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Abstract. There is an (immobile) object in a node except for a specified node, with
a priori probabilities. A seeker starts at the specified node and examines each node
until he finds an object, traveling along edges. Associated with an examination of a
node is the examination cost, and associated with a movement from a node to a node
is a traveling cost. A strategy for the seeker is an ordering of nodes in which the seeker
examines each node. The purpose of the seeker is to find a strategy which minimizes
the expected cost. Necessary conditions for a strategy to be optimal are presented.
Special cases are solved.

1 Introduction and preliminaries. An optimization problem studied in this paper is
a search problem on a finite and connected graph: There is an (immobile) object in a node
except for a specified node, with a priori probabilities. A seeker starts at the specified node
and examines each node until he finds an object, traveling along edges. Associated with
an examination of a node is the examination cost, and associated with a movement from
a node to a node is a traveling cost. A strategy for the seeker is an ordering of nodes in
which the seeker examines each node. The purpose of the seeker is to find a strategy which
minimizes the expected cost for finding the object.

[Gluss 1961] studied this problem and found a solution approximately when the graph is
linear and the seeker is at a terminal node at first. [Kikuta 1990] studied this problem when
the graph is a rooted tree with two branches and the seeker is at the root at first. [Lössner
and Wegener 1982] studies a more general problem and got sufficient conditions in which
critical quantities are given for finding a node to be examined in the next step. Our problem
treats a special case of its general model and this paper intends to analyze properties of
optimal strategies in more detail, which depends on special structure of the underlying
network. In [Alpern and Gal 2003], a game version of this problem is commented. [Ruckle
1983] introduces many search games on graphs.

It is difficult to find an exact analytical solution for this problem. On the other hand,
imagine a search for the traces of a lost ship in the sea. In some regions, they could search
only by patrol boats, and in other regions they must use helicopters as well as patrol boats.
It costs much when they must use helicopters and boats. When they commit helicopters,
extra set-up cost is required. In this paper we assume that the nodes are classified into two
groups depending on the examination costs, and then the edges are also classified into three
groups depending on the examination costs and the traveling costs. Necessary conditions
are presented for a strategy to be optimal. Properties of optimal strategies are induced
from the necessary conditions.
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Here we formulate a problem on a finite and connected graph. From Section 2 on we
treat a special case of this problem. Let (N, E) be a finite, connected and undirected graph
where N = {0, 1, . . . , |N | − 1}, |N | ≥ 3, is the set of nodes and E ⊆ N × N is the set
of edges. The node 0 is specified. A path between i0 and is is an ordered s + 1-tuple
π = (i0, i1, . . . , is) such that (ir−1, ir) ∈ E for r = 1, . . . , s. Each edge (i, j) ∈ E is
associated with a positive real number d(i, j) > 0, called a traveling cost of (i, j) ∈ E.
We assume d(i, j) = d(j, i) for all (i, j) ∈ E and d(i, i) = 0 for all i ∈ N . Furthermore,
we assume that d(i, j) + d(j, k) ≥ d(i, k) whenever (i, j), (j, k), (i, k) ∈ E. If i, j ∈ N and
(i, j) /∈ E, we define d(i, j) by the minimum of the traveling costs of the paths between i
and j.

First we state a search problem on (N, E). There is an (immobile) object in a node
except for the node 0, with a priori probabilities pi, i ∈ N \ {0}. A seeker starts at the
node 0 and examines each node until he finds an object, traveling along edges. He finds
an object certainly (with probability 1) if he examines the right node. Associated with an
examination of i ∈ N \ {0} is the examination cost ci, and associated with a movement
from a node i ∈ N to a node j ∈ N is a traveling cost d(i, j). A strategy for the seeker is
a permutation σ on N with σ(0) = 0, which means that the seeker examines each node in
the order of σ(1), . . . , σ(|N |−1), starting at the node 0. Σ is the set of all permutations on
N such that σ(0) = 0. For i ∈ N \ {0} and σ ∈ Σ, f(i, σ) is the cost of finding the object
at the node i when the seeker takes a strateg y σ:

f(i, σ) =
σ−1(i)−1∑

x=0

{d(σ(x + 1), σ(x)) + cσ(x+1)}.

For σ ∈ Σ, f(σ) is the expected cost of finding the object, starting at the node 0:

f(σ) =
∑

i∈N\{0}
pif(i, σ) =

∑
i∈N\{0}

pσ(i)f(σ(i), σ).

