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ABSTRACT. In this paper we develop potential theory on hypergroups and study contrac-
tion semigroups on hypergroups, we state and prove a necessary and sufficient condition
that the domain of zero-resolvent or the domain of potential operator of { P; }+>0 is dense
in L2(K).

1. INTRODUCTION AND NOTATION

Let K be a commutative locally compact hypergroup. We denote by M (K) the space of
all regular complex-valued Borel measures on K, by M T (K) the subset of positive measures
in M (K), and by 4, the Dirac measure at the point . The closure of any A C K is denoted
by A°€.

First we recall the definition and basic properties of a hypergroup. The main references
are [2] and [6]. You can see also [5] and [8] for more properties of hypergroups.
Definition 1.1. Let K be a locally compact Hausdorff space. The space K is a hyper-
group if there exists a binary mapping (z,y) — d, *J, from K x K into M+ (K) satisfying
the following conditions,
(1) The mapping (d5,0,) +— J; * §, extends to a bilinear associative operator * from
M(K) x M(K) into M (K) such that

| sawsn = [ [ [ sa.ss)auav)

for all continuous functions f on K vanishing at infinity.

(2) For each x,y € K the measure 0, * J, is a probability measure with compact support.
(3) The mapping (p,v) — p * v is continuous from M (K) x MT(K) into MT(K); the
topology on M (K) being the cone topology.

(4) There exists e € K such that 0. * §; = d, = 0, 0 for all x € K .

(5) There exists a homeomorphism involution z — z~ from K onto K such that, for all
x,y € K, we have (0, * 0,)” = 0~ * 6,— where for p € M(K), p~ is defined by

/ F(t)du (1) = / £ )du(t),
K K

and also,
e € supp(dy * dy) if and only if y = 2~

where supp(d, * dy) is the support of the measure J; * dy.
(6) The mapping (z,y) — supp(dy * dy) is continuous from K x K into the space C(K) of
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compact subsets of K, where C(K) is given the topology whose subbasis is given by all
Cuv={Ac€C(K):ANU #0 and ACV}

where U , V are open subsets of K.

Note that d, * d, is not necessarily a Dirac measure. A hypergroup K is commutative
if 0z *x 0y = 0y * 0 for all z,y in K. Let ’s recall some properties of locally compact
commutative hypergroups. Such a hypergroup K carries a Haar measure m such that
dz *m = m for all z € K [11]. In any commutative hypergroup K we have m = m~
( 6], 5. 3) Let f, g be Borel functions on K and p € M(K). For any z,y € K we denote
f(z) = (x) (x) = f(z™), f(x) = m and pos(f) = {z € K : f(x) > 0}, and define
fe(y) = flzxy) == [} fd(dz % 6,). Also we define

(1 Pz /fy «z)du(y) and (f  g)(x /fx*y “Ydm(y),

where € K. For any subsets A, B of K, we denote AxB = | J{supp(d,*J,) : z € A, y € B}
and A~ = {2z~ : z € K}. A non-empty closed subset E of K is a subhypergroup of K if
EF-=Fand ExECE.

A complex-valued continuous function £ on K is said to be multiplicative if E(xry) =
&(x)&(y) holds for all 2,y € K. The space of all multiplicative functions on K is denoted
by X3(K). A nonzero multiplicative function ¢ on K is called a character if £(z7) = £(z)
for all # in K. The dual K of K is the locally compact Hausdorff space of all characters
with the topology of uniform convergence on compacta. In general K is not necessarily
a hypergroup. A hypergroup K is called strong if its dual K is also a hypergroup with
complex conjugation as involution, pointwise product as convolution, that is

r) = /K £() by * 6,(€)

for all n, x € K and z € K, and the constant function 1 as the identity element.

We denote L'(K) = L'(K,m) and L' (K) = L'(K, ) where 7 is the Plancherel measure
on K associated with m.

For any f € L'(K) and u € M(K), the Fourier-Stieltjes transform fi of z and the Fourier
transform f of f are defined by

6 = /K EDdu(t) and f(€) = /K EDf (t)dmt),
where £ € K.

For any k € L'(K) and 0 € M(K), the inverse Fourier transform & and & of k and o,
respectively, are defined by

/ E(x)k(€) dm(€) and &( / &(x)do(€

2. THE PERIODICITY ON HYPERGROUPS

where x € K.

Definition 2.1. A measure p on K is called periodic with period p € K if §, * p = p.
The set of all periods of u is denoted by Per(u). We shall show that Per(p) is a closed
subhypergroup of K.

Let f be a continuous function on K. An element p € K is called a period of f if
dp * f = f. Similarly the set of all periods of ¢ is denoted by Per(¢)
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We shall see that for every continuous bounded positive definite function ¢ on K and
any u € M(K), Per(¢) and Per(u) are closed subhypergroups of K.

Definition 2.2. Let A C K, B C K. We denote A* = {¢ € K : £(z) =1 for all z € A},

L={reK: {ax)=1forall¢e B}

Bt is a subhypergroup of K and if K is a strong hypergroup, then At is a subhyper-
group of K [9].

Definition 2.3. A measure y € M(K) is called shift-bounded if p* f € Cy(K) for all
f € C.(K), and is called weakly shift-bounded if p* f * f € Cp(K) for all f € C.(K).

