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Figure 5: M̃(a11, . . . , a1m1 | · · · |al1, . . . , alml
||a).

is the rational subgraph G[Vi] for i = 1, . . . , l. Let n0 = |a| + 1. If a �= 0, then let u0j

be the j-th visited vertex where we go along the top path path G[V0] from u01 to ul1 for
j = 1, . . . , n0. We call the label u01, . . . , u0n0 , u11, . . . , u1n1 , . . . , ul1, . . . , ulnl

(ul1 = u0n0)
the normal label of V for (a11, . . . , a1m1 | · · · |al1, . . . , alml

||a) (see Figure 6).

3 Characteristic of Tait graphs of Montesinos diagrams In this section, we char-
acterize Tait graphs of Montesinos diagrams.

Proposition 3.1 Let G = (V, E, s) be the Tait graph of a Montesinos diagram and V ′

a subset of V . The induced subgraph G[V ′] is a rational subgraph of G if and only if V ′

is a maximal subset of V such that there exists a vertex v1 ∈ V ′ satisfying the following
conditions:

(i) |NG(v1)| ≥ 3 and G[V ′ − {v1}] is a path with endvertices v2 and v3 in G.

(ii) |NG(v2)| ≥ 3 and v2 ∈ NG(v1).

(iii) |NG(v3)| = 2 and v3 ∈ NG(v1).

(iv) |NG(v1)| ≥ 4 or |NG(v2)| ≥ 4.

(v) For any vertex v ∈ V ′ − {v1, v2, v3}, 2 ≤ |NG(v)| ≤ 3. For any vertex v ∈ V ′ −
{v1, v2, v3}, if |NG(v)| = 3, then v ∈ NG(v1).

(vi) All edges in E whose endvertices are v and v′1 have the same sign for any vertex
v ∈ NG[V ′](v1).

(vii) The two edges incident to u have the same sign for any vertex u ∈ {v ∈ V ′ −
{v1, v2, v3} : |NG(v)| = 2}.

Proof. Let u01, . . . , u0n0 , u11, . . . , u1n1 , . . . , ul1, . . . , ulnl
(ul1 = u0n0) the normal label of V

for a normal representation of the Montesinos diagram.
(⇒) Because G[V ′] is a rational subgraph of G, V ′ = {ui−1,1} ∪

⋃ni

j=1{uij} for an integer
i ∈ {1, . . . , l}. Take ui−1,1 as v1, and the conditions (i), (ii), (iii), (iv), (v), (vi) and (vii)
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Figure 6: A Montesinos diagram and the normal label for a normal representation.

are satisfied. We show the maximality of V ′ by contradiction. We assume that there exist
a subset V ′′ of V and a vertex v′1 ∈ V ′′ satisfying V ′′ � V ′ and the following conditions:

(i′) |NG(v′1)| ≥ 3 and G[V ′′ − {v′
1}] is a path with endvertices v′2 and v′3 in G.

(ii′) |NG(v′2)| ≥ 3 and v′2 ∈ NG(v′1).

(iii′) |NG(v′3)| = 2 and v′3 ∈ NG(v′1).

(iv′) |NG(v′1)| ≥ 4 or |NG(v′2)| ≥ 4.

(v′) For any vertex v ∈ V ′′ − {v′
1, v

′
2, v

′
3}, 2 ≤ |NG(v)| ≤ 3. For any vertex v ∈ V ′′ −

{v′
1, v

′
2, v

′
3}, if |NG(v)| = 3, then v ∈ NG(v′1).

(vi′) All edges in E whose endvertices are v and v′1 have the same sign for any vertex
v ∈ NG[V ′′](v′1).

(vii′) The two edges incident to u have the same sign for any vertex u ∈ {v ∈ V ′′ −
{v′

1, v
′
2, v

′
3} : |NG(v)| = 2}.

Since V ′′ ⊃ V ′ and G[V ′] contains a Hamilton cycle, v′1 should be in V ′ by (i′) and G[V ′ −
{v′

1}] should be a path. Note that {v′
3} = {v ∈ NG[V ′′](v′1) : |NG(v)| = 2} by (i′), (ii′) and

(iii′). If v′1 is ui−1,1, then v′3 should be uini . If v′1 is ui1, then v′3 should be ui2. It holds
that one of the following three cases Case 1: |NG(ui−1,1)| ≥ 4 and |NG(ui1)| ≥ 4, Case 2:
|NG(ui−1,1)| = 3 and |NG(ui1)| ≥ 4 or Case 3: |NG(ui−1,1)| ≥ 4 and |NG(ui1)| = 3.
Case 1: |NG(ui−1,1)| ≥ 4 and |NG(ui1)| ≥ 4.
v′1 is ui−1,1 and v′2 is ui1 or v′1 is ui1 and v′2 is ui−1,1 by (i′), (ii′), (iii′) and (v′). If v′1 is
ui−1,1 and v′2 is ui1, then v′3 should be uini and V ′′ should be {ui−1,1} ∪

⋃ni

j=1{uij} = V ′.
This contradicts V ′′ � V ′. If v′1 is ui1 and v′2 is ui−1,1, then v′3 should be ui2 and V ′′ should
be {ui−1,1} ∪

⋃ni

j=1{uij} = V ′. This contradicts V ′′ � V ′.
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Case 2: |NG(ui−1,1)| = 3 and |NG(ui1)| ≥ 4.
i should be 1, n0 > 1 and |NG[V ′](u01)| should be 2. Because v′1 ∈ V ′ and |NG(v)| = 2 for
any vertex v ∈ V ′ −{u01, u11}, it holds that either Case 2.1: v′1 is u01 and v′2 is u11 or Case
2.2: v′1 is u11 and v′2 is u01 by (i′), (ii′), (iii′) and (v′).
Case 2.1: v′1 is u01 and v′2 is u11.
v′3 should be u1n1 and V ′′ should be {u01} ∪

⋃n1
j=1{u1j} = V ′. This contradicts V ′′ � V ′.

Case 2.2: v′1 is u11 and v′2 is u01.
v′3 should be u12 and V ′′ should be {u01} ∪

⋃n1
j=1{u1j} = V ′. This contradicts V ′′ � V ′.

Case 3: |NG(ui−1,1)| ≥ 4 and |NG(ui1)| = 3.
i should be l and n0 > 1. Recall v′1 should be in V ′ = {ul−1,1} ∪

⋃nl

j=1{ulj}.
Case 3.1: v′1 is ul−1,1.
v′3 should be ulnl

. v′2 should be in {ul−2,1, ul−1,2} ∪ ⋃nl−1
j=1 {ulj} by (ii′). If v′2 is ul−2,1

or ul−1,2, then u01 should be contained in G[V ′′ − {v′
1}]. This contradicts (v′). If v′2 ∈⋃nl−1

j=1 {ulj}, then v′2 should be ul1 by the maximality of V ′′ and V ′′ should be {ul−1,1} ∪⋃nl

j=1{ulj} = V ′. This contradicts V ′′ � V ′.
Case 3.2: v′1 ∈ ⋃nl

j=1{ulj}.
v′2 should be ul−1,1 by (ii′), (iii′) and (v′). If v′1 is ul1, then v′3 should be ul2 and V ′′

should be {ul−1,1} ∪
⋃nl

j=1{ulj} = V ′. This contradicts V ′′ � V ′. Hence, v′1 ∈ ⋃nl

j=2{ulj}.
Since |NG(ul1)| = 3 and NG(ul1) ∩

⋃nl

j=2{uij} = {ul2}, v′1 should be ul2 by (v′). Because
NG(v′1) = {v′

2, ul1, ul3}, v′3 should be ul3 by (iii′). Therefore, ul1 should not be contained
in G[V ′′ − {v′