A strategy σ∗ ∈ Σ is said to be optimal if

f(σ∗) = min
σ∈Σ

f(σ).

The purpose of the seeker is to find an optimal strategy.

2 Model. As we know from the literature, it is difficult to solve the problem mentioned
in Section 1. In this paper we try to solve a problem when depending on the examination
cost, the nodes are classified into two groups except for the node 0. That is, H = {1, . . . , m}
is the set of nodes with examination cost ci = h, i ∈ H and L = {m + 1, . . . , m + n} is the
set of nodes with examination cost ci = �, i ∈ L. Thus, N = H ∪ L ∪ {0} and H ∩ L = ∅.
We assume

h > � > 0.

Secondly, we assume that the graph is complete, E = N × N . So the seeker does not visit
any node where he visited before. The seeker would not pass through any node without
examination. That is, he examines certainly that node when he reaches there. This means
that at each movement of the seeker from a node i to another node j, it costs a traveling
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cost d(i, j) and an examination cost cj . We let

d(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

s, if i ∈ H, j ∈ L or i ∈ L, j ∈ H ;
tH , if i, j ∈ H ;
tL, if i, j ∈ L;
t0, if i = 0 and j ∈ N \ {0} or j = 0 and i ∈ N \ {0};
0, if i = j.

For a movement between different groups, the seeker must pay extra set-up cost s − tH or
s − tL. Thus we assume s ≥ 0, tH ≥ 0, tL ≥ 0, t0 ≥ 0 and

s ≥ max{tH , tL}.

In our model, we assume that the seeker should not return to the node 0. So, the value
of d(i, j) when i = 0 (or j = 0) is paid exactly once at the beginning of the search1. For
simplicity we let t0 = 0. Without loss of generality we assume

p1 ≥ . . . ≥ pm > 0 and pm+1 ≥ . . . ≥ pm+n > 0.

By these assumptions on a priori probabilities, we see a property of a strategy.

Lemma 2.1. When he considers nodes in the same group, the seeker must examine a node
first with the highest a priori probability.
Proof: For i, j ∈ H suppose σ−1(i) < σ−1(j). Define τ by τ−1(i) = σ−1(j), τ−1(j) =
σ−1(i) and τ−1(k) = σ−1(k) for k �= i, j. We see that f(σ) > f(τ) if and only if pj > pi.
By definition it is easy to see that for i, j ∈ H ,

f(j, σ) − f(i, σ) = f(i, τ) − f(j, τ), and f(k, σ) = f(k, τ),∀k �= i, j.

So
f(σ) − f(τ) = (pj − pi){f(j, σ) − f(i, σ)}.

Since f(j, σ) − f(i, σ) > 0 we have the first half of the lemma. Next, for m + i, m + j ∈ L
suppose σ−1(m + i) < σ−1(m + j). Define τ by τ−1(m + i) = σ−1(m + j), τ−1(m + j) =
σ−1(m + i) and τ−1(k) = σ−1(k) for k �= m + i, m+ j. We see that f(σ) > f(τ) if and only
if pm+j > pm+i. This is shown by the next relation:

f(σ) − f(τ) = (pm+j − pm+i){f(m + j, σ) − f(m + i, σ)}.

�

By this lemma we can consider a restricted set of permutations: Σ∗ is the set of permutations
σ on N such that σ(0) = 0 and σ−1(i) < σ−1(j) if i < j ≤ m and σ−1(m+ i) < σ−1(m+ j)
if i < j ≤ n. We express a permutation σ ∈ Σ∗ as σ = [σ(1) · · ·σ(m + n)]. If σ(i) ∈
H, σ(j) ∈ H and i < j then we have pσ(i) ≥ pσ(j). In the same way, if σ(i) ∈ L, σ(j) ∈ L
and i < j then we have pσ(i) ≥ pσ(j). In Section 4 we treat specified permutations σH ∈ Σ∗

and σL ∈ Σ∗,where σH(a) ∈ H for 1 ≤ a ≤ m and σL(a) ∈ L for 1 ≤ a ≤ n, that is,
σH = [1, · · · , m, m + 1, · · · , m + n] and σL = [m + 1, · · · , m + n, 1, · · · , m].

