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Abstract. In this paper we develop potential theory on hypergroups and study contrac-
tion semigroups on hypergroups, we state and prove a necessary and sufficient condition
that the domain of zero-resolvent or the domain of potential operator of {Pt}t>0 is dense
in L2(K).

1. Introduction and Notation

Let K be a commutative locally compact hypergroup. We denote by M(K) the space of
all regular complex-valued Borel measures on K, by M+(K) the subset of positive measures
in M(K), and by δx the Dirac measure at the point x. The closure of any A ⊆ K is denoted
by Ac.

First we recall the definition and basic properties of a hypergroup. The main references
are [2] and [6]. You can see also [5] and [8] for more properties of hypergroups.

Definition 1.1. Let K be a locally compact Hausdorff space. The space K is a hyper-
group if there exists a binary mapping (x, y) �→ δx ∗ δy from K ×K into M+(K) satisfying
the following conditions,
(1) The mapping (δx, δy) �→ δx ∗ δy extends to a bilinear associative operator ∗ from
M(K) ×M(K) into M(K) such that∫

K

fd(µ ∗ ν) =
∫
K

∫
K

∫
K

fd(δx ∗ δy)dµ(x)dν(y)

for all continuous functions f on K vanishing at infinity.
(2) For each x, y ∈ K the measure δx ∗ δy is a probability measure with compact support.
(3) The mapping (µ, ν) �→ µ ∗ ν is continuous from M+(K) ×M+(K) into M+(K); the
topology on M+(K) being the cone topology.
(4) There exists e ∈ K such that δe ∗ δx = δx = δx ∗ δe for all x ∈ K .
(5) There exists a homeomorphism involution x �→ x− from K onto K such that, for all
x, y ∈ K, we have (δx ∗ δy)− = δy− ∗ δx− where for µ ∈M(K), µ− is defined by∫

K

f(t)dµ−(t) =
∫
K

f(t−)dµ(t),

and also,

e ∈ supp(δx ∗ δy) if and only if y = x−

where supp(δx ∗ δy) is the support of the measure δx ∗ δy.
(6) The mapping (x, y) �→ supp(δx ∗ δy) is continuous from K ×K into the space C(K) of
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compact subsets of K, where C(K) is given the topology whose subbasis is given by all

CU,V = {A ∈ C(K) : A ∩ U �= ∅ and A ⊆ V }
where U , V are open subsets of K.

Note that δx ∗ δy is not necessarily a Dirac measure. A hypergroup K is commutative
if δx ∗ δy = δy ∗ δx for all x, y in K. Let ’s recall some properties of locally compact
commutative hypergroups. Such a hypergroup K carries a Haar measure m such that
δx ∗ m = m for all x ∈ K [11]. In any commutative hypergroup K we have m = m−

( [6], 5.3). Let f, g be Borel functions on K and µ ∈ M(K). For any x, y ∈ K we denote
f̄(x) = f(x), f−(x) = f(x−), f̃(x) = f(x−) and pos(f) = {x ∈ K : f(x) > 0}, and define
fx(y) = f(x ∗ y) :=

∫
K
fd(δx ∗ δy). Also we define

(µ ∗ f)(x) :=
∫
K

f(y− ∗ x) dµ(y) and (f ∗ g)(x) :=
∫
K

f(x ∗ y)g(y−) dm(y),

where x ∈ K. For any subsets A,B ofK, we denote A∗B =
⋃{supp(δx∗δy) : x ∈ A, y ∈ B}

and A− = {x− : x ∈ K}. A non-empty closed subset E of K is a subhypergroup of K if
E− = E and E ∗ E ⊆ E.

A complex-valued continuous function ξ on K is said to be multiplicative if ξ(x∗y) =
ξ(x)ξ(y) holds for all x, y ∈ K. The space of all multiplicative functions on K is denoted
by Xb(K). A nonzero multiplicative function ξ on K is called a character if ξ(x−) = ξ(x)
for all x in K. The dual K̂ of K is the locally compact Hausdorff space of all characters
with the topology of uniform convergence on compacta. In general K̂ is not necessarily
a hypergroup. A hypergroup K is called strong if its dual K̂ is also a hypergroup with
complex conjugation as involution, pointwise product as convolution, that is

η(x)χ(x) =
∫
K̂

ξ(x) dδη ∗ δχ(ξ)

for all η, χ ∈ K̂ and x ∈ K, and the constant function 1 as the identity element.
We denote L1(K) = L1(K,m) and L1(K̂) = L1(K̂, π) where π is the Plancherel measure

on K̂ associated with m.
For any f ∈ L1(K) and µ ∈M(K), the Fourier-Stieltjes transform µ̂ of µ and the Fourier

transform f̂ of f are defined by

µ̂(ξ) =
∫
K

ξ(t)dµ(t) and f̂(ξ) =
∫
K

ξ(t)f(t)dm(t),

where ξ ∈ K̂.
For any k ∈ L1(K̂) and σ ∈ M(K̂), the inverse Fourier transform ǩ and σ̌ of k and σ,

respectively, are defined by

ǩ(x) =
∫
K̂

ξ(x)k(ξ) dπ(ξ) and σ̌(x) =
∫
K̂

ξ(x) dσ(ξ),

where x ∈ K.

2. The Periodicity on Hypergroups

Definition 2.1. A measure µ on K is called periodic with period p ∈ K if δp ∗ µ = µ.
The set of all periods of µ is denoted by Per(µ). We shall show that Per(µ) is a closed
subhypergroup of K.