1}]. This contradicts ul1 ∈ V ′ ⊂ V ′′.
(⇐) We show V ′ = {ui−1,1} ∪

⋃ni

j=1{uij} for an integer i ∈ {1, . . . , l}. It holds that one of
the following three cases Case 1: |NG(v1)| ≥ 4 and |NG(v2)| ≥ 4, Case 2: |NG(v1)| ≥ 4 and
|NG(v2)| = 3 or Case 3: |NG(v1)| = 3 and |NG(v2)| ≥ 4 by (i), (ii) and (iv).
Case 1: |NG(v1)| ≥ 4 and |NG(v2)| ≥ 4.
For an integer i ∈ {1, . . . , l}, it holds that either Case 1.1: v1 is ui−1,1 and v2 is ui1 or Case
1.2: v1 is ui1 and v2 is ui−1,1 by (ii).
Case 1.1: v1 is ui−1,1 and v2 is ui1.
Case 1.1.1: i = 1.
v3 should be u02, ul2 or u1n1 by (iii). If v3 is u02 or ul2, then ul−1,1 should be contained
in G[V ′ − {v1}]. This contradicts (v). Hence, v3 should be u1n1 and V ′ should be {u01} ∪⋃n1

j=1{u1j}.
Case 1.1.2: 1 < i < l.
v3 should be ui−1,2 or uini by (iii). If v3 is ui−1,2, then ul1 should be contained in G[V ′ −
{v1}]. This contradicts (v). Hence, v3 should be uini and V ′ should be {ui−1,1}∪

⋃ni

j=1{uij}.
Case 1.1.3: i = l.
v3 should be ul−1,2 or ulnl

by (iii). If v3 is ul−1,2, then ul−2,1 should be contained in G[V ′−
{v1}]. This contradicts (v). Hence, v3 should be ulnl

and V ′ should be {ul−1,1}∪
⋃nl

j=1{ulj}.
Case 1.2: v1 is ui1 and v2 is ui−1,1.
Case 1.2.1: i = 1.
v3 should be u12 or u2n2 by (iii). If v3 is u2n2 , then u21 should be contained in G[V ′−{v1}].
This contradicts (v). Hence, v3 should be u12 and V ′ should be {u01} ∪

⋃n1
j=1{u1j} by the

maximality of V ′.
Case 1.2.2: 1 < i < l.
v3 should be ui2 or ui+1,ni+1 by (iii). If v3 is ui+1,ni+1 , then ui−2,1 should be contained in
G[V ′ − {v1}]. This contradicts (v). Hence, v3 should be ui2 and V ′ should be {ui−1,1} ∪⋃ni

j=1{uij} by the maximality of V ′.
Case 1.2.3: i = l.
v3 should be ul2 or u1n1 by (iii). If v3 is u1n1 , then u11 should be contained in G[V ′−{v1}].
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This contradicts (v). Hence, v3 should be ul2 and V ′ should be {ul−1,1}∪
⋃nl

j=1{ulj} by the
maximality of V ′.
Case 2: |NG(v1)| ≥ 4 and |NG(v2)| = 3.
v1 should be ui1 for an integer i ∈ {0, 1, . . . , l − 1}.
Case 2.1: i = 0.
v2 should be in {ul1, ul2} ∪ ⋃n1−1

j=2 {u1j} by (ii). v3 should be ul2, u02 or u1n1 by (iii). If
v2 is ul1 or ul2, then v3 should be u1n1 and u11 should be contained in G[V ′ − {v1}]. This
contradicts (v). Hence, v2 ∈ ⋃n1−1

j=2 {u1j}. If v3 is ul2 or u02, then u11 should be contained
in G[V ′ − {v1}]. This contradicts (v). If v3 is u1n1 , then V ′ should be a proper subset of
{u01} ∪

⋃n1
j=1{u1j}. This contradicts the maximality of V ′.

Case 2.2: i = 1.
v2 should be in {u01, u12} ∪ ⋃n2−1

j=2 {u2j} by (ii). v3 should be u12 or u2n2 by (iii). If
v2 ∈ {u01, u12} and v3 is u2n2 or v2 ∈ ⋃n2−1

j=2 {u2j} and v3 is u12, then u21 should be
contained in G[V ′ − {v1}]. This contradicts (v). If v2 ∈ ⋃n2−1

j=2 {u2j} and v3 is u2n2 , then
V ′ should be a proper subset of {u11}∪

⋃n2
j=1{u2j}. This contradicts the maximality of V ′.

Hence, v2 should be u01, v3 should be u12 and V ′ should be {u01} ∪
⋃n1

j=1{u1j}.
Case 2.3: 1 < i < l − 1.
v2 should be in {ui2}∪

⋃ni+1−1
j=2 {ui+1,j} by (ii). v3 should be ui2 or ui+1,ni+1 by (iii). If v2 is

ui2 and v3 is ui+1,ni+1 or v2 ∈ ⋃ni+1−1
j=2 {ui+1,j} and v3 is ui2 then ui−1,1 should be contained

in G[V ′ − {v1}]. This contradicts (v). If v2 ∈ ⋃ni+1−1
j=2 {ui+1,j} and v3 is ui+1,ni+1 , then V ′

should be a proper subset of {ui1} ∪
⋃ni+1

j=1 {ui+1,j}. This contradicts the maximality of V ′.
Case 2.4: i = l − 1.
v2 should be in {ul−1,2} ∪

⋃nl−1
j=1 {ulj} by (ii). v3 should be ul−1,2 or ulnl

by (iii). If v2 is
ul−1,2 and v3 is ulnl

or v2 ∈ ⋃nl−1
j=1 {ulj} and v3 is ul−1,2, then ul−2,1 should be contained

in G[V ′ − {v1}]. This contradicts (v). Hence, v3 should be ulnl
, v2 should be ul1 by the

maximality of V ′ and V ′ should be {ul−1,1} ∪
⋃nl

j=1{ulj}.
Case 3: |NG(v1)| = 3 and |NG(v2)| ≥ 4.
v1 should be in {u01, ul1} ∪

⋃l
i=1

⋃ni−1
j=2 {uij}.

Case 3.1: v1 is u01.
v2 should be u11 by (ii). v3 should be u02 or u1n1 by (iii). If v3 is u02, then ul1 should be
contained in G[V ′ − {v1}]. This contradicts (v). Hence, v3 should be u1n1 and V ′ should
be {u01} ∪

⋃n1
j=1{u1j}.

Case 3.2: v1 is ul1.
v2 should be ul−1,1 or u01 by (ii). v3 should be ul2 or u0,n0−1 by (iii). If v2 is ul−1,1 and v3

is u0,n0−1, then u01 should be contained in G[V ′ − {v1}]. This contradicts (v). If v2 is u01,
then v3 should be ul2 and ul−1,1 should be contained in G[V ′ −{v1}]. This contradicts (v).
Hence, v2 should be ul−1,1, v3 should be ul2 and V ′ should be {ul−1,1} ∪

⋃nl

j=1{ulj} by the
maximality of V ′.
Case 3.3: v1 is uij for integers i ∈ {1, . . . , l} and j ∈ {2, 3, . . . , ni − 1}.
v2 should be ui−1,1 or ui1 by (ii). v3 should be ui,j−1 or ui,j+1 by (iii). If v2 is ui−1,1 and
v3 is ui,j−1, then ui1 should be contained in G[V ′ − {v1}]. This contradicts (v). If v2 is
ui−1,1 and v3 is ui,j+1, then V ′ should be {ui−1,1} ∪

⋃ni

k=j{uik} by the maximality of V ′.
This contradicts the maximality of V ′. If v2 is ui1, then v1 should be ui2 by (ii), v3 should
be ui3 by (iii) and ui−1,1 should be contained in G[V ′ − {v1}]. This contradicts (v). �

Definition 3.2 Let G = (V, E, s) be a Tait graph. A subset V ′ of V has rational subset
property if there exists a vertex v1 ∈ V ′ satisfying the following conditions:

(i) |NG(v1)| ≥ 3 and G[V ′ − {v1}] is a path with endvertices v2 and v3 in G.
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(ii) |NG(v2)| ≥ 3 and v2 ∈ NG(v1).

(iii) |NG(v3)| = 2 and v3 ∈ NG(v1).

(iv) |NG(v1)| ≥ 4 or |NG(v2)| ≥ 4.

(v) For any vertex v ∈ V ′ − {v1, v2, v3}, 2 ≤ |NG(v)| ≤ 3. For any vertex v ∈ V ′ −
{v1, v2, v3}, if |NG(v)| = 3, then v ∈ NG(v1).

(vi) All edges in E whose endvertices are v and v′1 have the same sign for any vertex
v ∈ NG[V ′](v1).