1The node 0 would be more important when the underlying graph is not complete.
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3 Necessary Conditions for Optimal Strategies. In this section we give necessary
conditions for a strategy to be optimal.

Theorem 3.1. Let σ ∈ Σ∗ be an optimal strategy such that for 1 ≤ i ≤ m − 1 and
0 ≤ j ≤ n − y,

σ(a) = i ∈ H, σ(a + y + 1) = i + 1 ∈ H, σ(a + b) = m + j + b ∈ L, for 1 ≤ b ≤ y.

Then ∑y
b=1 pm+j+b

2s − tH − tL + y(tL + �)
>

pi+1

tH + h
,

pi

tH + h
>

∑y
b=1 pm+j+b

2s − tH − tL + y(tL + �)
, if a ≥ 2 and σ(a − 1) ∈ H,

pi

2s − tL + h
>

∑y
b=1 pm+j+b

y(tL + �)
, if a ≥ 2 and σ(a − 1) ∈ L,

pi

s + h
>

∑y
b=1 pm+j+b

s − tL + y(tL + �)
, if a = 1.

Next let σ ∈ Σ∗ be an optimal strategy such that for 1 ≤ i ≤ n − 1 and 0 ≤ j ≤ m − x,

σ(a) = m + i ∈ L, σ(a + x + 1) = m + i + 1 ∈ L, σ(a + b) = j + b ∈ H, for 1 ≤ b ≤ x.

Then ∑x
b=1 pj+b

2s − tH − tL + x(tH + h)
>

pm+i+1

tL + �
,

pm+i

tL + �
>

∑x
b=1 pj+b

2s − tH − tL + x(tH + h)
, if a ≥ 2 and σ(a − 1) ∈ L,

pm+i

2s − tH + �
>

∑x
b=1 pj+b

x(tH + h)
, if a ≥ 2 and σ(a − 1) ∈ H,

pm+i

s + �
>

∑x
b=1 pj+b

s − tH + x(tH + h)
, if a = 1.

To prove this theorem we need two lemmas.

Lemma 3.1A. Let σ ∈ Σ∗ be a strategy such that for 1 ≤ i ≤ m − 1 and 0 ≤ j ≤ n − y,

σ(a) = i ∈ H, σ(a + y + 1) = i + 1 ∈ H, σ(a + b) = m + j + b ∈ L, for 1 ≤ b ≤ y.

Let σ′ ∈ Σ∗ be a strategy such that σ′(b) = σ(b) for 1 ≤ b ≤ a−1 and a+y+2 ≤ b ≤ m+n
and

σ′(a) = i ∈ H, σ′(a + 1) = i + 1 ∈ H, σ′(a + b) = m + j + b − 1 ∈ L, for 2 ≤ b ≤ y + 1.

Then f(σ) < f(σ′) if and only if

pi+1

tH + h
+ α <

∑y
b=1 pm+j+b

2s − tH − tL + y(tL + �)
,

where α = 0 if σ(a + y + 2) ∈ H and

α =
2s − tH − tL

2s − tH − tL + y(tL + �)
×

∑m+n
b=a+y+2 pσ(b)

tH + h
, if σ(a + y + 2) ∈ L.
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Let σ′′ ∈ Σ∗ be a strategy such that σ′′(b) = σ(b) for 1 ≤ b ≤ a−1 and a+y+2 ≤ b ≤ m+n
and

σ′′(a+y) = i ∈ H, σ′′(a+y+1) = i+1 ∈ H, σ′′(a+b) = m+j+b+1 ∈ L, for 0 ≤ b ≤ y−1.

Then f(σ) < f(σ′′) if and only if∑y
b=1 pm+j+b

2s − tH − tL + y(tL + �)
<

pi

tH + h
, if σ(a − 1) ∈ H,

and ∑y
b=1 pm+j+b

y(tL + �)
+

2s − tH − tL
2s − tL + h

×
∑m+n

b=a+y+1 pσ(b)

y(tL + �)
<

pi

2s − tL + h
, if σ(a − 1) ∈ L,

and ∑y
b=1 pm+j+b

s − tL + y(tL + �)
+

s − tH
s + h

×
∑m+n

b=a+y+1 pσ(b)

s − tL + y(tL + �)
<

pi

s + h
, if a = 1.

Proof of Lemma 3.1A: First we note that for a > 1

f(σ(b), σ) = f(σ′(b), σ′) = f(σ′′(b), σ′′), for 1 ≤ b ≤ a − 1.

