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Abstract. In this paper we investigate the relationship between BE-algebras, implica-
tive algebras, and J-algebras. Moreover, we define commutative BE-algebras and state
that these algebras are equivalent to the commutative dual BCK-algebras.

1. Introduction

In 1967 J. C. Abbot introduced in [1] the concept of implication algebras as algebras
connected with a propositional calculus. In [5] K. Iséki introduced a wide class of abstract
algebras: BCK-algebras. Recently, R. A. Borzooei and S. Khosravi Shoar ([2]) showed
that the implication algebras are equivalent to the dual implicative BCK-algebras. W. H.
Cornish ([4]) introduced the condition (J) and proved the BCK-algebras satisfying (J) form
a variety. In [7], as a generalization of a BCK-algebra, H. S. Kim and Y. H. Kim introduced
the notion of a BE-algebra.

In this paper we show that any implication algebra is a BE-algebra and that every BE-
algebra satisfies (J). Moreover, we define commutative BE-algebras and state that these
algebras are equivalent to the commutative dual BCK-algebras.

2. Preliminaries

Definition 2.1. ([7]) An algebra (X ; ∗, 1) of type (2, 0) is called a BE-algebra if for all
x, y, z ∈ X the following identities hold:
(BE1) x ∗ x = 1,
(BE2) x ∗ 1 = 1,
(BE3) 1 ∗ x = x,
(BE4) x ∗ (y ∗ z) = y ∗ (x ∗ z).

Lemma 2.2. ([7]) If (X ; ∗, 1) is a BE-algebra, then x ∗ (y ∗ x) = 1 for any x, y ∈ X.

Definition 2.3. ([8]) A dual BCK-algebra is an algebra (X ; ∗, 1) of type (2, 0) satisfying
(BE1), (BE2), and the following axioms:
(dBCK1) x ∗ y = y ∗ x = 1 =⇒ x = y,
(dBCK2) (x ∗ y) ∗ ((y ∗ z) ∗ (x ∗ z)) = 1,
(dBCK3) x ∗ ((x ∗ y) ∗ y) = 1.
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Lemma 2.4. ([8], Theorem 2.5) Let (X ; ∗, 1) be a dual BCK-algebra and x, y, z ∈ X. Then:
(a) x ∗ (y ∗ z) = y ∗ (x ∗ z),
(b) 1 ∗ x = x.

From Lemma 2.4 we have

Proposition 2.5. Any dual BCK-algebra is a BE-algebra.

Example 2.6. Let N be the set of all natural numbers and ∗ be the binary operation on
N defined by

x ∗ y =
{

y if x = 1
1 if x �= 1.

It is easy to see that (N; ∗, 1) is a BE-algebra, but it is not a dual BCK-algebra.

Definition 2.7. ([1]) An algebra (X ; ∗) of type (2) is called an implication algebra if for
all x, y, z ∈ X the following identities hold:
(I1) (x ∗ y) ∗ x = x,
(I2) (x ∗ y) ∗ y = (y ∗ x) ∗ x,
(I3) x ∗ (y ∗ z) = y ∗ (x ∗ z).

In any implication algebra (X ; ∗), x ∗ x = y ∗ y for all x, y ∈ X . This was proved by W.
Y. Chen and J. S. Oliveira [3]. Let 1 stand for the constant x ∗ x. R. A. Borzooei and S.
Khosravi Shoar proved the following result:

Proposition 2.8. ([2]) If (X ; ∗) is an implication algebra, then (X ; ∗, 1) is a dual BCK-
algebra.

Propositions 2.8 and 2.5 give

Proposition 2.9. Any implication algebra is a BE-algebra.

Definition 2.10. ([6]) An algebra (X ; ∗) consisting of a set X with a binary operation ∗
on X is said to be a J-algebra if
(J) x ∗ (x ∗ (y ∗ (y ∗ x))) = y ∗ (y ∗ (x ∗ (x ∗ y)))
for all x, y ∈ X.

Proposition 2.11. Let (X ; ∗, 1) be a BE-algebra. Then (X ; ∗) is a J-algebra.

Proof. Let x, y ∈ X . By (BE4), Lemma 2.2, and (BE2) we have

x ∗ (x ∗ (y ∗ (y ∗ x))) = x ∗ (y ∗ (x ∗ (y ∗ x))) = x ∗ (y ∗ 1) = x ∗ 1 = 1.

Similarly,

y ∗ (y ∗ (x ∗ (x ∗ y))) = y ∗ (x ∗ (y ∗ (x ∗ y))) = y ∗ (x ∗ 1) = y ∗ 1 = 1.

Hence (J) holds, and therefore X is a J-algebra.
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3. Commutative BE-algebras

Definition 3.1. Let (X ; ∗, 1) be a BE-algebra or a dual BCK-algebra. We say that X is
commutative if
(C) (x ∗ y) ∗ y = (y ∗ x) ∗ x
for all x, y ∈ X.

Example 3.2. Let N0 = N ∪ {0} and let ∗ be the binary operation of N0 defined by

x ∗ y =
{

0 if x ≥ y
y − x if y > x.

