ON COMMUTATIVE BE-ALGEBRAS

ANDRZEJ WALENDZIAK

Received July 13, 2008

Abstract

In this paper we investigate the relationship between BE-algebras, implicative algebras, and J-algebras. Moreover, we define commutative BE-algebras and state that these algebras are equivalent to the commutative dual BCK-algebras.

1. Introduction

In 1967 J. C. Abbot introduced in [1] the concept of implication algebras as algebras connected with a propositional calculus. In [5] K. Iséki introduced a wide class of abstract algebras: BCK-algebras. Recently, R. A. Borzooei and S. Khosravi Shoar ([2]) showed that the implication algebras are equivalent to the dual implicative BCK-algebras. W. H. Cornish ([4]) introduced the condition (J) and proved the BCK-algebras satisfying (J) form a variety. In [7], as a generalization of a BCK-algebra, H. S. Kim and Y. H. Kim introduced the notion of a BE-algebra.

In this paper we show that any implication algebra is a BE-algebra and that every BEalgebra satisfies (J). Moreover, we define commutative BE-algebras and state that these algebras are equivalent to the commutative dual BCK-algebras.

2. Preliminaries

Definition 2.1. ([7]) An algebra $(X ; *, 1)$ of type (2,0) is called a BE-algebra if for all $x, y, z \in X$ the following identities hold:
(BE1) $x * x=1$,
(BE2) $\quad x * 1=1$,
(BE3) $1 * x=x$,
(BE4) $x *(y * z)=y *(x * z)$.

Lemma 2.2. ([7]) If $(X ; *, 1)$ is a BE-algebra, then $x *(y * x)=1$ for any $x, y \in X$.

Definition 2.3. ([8]) A dual BCK-algebra is an algebra $(X ; *, 1)$ of type $(2,0)$ satisfying (BE1), (BE2), and the following axioms:
(dBCK1) $x * y=y * x=1 \Longrightarrow x=y$,
(dBCK2) $(x * y) *((y * z) *(x * z))=1$,
(dBCK3) $\quad x *((x * y) * y)=1$.

[^0]Lemma 2.4. ([8], Theorem 2.5) Let $(X ; *, 1)$ be a dual BCK-algebra and $x, y, z \in X$. Then:
(a) $x *(y * z)=y *(x * z)$,
(b) $1 * x=x$.

From Lemma 2.4 we have
Proposition 2.5. Any dual BCK-algebra is a BE-algebra.
Example 2.6. Let \mathbb{N} be the set of all natural numbers and $*$ be the binary operation on \mathbb{N} defined by

$$
x * y=\left\{\begin{array}{lll}
y & \text { if } & x=1 \\
1 & \text { if } & x \neq 1
\end{array}\right.
$$

It is easy to see that $(\mathbb{N} ; *, 1)$ is a BE-algebra, but it is not a dual BCK-algebra.
Definition 2.7. ([1]) An algebra ($X ; *$) of type (2) is called an implication algebra if for all $x, y, z \in X$ the following identities hold:
(I1) $(x * y) * x=x$,
(I2) $(x * y) * y=(y * x) * x$,
(I3) $x *(y * z)=y *(x * z)$.
In any implication algebra $(X ; *), x * x=y * y$ for all $x, y \in X$. This was proved by W. Y. Chen and J. S. Oliveira [3]. Let 1 stand for the constant $x * x$. R. A. Borzooei and S. Khosravi Shoar proved the following result:

Proposition 2.8. ([2]) If $(X ; *)$ is an implication algebra, then $(X ; *, 1)$ is a dual $B C K$ algebra.