For other terms,

f(i, σ) = f(σ(a − 1), σ) + d(σ(a − 1), σ(a)) + h,

f(i + 1, σ) = f(σ(a − 1), σ) + d(σ(a − 1), σ(a)) + h + s + � + (y − 1)(tL + �) + s + h,

f(m + j + b, σ) = f(σ(a − 1), σ) + d(σ(a − 1), σ(a)) + h + s + � + (b − 1)(tL + �), for 1 ≤ b ≤ y,

f(i, σ′) = f(i, σ),
f(i + 1, σ′) = f(σ(a − 1), σ) + d(σ′(a − 1), σ′(a)) + h + tH + h,

f(m + j + b, σ′) = f(σ(a − 1), σ) + d(σ′(a − 1), σ′(a)) + h + tH

+ h + s + � + (b − 1)(tL + �), for 1 ≤ b ≤ y.

f(i, σ′′) = f(σ(a − 1), σ) + d(σ′′(a − 1), σ′′(a)) + � + (y − 1)(tL + �) + s + h,

f(i + 1, σ′′) = f(σ(a − 1), σ) + d(σ′′(a − 1), σ′′(a)) + � + (y − 1)(tL + �) + s + h + tH + h,

f(m + j + b, σ′′) = f(σ(a − 1), σ) + d(σ′′(a − 1), σ′′(a)) + � + (b − 1)(tL + �), for 1 ≤ b ≤ y.

For b ≥ a + y + 2,

f(σ(b), σ) − f(σ′(b), σ′) = f(σ(a + y + 1), σ) − f(σ′(a + y + 1), σ′)
+ d(σ(a + y + 1), σ(a + y + 2)) − d(σ′(a + y + 1), σ′(a + y + 2))

= f(i + 1, σ) − f(m + j + y, σ′) +

{
s − tL, if σ(a + y + 2) ∈ L,

tH − s, if σ(a + y + 2) ∈ H,

= s − tH +

{
s − tL, if σ(a + y + 2) ∈ L,

tH − s, if σ(a + y + 2) ∈ H,

=

{
2s − tH − tL, if σ(a + y + 2) ∈ L,

0, if σ(a + y + 2) ∈ H,
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So, noting that d(σ(a − 1), σ(a)) = d(σ′(a − 1), σ′(a)), it holds f(σ) < f(σ′) if and only if

pif(i, σ) + pi+1f(i + 1, σ) +
y∑

b=1

pm+j+bf(m + j + b, σ) +
∑

b≥a+y+2

pσ(b)f(σ(b), σ)

< pif(i, σ′) + pi+1f(i + 1,σ′) +
y∑

b=1

pm+j+bf(m + j + b, σ′) +
∑

b≥a+y+2

pσ′(b)f(σ′(b), σ′)

⇐⇒

pi+1{2s − tH − tL + y(tL + �)} + α{2s − tH − tL + y(tL + �)}(tH + h) <

y∑
b=1

pm+j+b(tH + h).

This implies the first half. On the other hand, f(σ) < f(σ′′) if and only if

pif(i, σ) + pi+1f(i + 1, σ) +
y∑

b=1

pm+j+bf(m + j + b, σ) +
∑

b≥a+y+2

pσ(b)f(σ(b), σ)

< pif(i, σ′′) + pi+1f(i + 1,σ′′) +
y∑

b=1

pm+j+bf(m + j + b, σ′′) +
∑

b≥a+y+2

pσ′′(b)f(σ′′(b), σ′′)

Here, we note that

d(σ(a − 1), σ(a)) =

{
tH , if σ(a − 1) ∈ H,

s, if σ(a − 1) ∈ L,

d(σ′′(a − 1), σ′′(a)) =

{
s, if σ′′(a − 1) ∈ H,

tL, if σ′′(a − 1) ∈ L.

Furthermore,

f(i, σ) − f(i, σ′′) =

{
tH + tL − 2s − y(tL + �), if σ(a − 1) ∈ H,

−y(tL + �), if σ(a − 1) ∈ L,

f(i + 1, σ) − f(i + 1, σ′′) =

{
0, if σ(a − 1) ∈ H,

2s − tL − tH , if σ(a − 1) ∈ L.