Observe that (N0; ∗, 0) is a commutative BE-algebra. Obviously, x ∗ x = 0, x ∗ 0 = 0, and
0 ∗ x = x for all x ∈ N0. Thus (BE1)–(BE3) hold. Let x, y, z ∈ N0. To prove (BE4) we
consider two cases.
Case 1: x + y < z.
Then x < z and y < z. Hence x ∗ z = z − x and y ∗ z = z − y. Therefore

x ∗ (y ∗ z) = x ∗ (z − y) = z − y − x = (z − x) − y
= y ∗ (z − x) = y ∗ (x ∗ z).

Case 2: x + y ≥ z.
Then x ≥ z−y ≥ y∗z. From this we obtain x∗(y∗z) = 0. Similarly, since y ≥ z−x ≥ x∗z,
we conclude that y ∗ (x ∗ z) = 0. Consequently, x ∗ (y ∗ z) = y ∗ (x ∗ z).Thus (N0; ∗, 0) is a
BE-algebra.
Now we shall prove that (N0; ∗, 0) is commutative. Without loss of generality we can assume
that x ≥ y. Then (x ∗ y) ∗ y = 0 ∗ y = y and (y ∗ x) ∗ x = (x − y) ∗ x = x − (x − y) = y.
Hence (x ∗ y) ∗ y = (y ∗ x) ∗ x and we see that (N0; ∗, 0) is a commutative BE-algebra.

Proposition 3.3. If (X ; ∗, 1) is a commutative BE-algebra, then for all x, y ∈ X,

x ∗ y = 1 and y ∗ x = 1 imply x = y.

Proof. Let x, y ∈ X and suppose that x ∗ y = y ∗ x = 1. Then

x = 1 ∗ x = (y ∗ x) ∗ x = (x ∗ y) ∗ y = 1 ∗ y = y.

Theorem 3.4. If (X ; ∗, 1) is a commutative BE-algebra, then (X ; ∗, 1) is a dual BCK-
algebra.

Proof. Proposition 3.3 yields (dBCK1). Now let x, y, z ∈ X. Applying (BE4) and (C) we
have

(y ∗ z) ∗ (x ∗ z) = x ∗ [(y ∗ z) ∗ z] = x ∗ [(z ∗ y) ∗ y] = (z ∗ y) ∗ (x ∗ y).

Hence

(x ∗ y) ∗ [(y ∗ z) ∗ (x ∗ z)] = (x ∗ y) ∗ [(z ∗ y) ∗ (x ∗ y)].

Lemma 2.2 now shows that (x ∗ y) ∗ [(y ∗ z) ∗ (x ∗ z)] = 1, and therefore (dBCK2) holds.
Moreover, by (BE4) and (BE1), x ∗ ((x ∗ y) ∗ y) = (x ∗ y) ∗ (x ∗ y) = 1. From this we have
(dBCK3), and consequently, X is a dual BCK-algebra.

By Proposition 2.5 and Theorem 3.4 we have

Corollary 3.5. (X ; ∗, 1) is a commutative BE-algebra if and only if it is a commutative
dual BCK-algebra.
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Definition 3.6. Let (X ; ∗, 1) be a BE-algebra. We define the binary operation ”+” on X
as the following: for any x, y ∈ X

x + y = (x ∗ y) ∗ y.

Clearly, X is a commutative BE-algebra if and only if x + y = y + x for all x, y ∈ X .

Lemma 3.7. Let (X ; ∗, 1) be a commutative BE-algebra. Then for all x, y, z ∈ X :
(a) x ∗ (x + y) = 1,
(b) x ∗ y = y ∗ z = 1 =⇒ x ∗ z = 1,
(c) x ∗ y = 1 =⇒ (x + z) ∗ (y + z) = 1,
(d) x ∗ z = y ∗ z = 1 =⇒ (x + y) ∗ z = 1.

Proof. (a) By Theorem 3.4, X is a dual BCK-algebra. From (dBCK3) we obtain (a).
(b) Applying (dBCK2) and Lemma 2.4 (b) we have (b).
(c) To prove (c), let x ∗ y = 1. From (dBCK2) we deduce that (y ∗ z) ∗ (x ∗ z) = 1. Again

using (dBCK2) we get [(x ∗ z) ∗ z] ∗ [(y ∗ z) ∗ z] = 1, i.e. (x + z) ∗ (y + z) = 1.
(d) To prove (d), let x ∗ y = y ∗ z = 1. From (c) we conclude that (x + y) ∗ (y + z) = 1

and (y + z) ∗ (z + z) = 1. By (b), (x + y) ∗ (z + z) = 1, and hence (x + y) ∗ z = 1.

Proposition 3.8. If (X ; ∗, 1) is a commutative BE-algebra, then (X ; +) is a semilattice.

Proof. Obviously x + x = x and x + y = y + x for all x, y ∈ X . We will now prove that
+ is associative. Let x, y, z ∈ X . From Lemma 3.7 (a) we have x ∗ (x + y) = 1 and
(x + y) ∗ [(x + y) + z] = 1. Therefore

x ∗ [(x + y) + z] = 1.(1)

Since y ∗ (x + y) = 1, Lemma 3.7 (c) shows that

(y + z) ∗ [(x + y) + z] = 1.(2)

By Lemma 3.7 (d), from (1) and (2) we obtain

[x + (y + z)] ∗ [(x + y) + z] = 1.(3)

Similarly,

[(x + y) + z] ∗ [x + (y + z)] = 1.(4)

From (3) and (4) it follows by (dBCK1) that (x + y) + z = x + (y + z).
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