(vii) The two edges incident to u have the same sign for any vertex u ∈ {v ∈ V ′ −
{v1, v2, v3} : |NG(v)| = 2}.

In this case, we call v1 a head vertex of V ′ and v2 a tail vertex of V ′. V ′ has maximal
rational subset property if V ′ is a maximal subset of V with rational subset property.

The definition of top paths of Tait graphs of Montesinos diagrams and Proposition 3.1
imply the following proposition.

Proposition 3.3 Let G = (V, E, s) be the Tait graph of a Montesinos diagram and V ′ a
subset of V . The induced subgraph G[V ′] is the top path of G if and only if V ′ satisfies the
following:

(i) G[V ′] is a path with endvertices v1 and v2.

(ii) v1 is a tail vertex of one of subsets of V with maximal rational subset property, v2 is
a head vertex of another subset of V with maximal rational subset property, and no
subset of V with maximal rational subset property contains both v1 and v2.

(iii) For any vertex v ∈ V ′ − {v1, v2}, degG(v) = 2.

(iv) All edges in G[V ′] have the same sign.

Definition 3.4 Let G = (V, E, s) be a Tait graph. A subset V ′ of V has top subset property
if V ′ satisfies the following:

(i) G[V ′] is a path with endvertices v1 and v2.

(ii) v1 is a tail vertex of one of subsets of V with maximal rational subset property, v2 is
a head vertex of another subset of V with maximal rational subset property, and no
subset of V with maximal rational subset property contains both v1 and v2.

(iii) For any vertex v ∈ V ′ − {v1, v2}, degG(v) = 2.

(iv) All edges in G[V ′] have the same sign.

The definition of normal labels of Tait graphs of Montesinos diagrams, Propositions 3.1
and 3.3 imply the following lemma.

Lemma 3.5 Let G be the Tait graph of a Montesinos diagram and
u01, . . . , u0n0 , u11, . . . , u1n1 , u21, . . . , u2n2 , . . . , ul1, . . . , ulnl

(ul1 = u0n0) the normal la-
bel of G for a normal representation of the diagram. Then, the following hold.

(i) l ≥ 3.
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(ii) u01, . . . , u0,n0−1, u11, . . . , u1n1 , . . . , ul1, . . . , ulnl
are distinct vertices and for i =

0, 1, . . . , l and j = 1, . . . , ni, uij and ui,j+1 are adjacent.

(iii) For every i ∈ {1, . . . , l}, {ui−1,1} ∪
⋃ni

j=1{uij} has maximal rational subset property,
ui−1,1 is a head vertex of {ui−1,1}∪

⋃ni

j=1{uij} and ui−1,1 is a tail vertex of {ui−1,1}∪⋃ni

j=1{uij}.

(iv)
⋃n0

j=1{u0j} has top subset property or n0 = 1.

(v) Every edge in G is contained in either G[
⋃n0

j=1{u0j}] or G[{ui−1,1} ∪
⋃ni

j=1{uij}] for
an integer i ∈ {1, . . . , l}.

Definition 3.6 Let G be a Tait graph. G has Montesinos diagram property if there exists
a label u01, . . . , u0n0 , u11, . . . , u1n1 , u21, . . . , u2n2 , . . . , ul1, . . . , ulnl

(ul1 = u0n0) of all vertices
in G satisfying the following:

(i) l ≥ 3.

(ii) u01, . . . , u0,n0−1, u11, . . . , u1n1 , . . . , ul1, . . . , ulnl
are distinct vertices and for i =

0, 1, . . . , l and j = 1, . . . , ni, uij and ui,j+1 are adjacent.

(iii) For every i ∈ {1, . . . , l}, {ui−1,1} ∪
⋃ni

j=1{uij} has maximal rational subset property,
ui−1,1 is a head vertex of {ui−1,1}∪

⋃ni

j=1{uij} and ui−1,1 is a tail vertex of {ui−1,1}∪⋃ni

j=1{uij}.

(iv)
⋃n0

j=1{u0j} has top subset property or n0 = 1.

(v) Every edge in G is contained in either G[
⋃n0

j=1{u0j}] or G[{ui−1,1} ∪
⋃ni

j=1{uij}] for
an integer i ∈ {1, . . . , l}.

We say that u01, . . . , u0n0 , u11, . . . , u1n1 , . . . , ul1, . . . , ulnl
(ul1 = u0n0) has normal label prop-

erty.

Lemma 3.7 Let G be a Tait graph with Montesinos diagram property and
u01, . . . , u0n0 , u11, . . . , u1n1 , u21, . . . , u2n2 , . . . , ul1, . . . , ulnl

(ul1 = u0n0) a label of all vertices
in G with normal label property. Then, G is isomorphic to the Tait graph of the Montesinos
diagram M̃(a11, . . . , a1m1 | · · · |al1, . . . , alml

||a) where a11, . . . , a1m1 , . . . , al1, . . . , alml
and a

are constructed by the following way:

(i) For every i ∈ {1, . . . , l}, set mi = 2|NG(ui−1,1) ∩
⋃ni

j=1{uij}| − 1.

(ii) For i = 1, . . . , l and j = 1, . . . , mi+1
2 , let v01 be u01 and vij the j-th visited neighbor

of ui−1,1 where we go along G[
⋃ni

j′=1{uij′}] from ui1 to uini (see Figure 7).

(iii) For i = 1, . . . , l and j = 1, . . . , mi+1
2 , set ai,2j−1 = −edge sumG(vi−1,1, vij).

(iv) For i = 1, . . . , l and j = 1, . . . , mi−1
2 , Assign the sum of the sign of the edges in the

path connecting vij and vi,j+1 and not containing vi−1,1 to ai,2j.

(v) If G[
⋃n0

j=1{u0j}] has top path property, then assign the sum of the sign of the edges in
G[

⋃n0
j=1{u0j}] to a, otherwise set a = 0.
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v01=u01 u12 u22

v31=u31=u05

v32=u32

u02 u03 u04

v11=u11

v12=u13

v21=u21

v22=u23

v23=u24

Figure 7: Indices of G.

Proof. It is clear that M̃(a11, . . . , a1m1 | · · · |al1, . . . , alml
||a) is a Montesinos diagram because

l ≥ 3, mi ≥ 3, mi is an odd number and aij �= 0 for i = 1, . . . , l and j = 1, . . . , mi. We
show that there exists an isomorphism from the Tait graph of the diagram to G.

Let G = (V, E, s), G′ = (V ′, E′, s′) the Tait graph of the Montesinos dia-
gram M̃(a11, . . . , a1m1 | · · · |al1, . . . , alml

||a) and u′
01, . . . , u

′
0n′

0
, u′

11, . . . , u
′
1n′

1
, . . . , u′

l1, . . . , u
′
ln′

l

(u′
l1 = u′

0n′
0
) a normal label of G′ for M̃(a11, . . . , a1m1 | · · · |al1, . . . , alml

||a). Note that

n0 = 1 + |a| = n′
0 and ni = 1 +

∑mi−1
2

k=1 |ai,2k| = n′
i for i = 1, . . . , l. Let v′01 be u′

01 and v′ij
the j-th visited neighbor of u′

i−1,1 where we go along G′[
⋃n′

i

j′=1{u′
ij′}] from u′

i1 to u′
in′

i
for

i = 1, . . . , l and j = 1, . . . , mi+1
2 .

Let f be a bijection from V ′ to V satisfying f(u′
ij) = uij for i = 1, . . . , l and j = 1, . . . , ni.

Note that f(v′ij) = vij since vij = u1+
�j−1

k=1 |ai,2k| and v′ij = u′
1+
�j−1

k=1 |ai,2k| for i = 1, . . . , l

and j = 1, . . . , mi+1
2 . Every pair of adjacent vertices in G consists of vi−1,1 and vij or ui′j′

and ui′,j′+1 for a pair of integers i ∈ {1, . . . , l} and j ∈ {1, . . . , mi+1
2 } or a pair of integers

i′ ∈ {0, 1, . . . , l} and j′ ∈ {1, . . . , ni′ − 1}. Every pair of adjacent vertices in G′ consists of
v′i−1,1 and v′ij or u′

i′j′ and u′
i′,j′+1 for a pair of integers i ∈ {1, . . . , l} and j ∈ {1, . . . , mi+1

2 }
or a pair of integers i′ ∈ {0, 1, . . . , l} and j′ ∈ {1, . . . , ni′ −1}. Therefore, two vertices u and
v in V ′ are adjacent in G′ if and only if the two vertices f(u) and f(v) in V are adjacent in
G.