For 1 ≤ b ≤ y,

f(m + j + b, σ) − f(m + j + b, σ′′) =

{
h + tH , if σ(a − 1) ∈ H,

2s − tL + h, if σ(a − 1) ∈ L.

For b ≥ a + y + 2,

f(σ(b), σ) − f(σ′′(b), σ′′) = f(σ(a + y + 1), σ) − f(σ′′(a + y + 1), σ′′).

So we have the desired result when a > 1.
Let a = 1. We let f(σ(a − 1), σ) = 0, d(σ(a − 1), σ(a)) = 0, d(σ′(a − 1), σ′(a)) = 0 and
d(σ′′(a − 1), σ′′(a)) = 0. Then

f(i, σ) − f(i, σ′′) = −s + tL − y(tL + �),
f(i + 1, σ) − f(i + 1, σ′′) = s − tH ,

f(m + j + b, σ) − f(m + j + b, σ′′) = s + h, for 1 ≤ b ≤ y.
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So,

(s − tH)pi+1 + (s + h)
y∑

b=1

pm+j+b + (s − tH)
∑

b≥a+y+2

pσ(b) ≤ pi{s − tL + y(tL + �)}.

From this we have the desired result. �

By transposing H and L, h and �, and x and y, we have the next lemma. The proof is
similar to that of Lemma 3.1A, and we omit it.

Lemma 3.1B. Let σ ∈ Σ∗ be a strategy such that for 1 ≤ i ≤ n − 1 and 0 ≤ j ≤ m − x,

σ(a) = m + i ∈ L, σ(a + x + 1) = m + i + 1 ∈ L, σ(a + b) = j + b ∈ H, for 1 ≤ b ≤ x.

Let σ′ ∈ Σ∗ be a strategy such that

σ′(a) = m + i ∈ L, σ′(a + 1) = m + i + 1 ∈ L, σ′(a + b) = j + b − 1 ∈ H, for 2 ≤ b ≤ x + 1.

Then f(σ) < f(σ′) if and only if

pm+i+1

tL + �
+ β <

∑x
b=1 pj+b

2s − tH − tL + x(tH + h)
,

where β = 0 if σ(a + x + 2) ∈ L and

β =
2s − tH − tL

2s − tH − tL + x(tH + h)
×

∑m+n
b=a+x+2 pσ(b)

tL + �
, if σ(a + x + 2) ∈ H.

Let σ′′ ∈ Σ∗ be a strategy such that

σ′′(a+x) = m+i ∈ L, σ′′(a+x+1) = m+i+1 ∈ L, σ′′(a+b) = j+b+1 ∈ H, for 0 ≤ b ≤ x−1.

Then f(σ) < f(σ′′) if and only if∑x
b=1 pj+b

2s − tH − tL + x(tH + h)
<

pm+i

tL + �
, if σ(a − 1) ∈ L,

and ∑x
b=1 pj+b

x(tH + h)
+

2s − tH − tL
2s − tH + �

×
∑m+n

b=a+x+1 pσ(b)

x(tH + h)
<

pm+i

2s − tH + �
, if σ(a − 1) ∈ H,

and ∑x
b=1 pj+b

s − tH + x(tH + h)
+

s − tL
s + �

×
∑m+n

b=a+x+1 pσ(b)

s − tH + x(tH + h)
<

pi

s + �
, if a = 1.

Proof of Theorem 3.1. Noting that s − max{tH , tL} ≥ 0, α ≥ 0 and β ≥ 0, apply
Lemmas 3.1A and 3.1B repeatedly. �

The next corollary states that a priori probability must decrease whenever a switch occurs.
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Corollary 3.2. Assume σ ∈ Σ∗ is an optimal strategy. Suppose σ(i) ∈ H , σ(i + 1) ∈ L
and σ(i) < m. Then pσ(i) > pσ(i)+1. Similarly if σ(i) ∈ L, σ(i + 1) ∈ H and σ(i) < n, then
pσ(i) > pσ(i)+1.

Proof: Suppose σ(i) ∈ H , σ(i+1) ∈ L and σ(i) < m. There exists y such that σ(i+b) ∈ L
for 1 ≤ b ≤ y. Since σ(i) < m, we have i + y < m + n, and then σ(i + y + 1) ∈ H . By the
first half of Theorem 3.1, we see

pσ(i)

tH + h
>

pσ(i+y+1)

tH + h
,

noting 2s − tH − tL > 0. Since σ(i + y + 1) = σ(i) + 1, we have the first half. The second
half follows similarly. �

4 Observations. In this section we solve the problem when parameters of the model
have relations mutually.

4.1 An object is uniformly distributed. Assume p1 = · · · = pm = p and pm+1 =
· · · = pm+n = q. So

mp + nq = 1, p > 0, q > 0.