Let f be a continuous function on K. An element p ∈ K is called a period of f if
δp ∗ f = f . Similarly the set of all periods of φ is denoted by Per(φ)
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We shall see that for every continuous bounded positive definite function φ on K and
any µ ∈M(K), Per(φ) and Per(µ) are closed subhypergroups of K.

Definition 2.2. Let A ⊆ K, B ⊆ K̂. We denote A⊥ = {ξ ∈ K̂ : ξ(x) = 1 for all x ∈ A},
B⊥ = {x ∈ K : ξ(x) = 1 for all ξ ∈ B}.
B⊥ is a subhypergroup of K and if K is a strong hypergroup, then A⊥ is a subhyper-

group of K̂ [9].

Definition 2.3. A measure µ ∈ M(K) is called shift-bounded if µ ∗ f ∈ Cb(K) for all
f ∈ Cc(K), and is called weakly shift-bounded if µ ∗ f ∗ f̃ ∈ Cb(K) for all f ∈ Cc(K).

Remark. Clearly if µ is shift-bounded, then µ is weakly shift-bounded but the con-
verse is not true in general ( [2], 1.2.32). If K is a locally compact group, then µ is a
positive definite measure (i.e.

∫
K
f ∗ f̃dµ ≥ 0 for all f ∈ Cc(K)) if and only if µ ∗ f ∗ f̃

is a continuous positive definite function ( [1], proposition 4.4). This result is also true
for a hypergroup K. As a consequence, in the group case every positive definite measure
is weakly shift-bounded ( [1], 4.4) and this is not the case for hypergroups. For instance
(Z+, ∗(Qn)) is a polynomial hypergroup with semicharacters χx(n) = Qn(x) ( [2], Theorem
3.2.12), and χxm is positive definite for all x ∈ R, but for x > x0, χxm is not shift-bounded.

For every weakly shift-bounded positive definite measure µ on M(K) there is a unique
positive measure σ in M(K̂) such that∫

K

f ∗ f̃dµ =
∫
K̂

|(f−)ˆ|2 dσ (f ∈ Cc(K)).

The measure σ has the following properties
(i)

∫ |f̂ |2dσ <∞
(ii) (µ ∗ f ∗ f̃)(x) =

∫
K̂
ξ(x)|f̂ (ξ)|2dσ(ξ)

(iii) (µ ∗ f ∗ g̃)(x) =
∫
K̂
ξ(x)f̂ (ξ)ĝ(ξ)dσ(ξ),

where f, g ∈ Cc(K) and x ∈ K. The measure σ is called the associated measure of µ [2].

Lemma 2.4. Let U be a compact neighborhood of identity e in K and {Vi} be a
neighborhood base at e included in U . There is a bounded approximate identity {ki} in
L1(K) satisfying ki ∈ C+

c (K), ‖ki‖1 = 1, supp(ki) ⊆ Vi, k̂i ∈ L1
+(K̂) and limi k̂i = 1

uniformly on compact subsets of K̂.

Proof. Refer to Theorem 2.2.28 in [2] page 88.

Theorem 2.5. Let K be a commutative strong hypergroup and µ be a weakly shift-
bounded and positive definite measure on K with associated measure σ. For every γ in K̂
the measure γµ is also a positive definite measure with associated measure δγ ∗ σ.

Note that the proof of the theorem in the group case is based on (fg)x = fxgx which
does not hold for hypergroups. So our proof is completely different (c.f. [1], Proposition
4.10).
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Proof. Let g be in C+
c (K) and put h− := g ∗ g̃. For each f ∈ Cc(K) we have

∫
K

[γ(f ∗ f̃) ∗ h(x)]dµ(x)

=
∫
K

∫
K

γ(y)(f ∗ f̃)(y)h(x ∗ y−) dm(y)dµ(x)

=
∫
K

γ(y)(f ∗ f̃)(y)
∫
K

h(x ∗ y−) dµ(x)dm(y)

=
∫
K

γ(y)(f ∗ f̃)(y)(µ ∗ h−)(y) dm(y)

=
∫
K

γ(y)(f ∗ f̃)(y)(µ ∗ g ∗ g̃)(y) dm(y)

=
∫
K

∫
K̂

γ(y)(f ∗ f̃)(y)ξ(y)|ĝ(ξ)|2 dσ(ξ)dm(y)

=
∫
K̂

∫
K̂

|ĝ(ξ)|2
∫
K

(f ∗ f̃)(y)η(y) dm(y)dδγ ∗ δξ(η)dσ(ξ)

=
∫
K̂

∫
K̂

|ĝ(ξ)|2
∫
K

f(y)(η ∗ (f̃)−)(y) dm(y)dδγ ∗ δξ(η)dσ(ξ) ([6], 5.5O)

=
∫
K̂

∫
K̂

|ĝ(ξ)|2
∫
K

f(y)(η ∗ f̄)(y) dm(y)dδγ ∗ δξ(η)dσ(ξ)

=
∫
K̂

∫
K̂

|ĝ(ξ)|2
∫
K

∫
K

(ηf)(y)(ηf)(x−) dm(x)dm(y)dδγ ∗ δξ(η)dσ(ξ)

=
∫
K̂

∫
K̂

|ĝ(ξ)|2(ηf )̂(1)(ηf )̂(1) dδγ ∗ δξ(η)dσ(ξ)

=
∫
K̂

∫
K̂

|ĝ(ξ)|2|(ηf )̂(1)|2 dδγ ∗ δξ(η)dσ(ξ).