We show that f is an isomorphism from G′ to G. The number of all edges whose
endvertices are vi−1,j and vij is |ai,2j−1|, the number of all edges whose endvertices are
v′i−1,j and v′ij is |ai,2j−1|, and these edges have the same sign − ai,2j−1

|ai,2j−1| for i = 1, . . . , l and
j = 1, . . . , mi+1

2 . The number of all edges whose endvertices are ui′j′ and ui′,j′+1 are one,
the number of all edges whose endvertices are u′

i′j′ and u′
i′,j′+1 are one, and these edges

have the same sign ai′,2k′
|ai′,2k′ | where k′ satisfies 1 +

∑k′−1
k=1 |ai,2k| ≤ j′ < 1 +

∑k′

k=1 |ai,2k| for
i′ = 0, . . . , l and j′ = 1, . . . , ni′ − 1 (Recall vij = u1+

�j−1
k=1 |ai,2k| and v′ij = u′

1+
�j−1

k=1 |ai,2k| for

i = 1, . . . , l and j = 1, . . . , mi+1
2 ). �

Lemmas 3.5 and 3.7 imply the following theorem.
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Theorem 3.8 A Tait graph G is isomorphic to the Tait graph of a Montesinos diagram if
and only if G has Montesinos diagram property.

4 Construction of normal representations Taking the advantage of the character-
ization of Tait graphs of Montesinos diagram shown in section 3, we give a linear time
algorithm for constructing normal representations of Montesinos diagrams from its Tait
graphs in this section.

Given a Tait graph G = (V, E, s), Procedure montesinos diagram property determines
whether G has Montesinos diagram property (Definition 3.6) or not. If G has Montesinos
diagram property, then the procedure also constructs a label of all vertices in V with normal
label property.

Recall that if G has Montesinos diagram property, then there exist at least two vertices
which have at least four neighbors and every such vertex is a head vertex of a subset
of V with maximal rational subset property. At first, the procedure chooses a vertex
v ∈ V satisfying |NG(v)| ≥ 4, and tries to find a subset of V with maximal rational subset
property whose head vertex is v by using Procedure maximal rational subset property as a
subprocedure. If there exists such a subset V ′, then the subprocedure finds V ′ by traversing
all vertices in V ′−{v} along the path G[V ′−{v}] from the endvertex of the path which has at
most two neighbors to the other endvertex which is a tail vertex of V ′. If the subprocedure
finds V ′ and u is the tail vertex, then the procedure tries to find another subset of V with
maximal subset property satisfying that u is a head vertex of the subset. The procedure
iterates the above. During the iteration, the subprocedure may find the subset of V with
top subset property. When the subset of V with top subset property is found, the vertices
of the subset are labeled by Procedure top labeler. If G having Montesinos diagram property
is realized, then Procedure normal labeler relabel all vertices in V so that the label of all
vertices in V has normal label property.

The detail of the procedure and the subprocedure are described in the following:

Procedure montesinos diagram property
Input: A Tait graph G = (V, E, s).
Output: A label of all vertices in V with normal label property if G has Montesinos
Output: diagram property, otherwise “Failure”.
{ Preprocess }
Construct V≥4 = {u ∈ V : |NG(u)| ≥ 4};
Construct NG(v) for each vertex v ∈ V − V≥4;
if |V≥4| < 2 then output “Failure”;
if there exists a vertex v ∈ V≥4 satisfying |{u ∈ NG(v) : |NG(u)| = 2}| = 0,
|{u ∈ NG(v) : |NG(u)| = 2}| ≥ 3, |{u ∈ NG(v) : u ∈ V≥4}| = 0 or
|{u ∈ NG(v) : u ∈ V≥4}| ≥ 3 then output “Failure”
Construct N=2(v) = {u ∈ NG(v) : |NG(u)| = 2} and N≥4(v) = {u ∈ NG(v) : u ∈ V≥4}
for every v ∈ V ;
Compute edge sumG(u, v) for each pair of vertices u and v in V ;
if there exists a pair of vertices in V satisfying that the multiple edges incident to the
two vertices have the different signs then output “Failure”;
Label v ∈ V≥4 as u′

01;
if |N=2(u′

01)| = 1
then set w1 as the vertex in N=2(u′

01)
else set w1 and w2 as the two vertices in N=2(u′

01);
{ Finding subsets of V with maximal rational subset property }
Initialize k as 1;
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while k ≤ |N=2(u′
01)| do begin

{ Note that |N=2(u′
01)| = 1 or 2}

V ′ := maximal rational subset property(G, u′
01, wk);

if V ′ = ∅ then break;
{ V ′ has maximal rational subset property }
Set n1 = |V ′| − 1;
Label all vertices in V ′ − {u′

01} in the way which wk is u′
1n1

and u′
1j and u′

1,j+1 are
adjacent for j = 1, . . . , n1 − 1;
if |NG(u′

11)| ≥ 4
then begin Initialize i as 2, top as 0 and start as 0; end;
else begin
{ The top path is found }
Initialize top as 1, start as 2 and vtmp as the vertex in NG(u′

11) − {u′
01, u

′
12};

top labeler(G, u′
11, vtmp, 2);

Initialize i as 3;
end;

while do begin
if |N=2(u′

i−1,1) − {u′
i−1,2}| �= 1 then break;

Set v3 as the vertex in N=2(ui−1,1) − {ui−1,2};
V ′ := maximal rational subset property(G, u′

i−1,1, v3);
if V ′ = ∅ then break;
{ V ′ has maximal rational subset property }
Set ni = |V ′| − 1;
Label all vertices in V ′ − {u′

i−1,1} in the way which v3 is u′
ini

and u′
ij and u′

i,j+1

are adjacent for j = 1, . . . , ni − 1;
if |NG(u′

i1)| ≥ 4
then Increment i
else begin
if top = 1 then output “Failure”;
{ The top subset property is found }
Set top as 1, start as i + 1 and vtmp as the vertex in NG(u′

i1) − {u′
i−1,1, u

′
i2};

top labeler(G, u′
i1, vtmp, i + 1);

i := i + 2;
end;

if ui−1,1 = u01

then if ( i − top > 3 ) ∧ ( all vertices in V are labeled ) ∧ ( every edge in G is
contained in either G[

⋃nstart

j=1 {u′
start,j}] or G[{ui′−1,1} ∪

⋃ni′
j=1{ui′j}] for an integer

i′ ∈ {1, . . . , start − 1, start + 1, . . . , i} )
then output normal labeler(G, (u′

11, . . . , u
′
1n1

, . . . , u′
i1 . . . , u′

ini
), start)

else output “Failure”;
if there exists a pair of integers i′ ∈ {1, . . . , i} and j′ ∈ {1, . . . , ni′} such that
ui−1,1 = ui′j′ then break;

end;
Increment k;

end;
output “Failure”;
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Procedure maximal rational subset property
Input: A Tait graph G = (V, E, s), a vertex v1 ∈ V and a vertex
Input: v3 ∈ {v ∈ NG(v1) : |NG(v) = 2|}, where v1 satisfies that |NG(v1)| ≥ 4 or
Input: |NG(v1)| = 3 and there exists a path whose endvertices are v1 and a tail vertex
Input: of a maximal rational subgraph and whose innervertices have at most two
Input: neighbors.
Output: The subset V ′ of V with maximal rational subset property satisfying that v1 is
Output: a head vertex of V ′ and v3 is an endvertex of G[V ′] if there exists the subset,
Output: otherwise the empty set ∅.
Initialize vprv as v3, vcrr as the vertex in NG(v3) − {v1}, and thr as 0;
while do begin
if there exist multiple edges incident to vcrr and vprv, v1 /∈ NG(vprv) and the two
edges incident to vprv have different signs then output ∅;
if v1 ∈ NG(vcrr)
then if |NG(vcrr)| ≥ 3
then if |NG(vcrr)| ≥ 4
then output the subset of V consisting of v1, v3 and all vertices substituted
for vcrr;
else begin thr := 1; vpr3 := vcrr; end

else output ∅;
else if |NG(vcrr)| ≥ 3
then if thr = 1
then output the subset of V consisting of v1, v3 and all vertices substituted for
vcrr from the vertex in NG(v3) − {v1} to vpr3; { The top path is found }
else output ∅;

else begin vtmp := vcrr; vcrr := v ∈ NG(vcrr) − {ui1, vprv}; vprv := vtmp; end;
end;