From Corollary 3.2 we see that either σH or σL is optimal.

f(σH) =
m∑

k=1

pkk(tH + h) − p1tH +
n∑

k=1

pm+k{(m − 1)tH + mh + s − tL + k(tL + �)}

= p(tH + h)
m(m + 1)

2
− ptH + q(tL + �)

n(n + 1)
2

+ qn{(m − 1)tH + mh + s − tL}.

On the other hand,

f(σL) =
n∑

k=1

pm+kk(tL + �) − pm+1tL +
m∑

k=1

pk{(n − 1)tL + n� + s − tH + k(tH + h)}

= p(tH + h)
m(m + 1)

2
+ q(tL + �)

n(n + 1)
2

− qtL + pm{(n − 1)tL + n� + s − tH}.

Hence

f(σH) < f(σL) ⇐⇒ mp

s − tL − tH + tL

n + m(tH + h)
>

nq

s − tH − tL + tH

m + n(tL + �)
.

Roughly speaking, the seeker must examine the nodes in H first if and only if the probability
density for H is greater than the probability density for L.

4.2 The traveling costs are the same. We assume s = tH = tL. For σ ∈ Σ∗, suppose
σ(i) ∈ H and σ(i + 1) ∈ L. Define τ ∈ Σ∗ by

τ(j) =

⎧⎪⎨
⎪⎩

σ(j), if j �= i, i + 1;
σ(i), if j = i + 1;
σ(i + 1), if j = i.
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Noting that s = tH = tL, we have

f(σ) < f(τ) ⇐⇒ pσ(i)

s + h
>

pσ(i+1)

s + �
.

When σ(i) ∈ L and σ(i + 1) ∈ H , in a similar way we have

f(σ) < f(τ) ⇐⇒ pσ(i)

s + �
>

pσ(i+1)

s + h
.

By the assumption on a priori probabilities, we know

p1

s + h
≥ · · · ≥ pm

s + h
, and

pm+1

s + �
≥ · · · ≥ pm+n

s + �
.

So, if σ ∈ Σ∗ is optimal, we must have

pσ(i)

s + cσ(i)
≥ pσ(i+1)

s + cσ(i+1)
, 1 ≤ ∀i ≤ m + n − 1.

4.3 The traveling costs are different. We assume the difference s − max{tH , tL} is
very large. By the necessary conditions in Theorem 3.1, we see an optimal strategy must
be either σH or σL. Then

f(σH) =
m∑

k=1

pkk(tH + h) − p1tH +
n∑

k=1

pm+k{(m − 1)tH + mh + s − tL + k(tL + �)}

= (tH + h)
m∑

k=1

pkk − p1tH + (tL + �)
n∑

k=1

kpm+k + {(m − 1)tH + mh + s − tL}
n∑

k=1

pm+k.

On the other hand,

f(σL) =
n∑

k=1

pm+kk(tL + �) − pm+1tL +
m∑

k=1

pk{(n − 1)tL + n� + s − tH + k(tH + h)}

= (tL + �)
n∑

k=1

pm+kk − pm+1tL + (tH + h)
m∑

k=1

pkk + {(n − 1)tL + n� + s − tH}
m∑

k=1

pk.

Hence

f(σH) < f(σL) ⇐⇒
∑m

k=1 pk

s − tH − tL + m(tH + h)
+

p1tH
γ

>

∑n
k=1 pm+k

s − tH − tL + n(tL + �)
+

pm+1tL
γ

,

where γ = {s− tH − tL +m(tH +h)}{s− tH − tL +n(tL + �)}. The seeker must examine the
nodes in H first if and only if the probability density for H is greater than the probability
density for L.

4.4 The examination cost for each node in H is large. Assume the examination
cost h for each node in H is very large. By the necessary condition in Theorem 3.1, we see
that σL is optimal.