Now if we put j(η) = |(ηf )̂(1)|2 then since j(γ ∗ ξ) =
∫
K̂
j(η) d(δγ ∗ δξ)(η) the last integral

is equal to∫
K̂

∫
K̂

|ĝ(ξ)|2j(η) dσ(ξ) =
∫
K̂

|ĝ(ξ)|2j(γ ∗ ξ) dσ(ξ) =
∫
K̂

|ĝ(ξ)|2jγ(ξ) dσ(ξ).

Now we replace g by ki in the above relations (the net {ki} has been introduced in Lemma
2.4). Consider h ∈ C+

c (K) such that h ≡ ‖f‖∞ on the compact set supp(f) ∗ U , where
U is a compact neighborhood of the identity e as in Lemma 2.4. By ( [6], 6.2E) we have
‖ |f | ∗ ki‖∞ ≤ ‖f‖∞ ‖ki‖1 = ‖f‖∞. Then

|γ(f ∗ f̃) ∗ h| = |γ(f ∗ f̃) ∗ ki ∗ k−i | ≤ (|f | ∗ ki) ∗ (|f | ∗ ki)− ≤ h ∗ h− ∈ L1(K,µ).

On the other hand for any ξ ∈ K̂,

|k̂i(ξ)| ≤
∫
K

|ξ(x)| ki(x) dm(x) ≤ ‖ki‖1 = 1.

Then for any ξ ∈ K̂, | |k̂i(ξ)|2jγ(ξ)| ≤ jγ(ξ). Similar to the above relations we also have∫
K̂

jγ(ξ) dσ(ξ) =
∫
K

∫
K̂

γ(y)(f ∗ f̃)(y)ξ(y) dσ(ξ)dm(y)

=
∫
K

γ(y)(f ∗ f̃)(y)σ̌(y) dm(y) <∞,

because σ̌ ∈ C(K) and so that γ(f ∗ f̃)σ̌ ∈ Cc(K). So jγ ∈ L1(K̂, σ).
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Therefore we can apply the dominated convergence theorem on two sides of the equality∫
K

γ(f ∗ f̃) ∗ (ki ∗ k̃i)dµ =
∫
K̂

|k̂i|2jγ dσ,

and so by limiting,∫
K

γ(f ∗ f̃)dµ =
∫
K̂

jγ dσ

=
∫
K̂

(δγ− ∗ j) dσ

=
∫
K̂

j d(δγ ∗ σ) ( [6], Theorem 4.2H).

But since (ηf )̂(1) =
∫
K f(x)η(x) dm(x) =

∫
K f(x−)η(x−) dm(x) = (f−)̂(η), we have

j(η) = |(ηf )̂(1)|2 = |(f−)̂(η)|2.
Thus ∫

K

f ∗ f̃ d(γµ) =
∫
K̂

|(f−)̂|2 d(δγ ∗ σ).

This completes the proof.

Corollary 2.6. Let µ be a weakly shift-bounded positive definite measure on K with
associated measure σ. Then Per(σ) = supp(µ)⊥.

Proof. Let γ ∈ K̂. By Theorem 2.5 the measure associated with γµ is δγ ∗ σ. Then
γ ∈ Per(σ) if and only if the measure associated with γµ is σ. But the mapping taking a
weakly shift-bounded positive definite measure into its associated measure is injective ( [2],
Corollary 4.3.11), so γ ∈ Per(σ) if and only if γµ = µ, and this is equivalent with γ being
1 on the support of µ.

A matrix A = (aij) of complex numbers is called positive hermitian if
n∑

i,j=1

aijcicj ≥ 0

for each complex numbers c1, c2, . . . , cn.
A continuous function φ : K → C is called

(i) positive definite if the matrix (φ(xi ∗ x−j )) is positive hermitian for every x1, x2, . . . , xn
in K; and
(ii) negative definite if the matrix (φ(xi) + φ(xj) − φ(xi ∗ x−j )) is positive hermitian for
every x1, x2, . . . , xn in K.

By the Bochner theorem every bounded positive definite function φ on K is associated
with a measure σ ∈M+(K) such that φ = σ̌.

The following theorem has been established in ( [2], Proposition 5.2.40) under the con-
dition that K is strong. Here we prove it with a completely different technique for commu-
tative hypergroups.

Theorem 2.7. Let σ ∈ M+(K) be the measure associated with a bounded positive
definite function φ on K. Then

Per(φ) = supp(σ)⊥ = {p ∈ K : φ(p) = φ(e)}.
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Proof. Since φ = σ̌, p ∈ Per(φ) if and only if σ̌ = δp ∗ σ̌. For any x ∈ K,

(δp ∗ σ̌)(x) = (δ̂pσ)̌(x) =
∫
K̂

ξ(x)δ̂p(ξ) dσ(ξ) = ξ(p)
∫
K̂

ξ(x) dσ(ξ) = ξ(p)σ̌(x).

By injectivity of the inverse Fourier transform, this implies that p ∈ Per(φ) if and only if
ξ(p) = 1 for each ξ ∈ supp(σ). Therefore Per(φ) = supp(σ)⊥.