Procedure top labeler
Input: A Tait graph G = (V, E, s), an endvertex v1 of the top path in G, a vertex
Input: v3 ∈ NG(v1) in the top path in G and an integer i.
{ Label all vertices in the top path in G satisfying that u′

i1 and uini = v1 are the
{ endvertices of the top path and u′

ij and u′
i,j+1 are adjacent for j = 1, . . . , ni − 1 where

{ ni is the number of the vertices in the top path. }
Initialize vprv as v1 and vcrr as v3;
while |NG(vcur)| = 2
do begin vtmp := vcrr; vcrr := v ∈ NG(vcrr) − {vprv}; vprv := vtmp; end;

Label vcrr as u′
i1 and vprv as u′

i2;
Set vprv as u′

i1, vcrr as u′
i2 and ni as 2;

while vcur �= v1 do begin
vtmp := vcrr;
vcrr := v ∈ NG(vcrr) − {vprv};
vprv := vtmp;
Increment ni;
Label vcrr as u′

ini
;

end;
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Procedure normal labeler
Input: A Tait graph G with Montesinos diagram property, a label
Input: u′

01, u
′
11, . . . , u

′
1n1

, . . . , u′
i1, . . . , u

′
ini

(ui1 = u01) of all vertices in G and integer
Input: start ∈ {0, 1, . . . , i} satisfying that

(i) u′
11, . . . , u

′
1n1

, . . . , u′
i1, . . . , u

′
ini

are distinct vertices and for i′ = 1, . . . , i and j′ =
1, . . . , ni′ , u′

i′j′ and u′
i′,j′+1 are adjacent.

(ii) For every i′ ∈ {1, . . . , start− 1, start+1, . . . , i}, {u′
i′−1,1}∪

⋃ni′
j′=1{u′

i′j′} has maximal
rational subset property, u′

i−1,1 is a head vertex of {ui′−1,1}∪
⋃ni′

j′=1{ui′j′} and ui′−1,1

is a tail vertex of {ui′−1,1} ∪
⋃ni′

j′=1{ui′j′}.
(iii)

⋃nstart

j′=1 {ustart,j′} has top subset property or nstart = 1.

Output: A label u01, . . . , u0n0 , u11, . . . , u1n1 , . . . , ul1, . . . , ulnl
(ul1 = u0n0) of all vertices

Output: in the Tait graph with normal label property.
Label all vertices in

⋃nstart

j=1 {u′
start,j} in the way which u0j is ustart,j for

j = 1, . . . , nstart;
Label all vertices in

⋃ni′+start

j=1 {u′
i′+start,j} in the way which ui′j′ is u′

i′+start,j′ for
i′ = 1, . . . , i − start and j′ = 1, . . . , ni′;
Label all vertices in

⋃ni′−i+start

j=1 {u′
i′−i+start,j} in the way which ui′j′ is u′

i′−i+start,j′ for
i′ = i − start + 1, i − start + 2, . . . , i − 1 and j′ = 1, . . . , ni′;

By Definition 3.6 and the construction of Procedure montesinos diagram property, it is
easy to certify whether the input graph has montesinos diagram property. In the rest of
this section, we analyse the time complexity of the procedure.

Lemma 4.1 The preprocess of Procedure montesinos diagram property finishes in O(|E|)
time.

Proof. Let V = {v′
1, . . . , v

′
|V |}. We construct the following array of the structures:

V[1]

N[1]
N[2]
N[3]

N≥4[1]
N≥4[2]
N=2[1]
N=2[2]

#N
edge sum(N[1])
edge sum(N[2])
edge sum(N[3])

edge sum(N≥4[1])
edge sum(N≥4[2])

· · ·

V[i]

N[1]
N[2]
N[3]

N≥4[1]
N≥4[2]
N=2[1]
N=2[2]

#N
edge sum(N[1])
edge sum(N[2])
edge sum(N[3])

edge sum(N≥4[1])
edge sum(N≥4[2])

· · ·

V[|V |]
N[1]
N[2]
N[3]

N≥4[1]
N≥4[2]
N=2[1]
N=2[2]

#N
edge sum(N[1])
edge sum(N[2])
edge sum(N[3])

edge sum(N≥4[1])
edge sum(N≥4[2])

We denote a member m of an object o of our structure type by o → m. Each of the
first seven members of the structure stores a vertex and each of the rest six members stores
an integer. For each i ∈ {1, . . . , |V |}, the three members V[i] → N[1], V[i] → N[2] and
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V[i] → N[3] store distinct neighbors of v′i. For each i ∈ {1, . . . , |V |}, the two members
V[i] → N≥4[1] and V[i] → N≥4[2] store distinct neighbors of v′i which have at least
four neighbors and the two members V[i] → N=2[1] and V[i] → N=2[2] store distinct
neighbors of v′i which have at most two neighbors. For each i ∈ {1, . . . , |V |}, the member
V[i] → #N stores |NG(v′i)| if |NG(v′i)| < 4, otherwise 4. For each i ∈ {1, . . . , |V |} and
j ∈ {1, 2, 3}, the member V[i] → edge sum(N[j]) stores edge sumG(v′i, V[i] → N[j]).
For each i ∈ {1, . . . , |V |} and j ∈ {1, 2}, the member V[i] → edge sum(N≥4[j]) stores
edge sumG(v′i, V[i] → N≥4[j]).

The array of the structures is constructible in O(|E|) time by the following way. Initialize
all members of the structures of the array as 0. First, for each edge in E where its endvertices
are v′i and v′j , we do the following:

(i) If there exists a natural number k ∈ {1, 2, 3} satisfying that V[i] → N[k] = v′j , then
check whether the sign of the edge is equal to the sign of V[i] → edge sum(N[k])
and add the sign of the edge to V[i] → edge sum(N[k]).

(ii) If there exists no natural number k ∈ {1, 2, 3} satisfying that V[i] → N[k] = v′j and
V[i] → #N < 3, then increment V[i] → #N , assign v′j to V[i] → N[V[i] → #N]
and assign the sign of the edge to V[i] → edge sum(N[V[i] → #N]).

(iii) If there exists no natural number k ∈ {1, 2, 3} satisfying that V[i] → N[k] = v′j and
V[i] → #N ≥ 3, then assign 4 to V[i] → #N .

(iv) Do for V[j] in a similar way to (i), (ii) and (iii).

Next, for each edge in E where its endvertices are v′i and v′j , if |NG(v′j)| ≥ 4, then we
do the following:

(i) If there exists a natural number k ∈ {1, 2} satisfying that V[i] → N≥4[k] = v′j , then
check whether the sign of the edge is equal to the sign of V[i] → edge sum(N≥4[k])
and add the sign of the edge to V[i] → edge sum(N≥4[k]).

(ii) If there exists no natural number k ∈ {1, 2} satisfying that V[i] → N≥4[k] = v′j
and there exists a natural number k′ ∈ {1, 2} satisfying that V[i] → N≥4[k′] =
0, then assign v′j to V[i] → N≥4[k′] and assign the sign of the edge to V[i] →
edge sum(N≥4[k

′]).

If |NG(v′i)| ≥ 4, then do for V[j] as same as the case where |NG(v′j)| ≥ 4.
Finally, for each edge in E where its endvertices are v′i and v′j , if |NG(v′j)| = 2, then we

do the following:

(i) If there exists no natural number k ∈ {1, 2} satisfying that V[i] → N=2[k] = v′j and
there exists a natural number k′ ∈ {1, 2} satisfying that V[i] → N=2[k′] = 0, then
assign v′j to V[i] → N=2[k′].