Propositions 2.8 and 2.5 give
Proposition 2.9. Any implication algebra is a BE-algebra.
Definition 2.10. ([6]) An algebra $(X ; *)$ consisting of a set X with a binary operation $*$ on X is said to be a J-algebra if
(J) $\quad x *(x *(y *(y * x)))=y *(y *(x *(x * y)))$
for all $x, y \in X$.
Proposition 2.11. Let $(X ; *, 1)$ be a BE-algebra. Then $(X ; *)$ is a J-algebra.
Proof. Let $x, y \in X$. By (BE4), Lemma 2.2, and (BE2) we have

$$
x *(x *(y *(y * x)))=x *(y *(x *(y * x)))=x *(y * 1)=x * 1=1 .
$$

Similarly,

$$
y *(y *(x *(x * y)))=y *(x *(y *(x * y)))=y *(x * 1)=y * 1=1 .
$$

Hence (J) holds, and therefore X is a J-algebra.

3. Commutative BE-algebras

Definition 3.1. Let $(X ; *, 1)$ be a BE-algebra or a dual BCK-algebra. We say that X is commutative if
(C) $(x * y) * y=(y * x) * x$
for all $x, y \in X$.
Example 3.2. Let $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$ and let $*$ be the binary operation of \mathbb{N}_{0} defined by

$$
x * y=\left\{\begin{array}{lll}
0 & \text { if } & x \geq y \\
y-x & \text { if } & y>x
\end{array}\right.
$$

Observe that $\left(\mathbb{N}_{0} ; *, 0\right)$ is a commutative BE-algebra. Obviously, $x * x=0, x * 0=0$, and $0 * x=x$ for all $x \in \mathbb{N}_{0}$. Thus (BE1)-(BE3) hold. Let $x, y, z \in \mathbb{N}_{0}$. To prove (BE4) we consider two cases.
Case 1: $x+y<z$.
Then $x<z$ and $y<z$. Hence $x * z=z-x$ and $y * z=z-y$. Therefore

$$
\begin{aligned}
x *(y * z) & =x *(z-y)=z-y-x=(z-x)-y \\
& =y *(z-x)=y *(x * z) .
\end{aligned}
$$

Case 2: $x+y \geq z$.
Then $x \geq z-y \geq y * z$. From this we obtain $x *(y * z)=0$. Similarly, since $y \geq z-x \geq x * z$, we conclude that $y *(x * z)=0$. Consequently, $x *(y * z)=y *(x * z)$.Thus $\left(\mathbb{N}_{0} ; *, 0\right)$ is a BE-algebra.
Now we shall prove that $\left(\mathbb{N}_{0} ; *, 0\right)$ is commutative. Without loss of generality we can assume that $x \geq y$. Then $(x * y) * y=0 * y=y$ and $(y * x) * x=(x-y) * x=x-(x-y)=y$. Hence $(x * y) * y=(y * x) * x$ and we see that $\left(\mathbb{N}_{0} ; *, 0\right)$ is a commutative BE-algebra.
Proposition 3.3. If $(X ; *, 1)$ is a commutative BE-algebra, then for all $x, y \in X$,

$$
x * y=1 \quad \text { and } \quad y * x=1 \quad \text { imply } \quad x=y .
$$

Proof. Let $x, y \in X$ and suppose that $x * y=y * x=1$. Then

$$
x=1 * x=(y * x) * x=(x * y) * y=1 * y=y
$$

Theorem 3.4. If $(X ; *, 1)$ is a commutative BE-algebra, then $(X ; *, 1)$ is a dual BCKalgebra.
Proof. Proposition 3.3 yields (dBCK1). Now let $x, y, z \in X$. Applying (BE4) and (C) we have

$$
(y * z) *(x * z)=x *[(y * z) * z]=x *[(z * y) * y]=(z * y) *(x * y)
$$

Hence

$$
(x * y) *[(y * z) *(x * z)]=(x * y) *[(z * y) *(x * y)]
$$

Lemma 2.2 now shows that $(x * y) *[(y * z) *(x * z)]=1$, and therefore (dBCK2) holds. Moreover, by (BE4) and (BE1), $x *((x * y) * y)=(x * y) *(x * y)=1$. From this we have (dBCK3), and consequently, X is a dual BCK-algebra.

By Proposition 2.5 and Theorem 3.4 we have
Corollary 3.5. $(X ; *, 1)$ is a commutative BE-algebra if and only if it is a commutative dual BCK-algebra.