To prove the second equality we proceed as follows:
If φ(e) = 0, since for a bounded positive definite function φ we have ‖φ‖∞ = φ(e)

( [6], Theorem 11.1E), φ ≡ 0 and the second equality trivially holds. Let φ(e) �= 0 (and
so φ(e) > 0). If p ∈ Per(φ) evidently we have φ(p) = φ(p− ∗ e) = φ(e) = φ(e), since
positive definity of φ implies that φ(p−) = φ(p). Conversely let φ(p) = φ(e). By inequality
2|φ(x)| ≤ φ(e) + φ(x ∗ x−) (x ∈ K) ( [2], Lemma 4.1.3(f)) we have φ(e) ≤ φ(p ∗ p−), and
by ‖φ‖∞ = φ(e) we have φ(p ∗ p−) ≤ φ(e). Thus φ(p ∗ p−) = φ(e). Let y ∈ K and put
k = φ(e), l = φ(y), m = φ(p ∗ y−), n = φ(y ∗ y−). Since φ is positive definite, the matrix⎛

⎝k k l
k k m
l̄ m̄ n

⎞
⎠

is positive hermitian, and so its determinant, that is −k |m − l|2, is non-negative. Then
since k > 0, m = l. Hence for any y ∈ K, φ(p− ∗ y) = φ(y), i.e. p ∈ Per(φ).

Proposition 2.8. For every bounded measure µ of K we have
(i)Per(µ) = supp(µ̂)⊥,
(ii)Per(µ̂) = supp(µ)⊥.

Proof. Refer to ( [2], Theorem 5.2.40).

Corollary 2.9. For every bounded measure µ on K, Per(µ) is a closed subhypergroup of
K.

Proof. Recall that Per(µ) = supp(µ̂)⊥ and for any subset A of K̂, A⊥ is a closed subhy-
pergroup of K.

Proposition 2.10. Let ψ : K̂ → C be a negative definite function such that Re(ψ) ≥ 0
and ψ(1) = 0. Then Per(ψ) = {ξ ∈ K̂ : ψ(ξ) = 0}.
Proof. ξ ∈ Per(ψ) obviously implies that ψ(ξ) = ψ(1) = 0. Conversely let ψ(ξ) = 0. By
inequality in ( [2], Proposition 4.4.3(c)), ψ(ξ ∗ ξ−) + ψ(1) ≤ 2ψ(1) and so ψ(ξ ∗ ξ−) ≤ 0.
Also since ψ(ξ ∗ ξ−) ∈ R, ψ(ξ ∗ ξ−) = Re(ψ)(ξ ∗ ξ−) ≥ 0. Thus ψ(ξ ∗ ξ−) = 0. Now by the
inequality in ( [2], Proposition 4.4.3(e)), δξ ∗ ψ = ψ.

3. Translation Invariant Contraction Semigroups on hypergroups

Throughout this section K is a commutative hypergroup.
If f is a continuous function with compact support on K, then the right translations of

f , δa ∗ f ( a ∈ K ), are also continuous with compact support (see 3.1B and 4.2F of [6] or
Proposition 1.2.16(iii) of [2]).

Definition 3.1. A positive linear mapping T : Cc(K) → C(K) is called translation
invariant if for any a ∈ K and f ∈ Cc(K), T (δa ∗ f) = δa ∗ Tf .

Proposition 3.2. A mapping T : Cc(K) → C(K) is translation invariant if and only if
there exists a unique positive measure µ ∈M(K) such that Tf = µ ∗ f for any f in Cc(K).
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Proof. Suppose that there exists a unique positive measure µ ∈M(K) such that Tf = µ∗f
for all f ∈ Cc(K). Then T is obviously linear and positive by pos(Tf) = supp(µ) ∗ pos(f)
( [6], 4.2D). Also we have

T (δa ∗ f) = µ ∗ (δa ∗ f) = δa ∗ (µ ∗ f) = δa ∗ Tf,
where a ∈ K, i.e. T is translation invariant.

Conversely let T be a translation invariant mapping. Since the mapping f �→ T (f−)(e)
is linear and positive, by Rietz representation theorem there is a measure µ ∈ M(K) such
that

T (f−)(e) =
∫
f(x)dµ(x),

where f ∈ Cc(K). Also for any f ∈ Cc(K), x ∈ K we have

Tf(x) = Tf(x ∗ e) = (δx− ∗ Tf)(e)

= (T (δx− ∗ f))(e)

=
∫

(δx− ∗ f)(t−)dµ(t)

=
∫
f(x ∗ t−)dµ(t) = (µ ∗ f)(x).

The following definition is similar to definition 3.1.

Definition 3.3. Let 1 ≤ p < ∞ and T : Lp(K) → Lp(K) be a bounded operator on
Lp(K).
(i) T is called translation invariant if for any a ∈ K and any f ∈ Lp(K) we have δa ∗ Tf =
T (δa ∗ f).
(ii) T is called submarkovian if for any f ∈ Lp(K) with 0 ≤ f ≤ 1 a.e. we have 0 ≤ Tf ≤ 1
a.e..

Proposition 3.4. Let T : Lp(K) → Lp(K) be a bounded operator on Lp(K) (1 ≤ p <
∞). Then T is submarkovian translation invariant if and only if there exists a positive
bounded measure µ ∈M(K) such that µ(K) ≤ 1 and Tf = µ ∗ f for any f ∈ Lp(K).

Proof. First, suppose that for a positive bounded measure µ ∈ M(K) with µ(K) ≤ 1 we
have Tf = µ ∗ f (f ∈ Lp(K)). Then for every a ∈ K, δa ∗ Tf = δa ∗ (µ ∗ f) = µ ∗ (δa ∗ f) =
T (δa ∗ f). Also if f ∈ Lp(K) and 0 ≤ f ≤ 1 a.e., then since

Tf(x) = µ ∗ f(x) =
∫
K

f(y− ∗ x)dµ(y) =
∫
K

∫
K

f(t)d(δy− ∗ δx)(t)dµ(y),

for almost every x in K, we have

0 ≤ Tf(x) ≤
∫
K

∫
K

d(δy− ∗ δx)(t)dµ(y) =
∫
K

dµ(y) = µ(K) ≤ 1.