If |NG(v′i)| = 2, then do for V[j] as same as the case where |NG(v′j)| = 2.
Note that whether there exists a vertex v ∈ V≥4 satisfying |{u ∈ NG(v) : |NG(u)| =

2}| = 0, |{u ∈ NG(v) : |NG(u)| = 2}| ≥ 3, |{u ∈ NG(v) : u ∈ V≥4}| = 0 or |{u ∈ NG(v) :
u ∈ V≥4}| ≥ 3 is determined in the construction of the array. Whether there exists a pair
of vertices in V satisfying that the multiple edges incident to the two vertices have the
different signs is also determined in the construction of the array. Therefore, the preprocess
of Procedure montesinos diagram property finishes in O(|E|) time. �
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Lemma 4.2 If Procedure maximal rational subset property outputs a nonempty subset V ′

when v1 ∈ NG(vcrr), then the subprocedure finishes in O(|V ′|) time. If Procedure max-
imal rational subset property outputs a nonempty subset V ′ when v1 /∈ NG(vcrr), then the
subprocedure finds a subset V ′′ of V with top subgraph property and finishes in O(|V ′|+|V ′′|)
time. If Procedure maximal rational subset property outputs the empty set ∅, then the sub-
procedure finishes in O(|V |) time.

Proof. By looking up edge sumG(vcrr, vprv), whether there exist multiple edges incident to
vcrr and vprv is determinable in constant time. For each vertex v ∈ V , whether v1 ∈ NG(v)
or not is determinable in constant time by looking up N≥4(v1) if v1 ∈ V≥4 and v ∈ V≥4,
otherwise by looking up NG(u) where u ∈ {v1, v} − V≥4. If v1 /∈ NG(vprv) and there exist
no multiple edges incident to vprv and v for each vertex v ∈ NG(vprv), then whether the
two edges incident to vprv have different signs is determinable in constant time by looking
up edge sumG(vprv, v) for each vertex v ∈ NG(vprv). It is clear that whether |NG(vcrr)| ≥ 3
and whether |NG(vcrr)| ≥ 4 are determinable in constant time. It is also clear that the
subset of V consisting of v1, v3 and all vertices substituted for vcrr is outputed in O(n)
time where n is the number of the vertices substituted for vcrr. Because every vertex is
substituted for vcrr at most once, the while loop iterates n times where n is the number of
the vertices substituted for vcrr. �

Lemma 4.3 Procedure montesinos diagram property runs in O(|E|) time.

Proof. The preprocess finishes in O(|E|) time by Lemma 4.1. Because |N=2(u′
01)| is at most

two, the outer while loop of the procedure iterates at most twice. Therefore, it is sufficient
to show that each iteration of the outer while loop of the procedure finishes in O(|E|) time.

If maximal rational subset property outputs a nonempty subset V ′ when v1 ∈
NG(vcrr), then the subprocedure finishes in O(|V ′|) time by Lemma 4.2. If maxi-
mal rational subset property outputs a nonempty subset V ′ when v1 /∈ NG(vcrr), then
the subprocedure finds a subset V ′′ of V with top subgraph property and finishes in
O(|V ′| + |V ′′|) time by Lemma 4.2. If maximal rational subset property outputs the empty
set ∅, then the subprocedure finishes in O(|V |) time by Lemma 4.2. It is clear that
for each V ′ outputed by maximal rational subset property, all vertices in V ′ are labeled
in O(|V ′|). It is also clear that Procedure top labeler finishes in O(|V ′′|) time where
V ′′ found by maximal rational subset property and has top subgraph property. Whether
|N=2(u′

i−1,1)−{u′
i−1,2}| �= 1 is determinable in constant time for each i because |N=2(u′

i−1,1)|
is at most two. Whether every edge in G is contained in either G[

⋃nstart

j=1 {u′
start,j}] or

G[{ui′−1,1} ∪ ⋃ni′
j=1{ui′j}] for an integer i′ ∈ {1, . . . , start − 1, start + 1, . . . , i} is deter-

minable in constant time by looking up the labels of both the endvertices of the edge. It is
clear that Procedure normal labeler finishes in O(|V |) time.

When a vertex except u′
start,nstart

is labeled twice or maximal rational subset property
outputs the empty set ∅, the inner while loop of the procedure finishes. Therefore, each
iteration of the outer while loop of the procedure finishes in O(|E|) time. �

Theorem 4.4 Procedure montesinos diagram property determines whether G has Mon-
tesinos diagram property or not in O(|E|) time. Furthermore, the procedure constructs
a label of all vertices in G with normal label property if G has Montesinos diagram property.

Theorem 4.4 and Lemma 3.7 imply the following corollary.

Corollary 4.5 Normal representations of Montesinos diagrams are constructible in O(n)
time from its Tait graphs, where n is the number of the edges in the input Tait graph.
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5 Computation of Kauffman bracket polynomials In this section, we show a re-
currence formula of Kauffman bracket polynomials of Montesinos diagrams represented by
normal representations. By using the formula, Kauffman bracket polynomials of Montesinos
diagrams are computable with O(n) additions and multiplications in polynomials of degree
O(n) from normal representations of Montesinos diagrams, where n is the number of the
crossings of the Montesinos diagram represented by the input normal representation.

We denote the link diagram M̃(a11, . . . , a1m1 | · · · |al1, . . . , alml
||0) by

M̃(a11, . . . , a1m1 | · · · |al1, . . . , alml
), the link diagram consisting of integer tangles

Ia1 , . . . , Iam as shown in Figure 8 by R̃(a1, . . . , am) and the link diagram consisting
of integer tangles Ia11 , . . . , Ia1m1

, . . . , Ial1 , . . . , Ialml
(l rational tangles) as shown in Figure

9 by Ñ(a11, . . . , a1m1 | · · · |al1, . . . , alml
).

Ia1

Ia2

Ia3

Iam−1

Iam

Ia1

Ia2

Iam

Iam−1

m is an odd number. m is an even number.

Figure 8: R̃(a1, . . . , am).

Ia11

Ia1m1

Ia12

Ia1m1-1

Ia13

Ia21

Ia2m2

Ia22

Ia2m2-1

Ial1

Ialml

Ial2

Ialml-1

Ial3

Figure 9: Ñ(a11, . . . , a1m1 | · · · |al1, . . . , alml
).

For a link diagram L̃, a link diagram L̃#(k) is shorthand for a link diagram twisted it
k times as shown in Figure 10. For convenience, L̃#(0) denotes L̃ itself.
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�L#(0) = �L �L#(3) �L#(−2)

Figure 10: L̃#(k).

For any integer n, we set

Qn =
1 − (−A4)n

1 − (−A4)
=

⎧⎨⎩
1 + (−A4) + · · · + (−A4)n−1 if n > 0,
0 if n = 0,
−(−A4)−1 − (−A4)−2 − · · · − (−A4)n if n < 0.

Proposition 5.1 [10] For any integer k,

〈
Ik

〉
= A

〈
Ik-1

〉
+ A−1

〈
Ik-1

〉
.

Proposition 5.2 [10] For any link diagram L̃ and any integer k,

〈L̃#(k)〉 = (−A−3)k〈L̃〉.

Proposition 5.3 [10] Let L̃ be a link diagram and {bn}n∈Z a sequence of polynomials in
Z[A±1]. Suppose that for any integer n,

bn = Abn−1 + A−1〈L̃#(n − 1)〉.

Then,
bn = Anb0 − (−A)−3n+2Qn〈L̃〉.

Lemma 5.4 For any pair of a sequence of integer sequence (a11, . . . , a1m1 | · · · |al1, . . . , alml
)

and an integer a,

〈M̃(a11, . . . , a1m1 | · · · |al1, . . . , alml
||a)〉

= Aa〈M̃(a11, . . . , a1m1 | · · · |al1, . . . , alml
)〉

−(−A)−3a+2Qa〈Ñ(a11, . . . , a1m1 | · · · |al1, . . . , alml
)〉.

Proof. We have

〈M̃(a11, . . . , a1m1 | · · · |al1, . . . , alml
||a)〉

= A〈M̃(a11, . . . , a1m1 | · · · |al1, . . . , alml
||a − 1)〉

+A−1〈Ñ(a11, . . . , a1m1 | · · · |al1, . . . , alml
)#(a − 1)〉

by applying Proposition 5.1 to Ia of M̃(a11, . . . , a1m1 | · · · |al1, . . . , alml
||a). Then, the

lemma is implied by Proposition 5.3. �
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Lemma 5.5 For any sequence of integer sequences (a11, . . . , a1m1 | · · · |al1, . . . , alml
), the

following recurrence formula holds.