Definition 3.6. Let $(X ; *, 1)$ be a BE-algebra. We define the binary operation $"+"$ on X as the following: for any $x, y \in X$

$$
x+y=(x * y) * y
$$

Clearly, X is a commutative BE-algebra if and only if $x+y=y+x$ for all $x, y \in X$.
Lemma 3.7. Let $(X ; *, 1)$ be a commutative BE-algebra. Then for all $x, y, z \in X$:
(a) $x *(x+y)=1$,
(b) $x * y=y * z=1 \Longrightarrow x * z=1$,
(c) $x * y=1 \Longrightarrow(x+z) *(y+z)=1$,
(d) $x * z=y * z=1 \Longrightarrow(x+y) * z=1$.

Proof. (a) By Theorem 3.4, X is a dual BCK-algebra. From (dBCK3) we obtain (a).
(b) Applying (dBCK2) and Lemma 2.4 (b) we have (b).
(c) To prove (c), let $x * y=1$. From (dBCK2) we deduce that $(y * z) *(x * z)=1$. Again using (dBCK2) we get $[(x * z) * z] *[(y * z) * z]=1$, i.e. $(x+z) *(y+z)=1$.
(d) To prove (d), let $x * y=y * z=1$. From (c) we conclude that $(x+y) *(y+z)=1$ and $(y+z) *(z+z)=1$. By (b), $(x+y) *(z+z)=1$, and hence $(x+y) * z=1$.

Proposition 3.8. If $(X ; *, 1)$ is a commutative BE-algebra, then $(X ;+)$ is a semilattice.
Proof. Obviously $x+x=x$ and $x+y=y+x$ for all $x, y \in X$. We will now prove that + is associative. Let $x, y, z \in X$. From Lemma 3.7 (a) we have $x *(x+y)=1$ and $(x+y) *[(x+y)+z]=1$. Therefore

$$
\begin{equation*}
x *[(x+y)+z]=1 . \tag{1}
\end{equation*}
$$

Since $y *(x+y)=1$, Lemma 3.7 (c) shows that

$$
\begin{equation*}
(y+z) *[(x+y)+z]=1 . \tag{2}
\end{equation*}
$$

By Lemma 3.7 (d), from (1) and (2) we obtain

$$
\begin{equation*}
[x+(y+z)] *[(x+y)+z]=1 \tag{3}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
[(x+y)+z] *[x+(y+z)]=1 \tag{4}
\end{equation*}
$$

From (3) and (4) it follows by (dBCK1) that $(x+y)+z=x+(y+z)$.

References

[1] J. C. Abbott, Semi-boolean algebras, Mate. Vesnik 4 (1967), 177-198.
[2] R. A. Borzooei and S. Khosravi Shoar, Implication algebras are equivalent to the dual implicative BCKalgebras, Scientiae Mathematicae Japonicae 63 (2006), 429-431.
[3] W. Y. Chen and J. S. Oliveira, Implication Algebras and the Metropolis-Rota Axioms for Cubic Lattices, J. Algebra 171 (1995), 383-396.
[4] W. H. Cornish, A large variety of BCK-algebras, Math. Japonica 26 (1981), 339-344.
[5] K. Iséki, An algebra related with a propositional calculus, Proc. Japan. Acad. 42 (1966), 26-29.
[6] K. Iséki, H. S. Kim, and J. Neggers, On J-algebras, Scientiae Mathematicae Japonicae 63 (2006), 413-419.
[7] H. S. Kim and Y. H. Kim, On BE-algebras, Scientiae Mathematicae Japonicae 66 (2007), 113-128.
[8] K. H. Kim and Y. H. Yon, Dual BCK-algebra and MV-algebra, Scientiae Mathematicae Japonicae 66 (2007), 247-253.

Andrzej Walendziak, Institute of Mathematics and Physics, University of Podlasie, 3 Maja 54, 08-110 Siedlce, Poland

E-mail address: walent@interia.pl

[^0]: 2000 Mathematics Subject Classification. 06F35.
 Key words and phrases. BE-algebras, dual BCK-algebras, implicative algebras, J-algebras, commutative BE-algebras.