Conversely let T be a submarkovian translation invariant operator.
First, assume that for every f ∈ Cc(K) there exists a hf in C(K) such that Tf = hf .

Then the restriction T |Cc(K) : Cc(K) → C(K) defined by f �→ hf is obviously translation
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invariant. By Proposition 2.2 there exists a positive measure µ ∈M(K) such that Tf = µ∗f
for all f in Cc(K). For this µ and any x0 ∈ K we have

µ(K) =
∫
K

dµ(x) =
∫
K

1(x− ∗ x0)dµ(x) = (µ ∗ 1)(x0) = T1(x0).

Since T is submarkovian, this shows that 0 ≤ µ(K) ≤ 1. In addition since Cc(K) is dense
in Lp(K), the restricted T has an extension Tf = µ ∗ f to Lp(K).

In general case, by Lemma 2.4, for a neighborhood base {Vi} at e there is a net {ki} ⊆
C+
c (K) with supp(ki) ⊆ Vi and ‖ki‖1 = 1 such that {ki} is a bounded approximate identity

of Lp(K). For every ki we define Ti : Lp(K) → Lp(K) by Tif = Tf ∗ ki, f ∈ Lp(K). Every
Ti is clearly linear and since for any f ∈ Lp(K), ‖Tf ∗ ki‖p ≤ ‖Tf‖p‖ki‖1 = ‖Tf‖p ( [6],
5.5Q), every Ti is also bounded. For any a ∈ K and f ∈ Lp(K),

δa ∗ Tif = δa ∗ (Tf ∗ ki) = T (δa ∗ f) ∗ ki = Ti(δa ∗ f).

Then every Ti is translation invariant. If f ∈ Lp(K) and 0 ≤ f ≤ 1 a.e., we have

Tif(x) =
∫
K

Tf(x ∗ y)ki(y−)dm(y) =
∫
K

∫
K

Tf(t)ki(y−)d(δx ∗ δy)(t)dm(y).

Since T is submarkovian, for almost every x in K,

0 ≤ Tif(x) ≤
∫
K

ki(y−)dm(y) = ‖ki‖1 = 1.

Then any Ti is submarkovian too. By ( [6], 5.5D) for any f ∈ Lp(K), Tf ∗ ki is continuous.
Then by case 1 for every Ti there is a positive bounded measure µi ∈M(K) with µi(K) ≤ 1
such that Tif = µi ∗ f . By Banach-Alouglu theorem there is a positive bounded measure
µ ∈M(K) with µ(K) ≤ 1 such that µi → µ in σ(M(K), Cc(K)). Now for every f in Cc(K)
we have

Tf = lim
i
Tf ∗ ki = lim

i
µi ∗ f = µ ∗ f.

Since Cc(K) is dense in Lp(K), we can extend this function to Lp(K).
Uniqueness of the measure µ is obvious.

Definition 3.5. Let 1 ≤ p < ∞. A family {Pt}t>0 of bounded operators on Lp(K) is
called strongly continuous contraction semigroup if
(i) ‖Pt‖ ≤ 1 for all t > 0;
(ii) PtPs = Pt+s for all t, s > 0;
(iii) ‖Ptf − f‖p → 0 as t → 0+, for all f ∈ Lp(K).

Definition 3.6. A family {µt}t>0 of positive bounded measures in M(K) is called a
convolution semigroup on K if
(i) µt(K) ≤ 1 for all t > 0;
(ii) µt ∗ µs = µt+s for all t, s > 0;
(iii) µt → δe as t→ 0+ in σ(M(K), Cc(K)).

For a strong hypergroup K, if {µt}t>0 is a convolution semigroup on K, then there exists
a unique negative definite function ψ on K̂ such that Re(ψ) ≥ 0 and µ̂t = e−tψ for every
t > 0. The function ψ is called the negative definite function associated with {µt}t>0. We
refer to [7] or [2] for basic properties of convolution semigroups.

Theorem 3.7. Let 1 ≤ p < ∞. There is a one to one correspondence between con-
volution semigroups on K and strongly continuous contraction semigroups of translation
invariant and submarkovian operators on Lp(K).
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Proof. Suppose that {µt}t>0 is a convolution semigroup on K. We define Pt : Lp(K) →
Lp(K) by Ptf = µt ∗ f , f ∈ Lp(K). By Proposition 3.4 every Pt is a translation invariant
and submarkovian bounded operator. In addition since ‖µt ∗ f‖p ≤ ‖µt‖ ‖f‖p ( [6], 5.4G),
‖Pt‖ = sup‖f‖p=1‖Ptf‖ ≤ ‖µt‖ = µt(K) ≤ 1 and PtPsf = Pt(µs ∗ f) = µt ∗ µs ∗ f =
µt+s ∗ f = Pt+sf . By taking α = 1 in Theorem 2.2 of [7] we have µt(K) > 0 for any t > 0,
so for every f ∈ Lp(K),

‖Ptf − f‖pp =
∫
K

|µt ∗ f(x) − f(x)|p dm(x)

=
∫
K

|
∫
K

f(x ∗ y−) − f(x)
µt(K)

dµt(y)|p dm(x)

≤
∫
K

∫
K

|f(x ∗ y−) − f(x)
µt(K)

|p dµt(y) dm(x)