〈M̃(a11, . . . , a1m1 | · · · |al1, . . . , alml
)〉

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−A−3)a11 if l = 1 and m1 = 1,

(−A−3)a11〈R̃(a12, . . . , a1m1)〉 if l = 1 and m1 ≥ 2,

Aal1〈Ñ(a11, . . . , a1m1 | · · · |al−11, . . . , al−1ml−1)〉
−(−A)−3al1+2Qal1

×〈M̃(a11, . . . , a1m1 | · · · |al−11, . . . , al−1ml−1)〉 if l ≥ 2 and ml = 1,
(−1)al1A−3al1+al2

×〈M̃(a11, . . . , a1m1 | · · · |al−11, . . . , al−1ml−1)〉
−(−A)−3al2+2Qal2

×〈M̃(a11, . . . , a1m1 | · · · |al−11, . . . , al−1ml−1 |al1)〉 if l ≥ 2 and ml = 2,
(−1)alml−1A−3alml−1+alml

×〈M̃(a11, . . . , a1m1 | · · · |al1, . . . , alml−2)〉
−(−A)−3alml

+2Qalml

×〈M̃(a11, . . . , a1m1 | · · · |al1, . . . , alml−1)〉 if l ≥ 2 and ml ≥ 3.

Proof. The case where l = 1 and m1 = 1 is implied by M̃(a11) = ©#(a11), Proposition 5.2
and Definition 2.1(i). The case where l = 1 and m1 ≥ 2 is implied by M̃(a11, . . . , am1) =
R̃(a12, . . . , a1m1)#(a11) and Proposition 5.2 (see Figure 11).

Ia11

Ia11

Ia12

Ia1m1-1

Ia13

Ia1m1

Ia1m1-1

Ia11

Ia12

Ia1m1

m1 is an odd number m1 is an even number

Figure 11: The case where l = 1.

We consider the case where l ≥ 2 and ml = 1. We have

〈M̃(a11, . . . , a1m1 | · · · |al−11, . . . , al−1ml−1 |al1)〉(1)

= A〈M̃(a11, . . . , a1m1 | · · · |al−11, . . . , al−1ml−1 |al1 − 1)〉
+A−1〈M̃(a11, . . . , a1m1 | · · · |al−11, . . . , al−1ml−1)#(al1 − 1)〉

by applying Proposition 5.1 to Ial1 of M̃(a11, . . . , a1m1 | · · · |al−11, . . . , al−1ml−1 |al1). We also
have

〈M̃(a11, . . . , a1m1 | · · · |al−11, . . . , al−1ml−1 |0)〉(2)

= 〈Ñ(a11, . . . , a1m1 | · · · |al−11, . . . , al−1ml−1)〉
by M̃(a11, . . . , a1m1 | · · · |al−11, . . . , al−1ml−1 |0) = Ñ(a11, . . . , a1m1 | · · · |al−11, . . . , al−1ml−1)
(see Figure 12). Hence, the equations (1) and (2) imply the case where l ≥ 2 and ml = 1
by Proposition 5.3.
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Ial1-1Ial1

Figure 12: The case where l ≥ 2 and ml = 1.

We consider the case where l ≥ 2 and ml = 2. We have

〈M̃(a11, . . . , a1m1 | · · · |al−11, . . . , al−1ml−1 |al1, al2)〉(3)

= A〈M̃(a11, . . . , a1m1 | · · · |al−11, . . . , al−1ml−1 |al1, al2 − 1)〉
+A−1〈M̃(a11, . . . , a1m1 | · · · |al−11, . . . , al−1ml−1 |al1)#(al2 − 1)〉

by applying Proposition 5.1 to Ial2 of M̃(a11, . . . , a1m1 | · · · |al−11, . . . , al−1ml−1 |al1, al2). We
also have

〈M̃(a11, . . . , a1m1 | · · · |al−11, . . . , al−1ml−1 |al1, 0)〉(4)

= (−A−3)al1〈M̃(a11, . . . , a1m1 | · · · |al−11, . . . , al−1ml−1)〉
by

M̃(a11, . . . , a1m1 | · · · |al−11, . . . , al−1ml−1 |al1, 0)

= M̃(a11, . . . , a1m1 | · · · |al−11, . . . , al−1ml−1)#(al1)

and Proposition 5.2 (see Figure 13). Hence, the equations (3) and (4) imply the case where
l ≥ 2 and ml = 2 by Proposition 5.3.

Ial1

Ial2

Ial1Ial1

Ial2-1

Figure 13: The case where l ≥ 2 and ml = 2.

We consider the case where l ≥ 2 and ml ≥ 3. We have

〈M̃(a11, . . . , a1m1 | · · · |al1, . . . , alml
)〉(5)

= A〈M̃(a11, . . . , a1m1 | · · · |al1, . . . , alml
− 1)〉

+A−1〈M̃(a11, . . . , a1m1 | · · · |al1, . . . , alml−1)#(alml
− 1)〉

by applying Proposition 5.1 to Ialml
of M̃(a11, . . . , a1m1 | · · · |al1, . . . , alml

). We also have

〈M̃(a11, . . . , a1m1 | · · · |al1, . . . , alml−1, 0)〉(6)

= (−A−3)alml−1〈M̃(a11, . . . , a1m1 | · · · |al1, . . . , alml−2)〉
by M̃(a11, . . . , a1m1 | · · · |al1, . . . , alml−1, 0) = M̃(a11, . . . , a1m1 | · · · |al1, . . . , alml−2)#(alml−1)
and Proposition 5.2 (see Figures 14 and 15). Hence, the equations (5) and (6) imply the
case where l ≥ 2 and ml ≥ 3 by Proposition 5.3.
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Ial1

Ial2

Ial3

Ialml-1

Ialml

Ial1

Ial2

Ial3

Ialml-1

Ial1

Ial2

Ial3

Ialml-1

Ialml-1

Figure 14: The case where l ≥ 2, ml ≥ 3 and ml is an odd number.

Ialml-1

Ialml-1

Ial1

Ial2

Ialml-1

Ial1

Ial2

Ialml-1

Ial1

Ial2

Ialml

Figure 15: The case where l ≥ 2, ml ≥ 3 and ml is an even number.

�

Lemma 5.6 For any sequence of integer sequences (a11, . . . , a1m1 | · · · |al1, . . . , alml
), the

following recurrence formula holds.

〈Ñ(a11, . . . , a1m1 | · · · |al1, . . . , alml
)〉

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈R̃(a11, . . . , a1m1)〉 if l = 1,(
Aal1(−A−2 − A2) − (−A)−3al1+2Qal1

)
×〈Ñ(a11, . . . , a1m1 | · · · |al−11, . . . , al−1ml−1)〉 if l ≥ 2 and ml = 1,

(−1)al1A−3al1+al2

×〈Ñ(a11, . . . , a1m1 | · · · |al−11, . . . , al−1ml−1)〉
−(−A)−3al2+2Qal2

×〈Ñ(a11, . . . , a1m1 | · · · |al−11, . . . , al−1ml−1 |al1)〉 if l ≥ 2 and ml = 2,
(−1)alml−1A−3alml−1+alml

×〈Ñ(a11, . . . , a1m1 | · · · |al1, . . . , alml−2)〉
−(−A)−3alml

+2Qalml

×〈Ñ(a11, . . . , a1m1 | · · · |al1, . . . , alml−1)〉 if l ≥ 2 and ml ≥ 3.

Proof. The case where l = 1 is implied by Ñ(a11, . . . , a1m1) = R̃(a11, . . . , a1m1).
We consider the case where l ≥ 2 and ml = 1. We have

〈Ñ(a11, . . . , a1m1 | · · · |al−11, . . . , al−1ml−1 |al1)〉(7)

= A〈Ñ(a11, . . . , a1m1 | · · · |al−11, . . . , al−1ml−1 |al1 − 1)〉
+A−1〈Ñ (a11, . . . , a1m1 | · · · |al−11, . . . , al−1ml−1)#(al1 − 1)〉
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by applying Proposition 5.1 to Ial1 of Ñ(a11, . . . , a1m1 | · · · |al−11, . . . , al−1ml−1 |al1). We also
have

〈Ñ(a11, . . . , a1m1 | · · · |al−11, . . . , al−1ml−1 |0)〉(8)

= (−A−2 − A2)〈Ñ(a11, . . . , a1m1 | · · · |al−11, . . . , al−1ml−1)〉

by Ñ(a11, . . . , a1m1 | · · · |al−11, . . . , al−1ml−1 |0) = Ñ(a11, . . . , a1m1 | · · · |al−11, . . . , al−1ml−1)�
© and Definition 2.1(ii) (see Figure 12). Hence, the equations (7) and (8) imply the case
where l ≥ 2 and ml = 1 by Proposition 5.3.