5 A numerical example In this section we see difficulties in solving the problem in
general, by using a numerical example with m = n = 2. For simplicity assume tH = tL = t.
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We can calculate f(σ) for every σ ∈ Σ∗ = {1234, 1324, 1342, 3412, 3142, 3124}.

f(1234) = p1h + p2(t + 2h) + p3(s + t + 2h + �) + p4(s + 2t + 2h + 2�)
f(1324) = p1h + p2(2s + 2h + �) + p3(s + h + �) + p4(3s + 2h + 2�)
f(1342) = p1h + p2(t + 2s + 2h + 2�) + p3(s + h + �) + p4(t + s + h + 2�)
f(3412) = p1(t + s + h + 2�) + p2(2t + s + 2h + 2�) + p3� + p4(t + 2�)
f(3142) = p1(s + h + �) + p2(3s + 2h + 2�) + p3� + p4(2s + 2� + h)
f(3124) = p1(s + h + �) + p2(t + s + 2h + �) + p3� + p4(t + 2s + 2h + 2�)

Let

� = 1, t = 1, s = 2, p1 =
2p

3
, p2 =

p

3
, p3 =

2(1 − p)
3

, p4 =
1 − p

3
, and 0 ≤ p ≤ 1.

Then

f(1234) = 2h +
14
3

− p

3
(13 + 2h), f(1324) =

4h

3
+

14
3

− 3p, f(1342) = h +
11
3

+
p

3
(h − 4),

f(3412) =
5
3

+
p

3
(11 + 4h), f(3142) =

8
3

+
h

3
+ p(2 + h), f(3124) = 3 +

2h

3
+

p

3
(1 + 2h).

Let

DH ≡ min{f (1234), f(1324), f(1342)} and DL ≡ min{f(3412), f(3142), f(3124)}.

By an assumption of the model, we consider only the case : h ≥ 1 = �. Then

DH =

{
f(1234), if h < 3p−1

1−p ;
f(1342), if h > 3p−1

1−p .

DL =

{
f(3412), if h > 5p−2

1−p ;
f(3124), if h < 5p−2

1−p .

Noting that

f(1342) < f(3124) ⇐⇒ h <
5p − 2
1 − p

,

we have ⎧⎪⎨
⎪⎩

[1, 2, 3, 4], if 3p−1
1−p > h;

[1, 3, 4, 2], if 5p−2
1−p > h > 3p−1

1−p ;
[3, 4, 1, 2], if h > 5p−2

1−p .

The next diagram shows optimal strategies in the (p, h)-plane. The seeker must examine a
node in H first if and only if h < 5p−2

1−p . That is, if h is large, then the examination cost for
nodes in H = {1, 2} is large, and the seeker must examine nodes in L first. If p is large,
then the a priori probability for nodes in H is large, and the seeker must examine nodes in
H first. The order [1, 3, 4, 2] is an intermediate solution between [1, 2, 3, 4] and [3, 4, 1, 2].
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��� ��� ��� ���

��

��

��

	�


�

[1,2,3,4]

[3,4,1,2]
[1,3,4,2]

p

h

0.5

Figure 1: Optimal sequences

6 Remark on alternative formulation of the problem. Let’s consider a model:
Depending on the examination cost, the nodes are classified into two groups except for the
node 0. That is, H = {1, . . . , m} is the set of nodes with examination cost ci = h, i ∈ H
and L = {m + 1, . . . , m + n} is the set of nodes with examination cost ci = �, i ∈ L. Thus,
N = H ∪ L ∪ {0} and H ∩ L = ∅. We assume

h > � > 0.

Secondly, we assume that the graph is complete, E = N × N . This means that at each
movement of the seeker from a node i to another node j, it costs a traveling cost d(i, j) and
an examination cost cj . In this formulation we do not assume d(i, j) = d(j, i). We let

d(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sL, if i ∈ H, j ∈ L;
sH , if i ∈ L, j ∈ H ;
0, if i, j ∈ H ;
0, if i, j ∈ L;
t0H , if i = 0 and j ∈ H ;
t0L, if i = 0 and j ∈ L;
0, if i = j.

For a movement between different groups, the seeker must pay extra set-up cost sH or
sL. In each group, the seeker must pay only the examination cost. We assume that the
seeker should not return to the node 0. In this formulation, the seeker considers only
the examination costs in each group. This formulation is transformed into the previous
formulation by relations

h = tH + h, � = tL + �, sH = s − tH , sL = s − tL, t0H = −tH , t0L = −tL.
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