=
∫
K

∫
K

|δy ∗ f − f

µt(K)
|p dmdµt(y)

=
∫
K

gt(y) dµt(y),

where gt(y) = ‖δy ∗ f − f
µt(K)‖pp. We put g(y) = ‖δy ∗ f − f‖pp. Then g, gt are bounded

and continuous. Consider h ∈ C+
c (K) such that 0 ≤ h ≤ 1 and h(e) = 1. Since µt(K) =

µ̂t(1) = e−tψ(1), µt(K) → 1 as t→ 0+. We have

∫
K

gtdµt =
∫
K

hgdµt −
∫
K

h(g − gt)dµt +
∫
K

(1 − h)gtdµt,

and so

0 ≤ lim sup
t

∫
K

gt(y)dµt(y) ≤ 2p‖f‖pp
∫
K

(1 − h)dδe = 0.

Therefore {Pt}t>0 is a strongly continuous contraction semigroup.

Conversely let {Pt}t>0 be a strongly continuous contraction semigroup of translation
invariant and submarkovian operators on Lp(K). By Proposition 3.4 for every t > 0 there
exists a unique positive and bounded measure µt ∈M(K) such that µt(K) ≤ 1 and Ptf =
µt ∗ f , for all f ∈ Lp(K). For any f ∈ Cc(K) and any t, s > 0,

∫
K

f(x)dµt+s(x) =
∫
K

f−(e ∗ x−)dµt+s(x) = (µt+s ∗ f−)(e)

= Pt+sf
−(e) = (PtPsf−)(e)

= (µt ∗ µs ∗ f−)(e) =
∫
K

f(x)dµt ∗ µs(x),

so that µt+s = µt ∗ µs.

Now let {ki} ⊆ C+
c (K) be the approximate identity as in the Lemma 2.4. For any f in

Cc(K),
∫
K

(f ∗ ki)(x)dµt(x) = (µt ∗ (f ∗ ki)−)(e) = (µt ∗ f− ∗ k−i )(e) = (Pt(f−) ∗ k−i )(e) =
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∫
K
Pt(f−)(x)ki(x)dm(x). Also for any x ∈ K we have

|f ∗ ki(x)| ≤
∫
K

|f(x ∗ y)| · ki(y−) dm(y)

≤
∫
K

(∫
K

|f(t)| d(δx ∗ δy)(t)
)
ki(y−) dm(y)

≤M ·
∫
K

ki(y−) dm(y)

= M ·
∫
K

ki(y) dm(y) = M · ‖ki‖1 = M,

where M := supt∈K |f(t)|. So the net (
∫
K(f ∗ ki)(x)dµt(x))i,t is bounded, because

|
∫
K

(f ∗ ki)(x)dµt(x)| ≤
∫
K

|f ∗ ki(x)|dµt(x) ≤M · µt(K) ≤M.

Therefore (
∫
K(f ∗ki)(x)dµt(x))i,t is convergent ( by passing to a subnet if necessary). Then

lim
t→0+

∫
K

f dµt = lim
t→0+

lim
i

∫
K

(f ∗ ki)(x)dµt(x)

= lim
i

lim
t→0+

∫
K

(f ∗ ki)(x)dµt(x)

= lim
i

∫
K

f− ki dm = f−(e) = f(e).

This shows that {µt}t>0 is a convolution semigroup on K.

For a convolution semigroup {µt}t>0 on K, the contraction semigroup defined by Ptf =
µt ∗ f , f ∈ Lp(K), is called the contraction semigroup on Lp(K) induced by {µt}t>0.

Definition 3.8. Let 1 ≤ p < ∞ and {Pt}t>0 be a strongly continuous contraction
semigroup on Lp(K).
(i) We define N : D(N) → Lp(K) by

Nf = lim
t→∞

∫ t

0

Psf ds, (f ∈ D(N))

where D(N) = {f ∈ Lp(K) : limt→∞
∫ t
0 Psfds exists in Lp(K)}. The function N is called

the potential operator for {Pt}t>0, and is denoted by (N,D(N)).
(ii) For any λ > 0 the function Nλ : Lp(K) → Lp(K) defined by

Nλf =
∫ ∞

0

e−λtPtf dt, (f ∈ Lp(K))

is a bounded operator with domain Lp(K) and of norm ‖Nλ‖ ≤ 1
λ ( [1], Proposition 11.10).

We define N0 : D(N0) → Lp(K) by

N0f = lim
λ→0+

Nλf, (f ∈ D(N0))

where D(N0) = {f ∈ Lp(K) : limλ→0+ Nλf exists in Lp(K)}. The function N0 is called
the zero-resolvent for {Pt}t>0 and is denoted by (N0, D(N0)).
(iii) If {µt}t>0 is a convolution semigroup then for any λ > 0 we define the measure
ρλ ∈M(K) by

ρλ(ϕ) =
∫ ∞

0

e−λtµt(ϕ) dt (ϕ ∈ Cc(K)).
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{ρλ}λ>0 is called the resolvent of measures onK. For basic properties of {ρλ}λ>0 refer to [2].

Proposition 3.9. Let 1 ≤ p < ∞ and {Pt}t>0 be a strongly continuous contraction
semigroup on Lp(K).
(i) D(N0) is dense in Lp(K) if and only if limλ→0+ λNλf = 0 for all f ∈ Lp(K).
(ii) D(N) is dense in Lp(K) if and only if limt→∞ Ptf = 0 for all f ∈ Lp(K).