We consider the case where l ≥ 2 and ml = 2. We have

〈Ñ(a11, . . . , a1m1 | · · · |al−11, . . . , al−1ml−1 |al1, al2)〉(9)

= A〈Ñ(a11, . . . , a1m1 | · · · |al−11, . . . , al−1ml−1 |al1, al2 − 1)〉
+A−1〈Ñ(a11, . . . , a1m1 | · · · |al−11, . . . , al−1ml−1 |al1)#(al2 − 1)〉

by applying Proposition 5.1 to Ial2 of Ñ(a11, . . . , a1m1 | · · · |al−11, . . . , al−1ml−1 |al1, al2). We
also have

〈Ñ(a11, . . . , a1m1 | · · · |al−11, . . . , al−1ml−1 |al1, 0)〉(10)

= (−A−3)al1〈Ñ(a11, . . . , a1m1 | · · · |al−11, . . . , al−1ml−1)〉

by

Ñ(a11, . . . , a1m1 | · · · |al−11, . . . , al−1ml−1 |al1, 0)

= Ñ(a11, . . . , a1m1 | · · · |al−11, . . . , al−1ml−1)#(al1)

and Proposition 5.2 (see Figure 13). Hence, the equations (9) and (10) imply the case where
l ≥ 2 and ml = 2 by Proposition 5.3.

We consider the case where l ≥ 2 and ml ≥ 3. We have

〈Ñ(a11, . . . , a1m1 | · · · |al1, . . . , alml
)〉(11)

= A〈Ñ(a11, . . . , a1m1 | · · · |al1, . . . , alml
− 1)〉

+A−1〈Ñ(a11, . . . , a1m1 | · · · |al1, . . . , alml−1)#(alml
− 1)〉

by applying Proposition 5.1 to Ialml
of Ñ(a11, . . . , a1m1 | · · · |al1, . . . , alml

). We also have

〈Ñ(a11, . . . , a1m1 | · · · |al1, . . . , alml−1, 0)〉(12)

= (−A−3)alml−1〈Ñ(a11, . . . , a1m1 | · · · |al1, . . . , alml−2)〉

by Ñ(a11, . . . , a1m1 | · · · |al1, . . . , alml−1, 0) = Ñ(a11, . . . , a1m1 | · · · |al1, . . . , alml−2)#(alml−1)
and Proposition 5.2 (see Figures 14 and 15). Hence, the equations (11) and (12) imply the
case where l ≥ 2 and ml ≥ 3 by Proposition 5.3. �

Lemma 5.7 [10] The Kauffman bracket polynomial 〈R̃(a1, . . . , am)〉 is computable with
O(n) additions and multiplications in polynomials of degree O(n), where n is the number
of the crossings of R̃(a1, . . . , am).
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Given normal representations of Montesinos diagrams, Procedure bracket montesinos
computes Kauffman bracket polynomial of Montesinos diagrams, by using the recurrence
formulas in Lemmas 5.4, 5.5 and 5.6. While the procedure is running, every Kauffman
bracket polynomial is computed at most once.

Procedure bracket montesinos
Input: A sequence of integer sequences (a11, . . . , a1m1 | · · · |al1, . . . , alml

) and an integer a.
Output: The Kauffman bracket polynomial 〈M̃(a11, . . . , a1m1 | · · · |al1, . . . , alml

||a)〉.
Compute 〈M̃(a11, . . . , a1m1)〉 and 〈Ñ(a11, . . . , a1m1)〉;
for i := 2 to l do begin
for j := 1 to mi do begin

Compute 〈M̃(a11, . . . , a1m1 | · · · |ai1, . . . , aij)〉 and 〈Ñ(a11, . . . , a1m1 | · · · |ai1, . . . , aij)〉;
end;

end;

Compute 〈M̃(a11, . . . , a1m1 | · · · |al1, . . . , alml
||a)〉;

Theorem 5.8 Procedure bracket montesinos computes the Kauffman bracket polyno-
mial 〈M̃(a11, . . . , a1m1 | · · · |al1, . . . , alml

||a)〉 with O(n) additions and multiplications
in polynomials of degree O(n), where n is the number of the crossings of
〈M̃(a11, . . . , a1m1 | · · · |al1, . . . , alml

||a)〉.

Proof. Qk is computable in O(|k|) time for any integer k. 〈M̃(a11, . . . , a1m1)〉 and
〈Ñ(a11, . . . , a1m1)〉 are computable with O(n) operations in polynomials of degree O(n)
by Lemmas 5.5, 5.6 and 5.7. We consider the case where i = 2, . . . , l.

〈M̃(a11, . . . , a1m1 | · · · |ai−11, . . . , ai−1mi−1 |ai1)〉 and
〈Ñ(a11, . . . , a1m1 | · · · |ai−11, . . . , ai−1mi−1 |ai1)〉 are computable with O(1) operations
in polynomials of degree O(n) from 〈M̃(a11, . . . , a1m1 | · · · |ai−11, . . . , ai−1mi−1)〉,
〈Ñ(a11, . . . , a1m1 | · · · |ai−11, . . . , ai−1mi−1)〉, and Qai1 by Lemmas 5.5 and 5.6.

〈M̃(a11, . . . , a1m1 | · · · |ai−11, . . . , ai−1mi−1 |ai1, ai2)〉 and
〈Ñ(a11, . . . , a1m1 | · · · |ai−11, . . . , ai−1mi−1 |ai1, ai2)〉 are computable with O(1) opera-
tions in polynomials of degree O(n) from 〈M̃(a11, . . . , a1m1 | · · · |ai−11, . . . , ai−1mi−1)〉,
〈M̃(a11, . . . , a1m1 | · · · |ai−11, . . . , ai−1mi−1 |ai1)〉, 〈Ñ(a11, . . . , a1m1 | · · · |ai−11, . . . , ai−1mi−1)〉,
〈Ñ(a11, . . . , a1m1 | · · · |ai−11, . . . , ai−1mi−1 |ai1)〉 and Qai2 by Lemmas 5.5 and 5.6.

〈M̃(a11, . . . , a1m1 | · · · |ai1, . . . , aij)〉 and 〈Ñ(a11, . . . , a1m1 | · · · |ai1, . . . , aij)〉
are computable with O(1) operations in polynomials of degree O(n) from
〈M̃(a11, . . . , a1m1 | · · · |ai1, . . . , aij−2)〉, 〈M̃(a11, . . . , a1m1 | · · · |ai1, . . . , aij−1)〉,
〈Ñ(a11, . . . , a1m1 | · · · |ai1, . . . , aij−2)〉, 〈Ñ(a11, . . . , a1m1 | · · · |ai1, . . . , aij−1)〉 and Qaij

for j = 3, . . . , mi by Lemmas 5.5 and 5.6.
〈M̃(a11, . . . , a1m1 | · · · |al1, . . . , alml

||a)〉 is computable with O(1) operations
in polynomials of degree O(n) from 〈M̃(a11, . . . , a1m1 | · · · |al1, . . . , alml

)〉 and
〈Ñ(a11, . . . , a1m1 | · · · |al1, . . . , alml

)〉 and Qa by Lemmas 5.4. Therefore, the proce-
dure computes 〈M̃(a11, . . . , a1m1 | · · · |al1, . . . , alml

||a)〉 with O(n) operations of polynomials
in degree O(n). �

Corollary 5.9 Jones polynomials of Montesinos links are computable with O(n) additions
and multiplications in polynomials of degree O(n) from Tait graphs of Montesinos diagrams,
namely in O(n2 log n) time, where n is the number of the edges in the input Tait graph.
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