Proof. Refer to the Propositions 11.9 and 11.14 of [1].

Theorem 3.10. Let K be a commutative strong hypergroup, {Pt}t>0 be the contraction
semigroup on L2(K) induced by {µt}t>0 and ψ be the continuous negative definite function
on K̂ associated with {µt}t>0.
(i) The domain of zero-resolvent (N0, D(N0)) of {Pt}t>0 is dense in L2(K) if and only if
ψ �= 0 locally almost everywhere on K̂.
(ii) The domain of potential operator (N,D(N)) of {Pt}t>0 is dense in L2(K) if and only
if Reψ �= 0 locally almost everywhere on K̂.

Proof. (i) Since ψ is a negative definite function with Reψ ≥ 0, then ψ(1) ≥ 0. We prove
the theorem in two cases. Put B = {ξ ∈ K̂ : ψ(ξ) = ψ(1)}.

Case 1. ψ(1) = 0.
For any k ∈ Cc(K̂) and any λ > 0 we have Nλ(ǩ) =

∫ ∞
0
e−λtPt(ǩ)dt and Nλ(ǩ) ∈ L2(K).

Then for any ξ ∈ K̂,

(Nλ(ǩ))ˆ(ξ) =
∫
K

ξ(x)Nλ(ǩ)(x)dm(x)

=
∫
K

∫ ∞

0

ξ(x)e−λt(µt ∗ ǩ)(x)dt dm(x)

=
∫
K

∫ ∞

0

∫
K

∫
K̂

ξ(x)e−λtk(χ)χ(y)χ(x) dπ(χ) dµt(y) dt dm(x)

=
∫ ∞

0

e−λt
∫
K

ξ(x)
∫
K̂

k(χ)χ(x)
∫
K

χ(y) dµt(y) dπ(χ) dm(x)dt

=
∫ ∞

0

e−λt
∫
K̂

k(χ)e−tψ(χ)

∫
K

ξ(x)χ(x) dm(x)dπ(χ) dt

=
∫ ∞

0

e(−λ−ψ(ξ))tk(ξ)M−1
ξ dt =

k(ξ)
Mξ

1
λ+ ψ(ξ)

,

where M−1
ξ =

∫
K |ξ(x)|2dm(x). So by ( [6], 7.3I),

‖Nλ(ǩ)‖2
2 = ‖(Nλ(ǩ))ˆ‖2

2 =
∫
K̂

|k(ξ)
Mξ

1
λ+ ψ(ξ)

|2dπ(ξ).

We have

|k(ξ)
Mξ

1
λ+ ψ(ξ)

|2 ≤ |k(ξ)|2 λ2

(λ+Reψ(ξ))2
≤ |k(ξ)|2,

since Reψ ≥ 0. If ψ �= 0 locally almost everywhere then B is a locally null set and so by
using of the dominated convergence theorem,

lim ‖λNλ(ǩ)‖2
2 =

∫
K̂

lim |k(ξ)
Mξ

λ

λ+ ψ(ξ)
|2dm(ξ) = 0

as λ→ 0+. The latter relation shows that {ǩ : k ∈ Cc(K̂)} ⊆ {f ∈ L2(K) : limλ→0+ λNλf =
0}. But the set {ǩ : k ∈ Cc(K̂)} is dense in L2(K̂) ( [2], p. 85) and the set {f ∈ L2(K) :
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limλ→0 λNλf = 0} is closed ( [1], p. 82). Then for each f ∈ L2(K), limλ→0+ λNλf = 0
and so by Proposition 3.9(i) D(N0) is dense in L2(K).

Conversely, if B is not locally null then by Theorem 2.2.45(h) of [2] B⊥ is compact. So
there exist f, g ∈ C+

c (K) such that g ≡ 1 on B⊥ and g ≤ f ∗ f−. So 1 ≤ f ∗ f− on B⊥. On
the other hand for any λ > 0,

supp(ρλ ∗ ρ−λ ) ⊆ (supp(ρλ) ∗ supp(ρλ)−)c

⊆ S ∗ S−

⊆ B⊥ ∗B⊥ ⊆ B⊥,

where S = supp(ρλ) = (
⋃
t≥0 supp(µt))c. For any λ > 0 we have

∫
K
|ρλ ∗ f(u)|2dm(u)

=
∫
K

∫
K

∫
K

f(s− ∗ u) f(t− ∗ u)dρλ(s)dρλ(t)dm(u)

=
∫
K

∫
K

∫
K

fs(u) ft−(u)dm(u)dρλ(s−)dρλ(t)

=
∫
K

∫
K

∫
K

f(u) ft−(s− ∗ u)dm(u)dρλ(s−)dρλ(t)

=
∫
K

∫
K

∫
K

f(u) fu(s ∗ t)dm(u)dρλ(s)dρλ(t−)

=
∫
K

∫
K

∫
K

∫
K

f−(u−)f(u ∗ x)dm(u)dδs ∗ δt(x)dρλ(s)dρλ(t−)

=
∫
K

∫
K

∫
K

f ∗ f−(x)dδs ∗ δt(x)dρλ(s)dρλ(t−)

=
∫
K

∫
K

f ∗ f−(s ∗ t)dρλ(s)dρ−λ (t)

=
∫
K

f ∗ f−(x)dρλ ∗ ρ−λ (t).

The latter integral is greater than (or equal with)
∫
K
dρλ ∗ ρ−λ (x) = ρλ(K)2 = 1

λ2 , since

ρλ(K) = ρ̂λ(1) =
∫ ∞

0

e−λtµ̂t(1)dt =
∫ ∞

0

e−λte−tψ(1)dt =
1
λ
.

But

ρλ ∗ f(x) =
∫
K

f(x ∗ y−) dρλ(y) =
∫ ∞

0

e−λt
∫
K

f(x ∗ y−) dµt(y)dt

=
∫ ∞

0

e−λt(µt ∗ f)(x)dt

= Nλf(x).

Then ‖λNλf‖2 ≥ 1 and by Proposition 3.9(i), this implies that D(N0) is not dense in
L2(K).

Case 2. ψ(1) �= 0.
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For any f ∈ L2(K),

‖λNλf‖2 = ‖
∫ ∞

0

λe−λtPtfdt‖2 ≤
∫ ∞

0

λe−λt‖Ptf‖2dt

≤
∫ ∞

0

λe−λte−tψ(1)‖f‖2dt

=
λ

λ+ ψ(1)
‖f‖2 → 0,

as λ→ 0+, since ‖Ptf‖2 = ‖µt ∗ f‖2 ≤ ‖µt‖ ‖f‖2 = µ̂t(1)‖f‖2 = e−tψ(1)‖f‖2. Then D(N0)
is dense in Lp(K). On the other hand by Theorem 2.2 and Proposition 1.3(a) in [7] we have
{ξ ∈ K̂ : ψ(ξ) = 0} = ∅ and so that ψ �= 0 locally almost everywhere.

(ii) Put D = {ξ ∈ K̂ : Reψ(ξ) = ψ(1)} and again consider two cases.
Case 1. ψ(1) = 0.

By continuity of ψ, D is closed. For any φ ∈ Cc(K̂),

(φ̌)̂(ξ) =
∫
K

ξ(x)φ̌(x) dm(x) =
∫
K

∫
K̂

ξ(x)φ(χ)χ(x)dπ(χ)dm(x)

=
∫
K̂

φ(χ)
∫
K

ξ(x)χ(x) dm(x)dπ(χ)

=
∫
K

φ(ξ)|ξ(x)|2 dm(x) = φ(ξ)M−1
ξ ,

and then

(Ptφ̌)̂(ξ) = (µt ∗ φ̌)̂(ξ) = µ̂t(ξ)(φ̌)̂(ξ) = µ̂t(ξ)φ(ξ)M−1
ξ =

e−tψ(ξ)φ(ξ)
Mξ

.

So

‖Ptφ̌‖2
2 = ‖(Ptφ̌)̂‖2

2 =
∫
K̂

|e
−tψ(ξ)φ(ξ)
Mξ

|2 dπ(ξ).

We have

|e
−tψ(ξ)φ(ξ)
Mξ

|2 ≤ e−tReψ(ξ)|φ(ξ)|2 ≤ |φ(ξ)|2.

If Reψ �= 0 locally almost everywhere then D is locally null, and so by dominated con-
vergence theorem we have limt→∞ Ptφ̌ = 0 in L2(K) (note that by Theorem 2.2 in [7],
Reψ ≥ 0). Thus {φ̌ : φ ∈ Cc(K̂)} ⊆ {f ∈ L2(K) : limt→∞ Ptf = 0}. But as before the
set {φ̌ : φ ∈ Cc(K̂)} is dense in L2(K) and the set E0 := {f ∈ L2(K) : limt→∞ Ptf = 0}
is closed because if f is in its closure then for any ε > 0 there is a g ∈ E0 such that
‖f − g‖2 <

ε
2 and there is a t0 > 0 such that for any t ∈ [0, t0], ‖Ptg‖2 <

ε
2 . Then for any

t ∈ [0, t0] we have

‖Ptf‖2 ≤ ‖Ptf − Ptg‖2 + ‖Ptg‖2 ≤ ‖Pt‖ ‖f − g‖2 + ‖Ptg‖2 < ε,

since ‖Pt‖ ≤ 1. So f ∈ E0. Therefore for any f ∈ L2(K), limt→∞ Ptf = 0. Then by
Proposition 3.9(ii), D(N) is dense in L2(K).

Conversely if D is not locally null, then by Proposition 2.2.45(h) in [2] D⊥ is compact,
and by [9] it is a subhypergroup of K. For any t > 0 we have supp(µt) ⊆ D⊥. Then

supp(µt ∗ µ−
t ) = (supp(µt) ∗ (supp(µt))−)c

⊆ (D⊥ ∗D⊥)c ⊆ (D⊥)c = D⊥.
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On the other hand for f ∈ Cc(K) with f ∗ f− ≥ 1 on D⊥,

‖Ptf‖2
2 =

∫
K

|µt ∗ f(x)|2dm(x) =
∫
K

f ∗ f−(x) dµt ∗ µ−
t (x).

The last integral is greater than (or equal with)
∫
K
µt ∗ µ−

t (x) = (µt(K))2 = 1 (note that
µt(K) = µ̂t(1) = e−tψ(1) = 1). Thus limt→∞ Ptf �= 0. Now Proposition 3.9(ii) shows that
D(N) is not dense in L2(K).

Case 2. ψ(1) �= 0.
For any f ∈ L2(K) we have

‖Ptf‖2 = ‖µt ∗ f‖2 ≤ e−tψ(1)‖f‖2 → 0,

as t→ ∞, see the case 2 of (i). Then D(N) is dense in L2(K). Also as in the case 2 of (i),
{ξ ∈ K̂ : Reψ(ξ) = 0} = ∅ and so Reψ �= 0 locally almost everywhere.
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