Remark. Clearly if g is shift-bounded, then p is weakly shift-bounded but the con-
verse is not true in general ( [2], 1.2.32). If K is a locally compact group, then pu is a
positive definite measure (i.e. fK f* fdu >0 for all f e C.(K)) if and only if p* f f
is a continuous positive definite function ( [1], proposition 4.4). This result is also true
for a hypergroup K. As a consequence, in the group case every positive definite measure
is weakly shift-bounded ( [1], 4.4) and this is not the case for hypergroups. For instance
(Z+,%(Qn)) is a polynomial hypergroup with semicharacters x,(n) = Qn(z) ( [2], Theorem
3.2.12), and x,m is positive definite for all z € R, but for = > xg, x,m is not shift-bounded.

For every weakly shift- bounded positive definite measure p on M (K) there is a unique
positive measure o in M (K) such that

/f Fan= [ e (7 e Cui)

The measure o has the following properties

i) [f)Pdo < o0 )
D o 1+ 1) = fe o NOPart)
(iti) (u* f*g)(x) = [ @) f(§)g(€)da(€),

where f,g € C.(K) and « € K. The measure o is called the associated measure of y [2].

Lemma 2.4. Let U be a compact neighborhood of identity e in K and {V;} be a
neighborhood base at e included in U. There is a bounded approximate identity {k }in
LY(K) satisfying k; € CH(K), ||ki|ly = 1, supp(k;) C Vi, k; € L% (K) and lim; k; = 1
uniformly on compact subsets of K.

Proof. Refer to Theorem 2.2.28 in [2] page 88. O

Theorem 2.5. Let K be a commutative strong hypergroup and p be a weakly shift-
bounded and positive definite measure on K with associated measure o. For every v in K
the measure ~yu is also a positive definite measure with associated measure d, * 0.

Note that the proof of the theorem in the group case is based on (fg), = frg. which
does not hold for hypergroups. So our proof is completely different (c.f. [1], Proposition
4.10).
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Proof. Let g be in CH(K) and put A~ := g * §. For each f € C.(K) we have

fK['Y(f*f

~

 h())dp(z)
K

VW) * )i y~) dm(y)du(z)

T

K

Y ) * Pw) / W *y™) dy(z)dm(y)
K
YY) (f * F)(y)(w*h™)(y) dm(y)

(W) (f * F)) (e g*g)(y) dn(y)

)

AW+ HWEWIIE)I do(€)dm(y)

late )\2/(f F)@)n(y) dm(y)ds, = ¢(n)do(€)
NGk / )+ ( dm(y)ds., + 6 (n)do(€) ([6],5.50)

16(0) \2/f Y1+ F)(w) din(y)dss * 5¢(n)do(€)
g / / () )OI dim(a)dm (y)ds., * b ()dor(€)
GO P W) (17 (1) b * 5e(n)dor(€)

x\x\x\w\w\w\w\

NGO PIf) L) dby * 3¢ (m)da(€)-

Now if we put
is equal to

//Ig )% (n) do(€ /Ig P j(y* &) do(€) /Ig (O35, (&) do(¢

Now we replace g by k; in the above relations (the net {k;} has been introduced in Lemma
2.4). Consider h € CF(K) such that h = ||f||c on the compact set supp(f) * U, where
U is a compact neighborhood of the identity e as in Lemma 2.4. By ( [6], 6.2E) we have
71 # Filloo < Iflloo Iilly = | fllco- Then

(F % F) bl = 0 (f % f) s bios b | < (1] ki) = (1] 5 ki)™ < e h™ € LK, pr).
On the other hand for any ¢ € K,

(©) < / €@ ks () dim(a) < kells = 1.

i(n) = |(nf)(1)[? then since j( * &) = S 3(n) d(6 = 6¢)(n) the last integral

.

Then for any £ € K, | |k;(€)[%j,(€)| < j,(€). Similar to the above relations we also have

G / / do(€)dm(y)

W)(f * ))()a(y) dm(y) < oo,

because ¢ € C(K) and so that y(f * f)& € C.(K). So j, € L'(K,0).

x\
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Therefore we can apply the dominated convergence theorem on two sides of the equality
[ A Pres Rydu= [ Vil don
K K

and so by limiting,

[+
K

Jydo

_*]

Il
x\x\x\

~j d(6y*0) ([6], Theorem 4.2H).

But since (nf)(1 = [ f@)n(x)dm(z) = [, f( z7)dm(z) = (f~)(n), we have
i) = )P = |(f_5(77)|2-

[ £xdatm = [ 15 IPae,<o).

This completes the proof. O

Thus

Corollary 2.6. Let p be a weakly shift-bounded positive definite measure on K with
associated measure 0. Then Per(o) = supp(u)*

Proof. Let v € K. By Theorem 2.5 the measure associated with yu is 64 * 0. Then
v € Per(o) if and only if the measure associated with yu is 0. But the mapping taking a
weakly shift-bounded positive definite measure into its associated measure is injective ( [2],
Corollary 4.3.11), so v € Per(o) if and only if yu = pu, and this is equivalent with + being
1 on the support of u. O

A matrix A = (a;;) of complex numbers is called positive hermitian if

n

Z Qi C;Cj >0

ij=1
for each complex numbers ¢y, co,... ,Cp.

A continuous function ¢ : K — C is called

(i) positive definite if the matrix (¢(z; * z;)) is positive hermitian for every z1,z2,... ,n
in K; and
(ii) negative definite if the matrix (¢(x;) + ¢(x;) — ¢(xi * x;)) is positive hermitian for
every ri,xa,... ,T, in K.

By the Bochner theorem every bounded positive definite function ¢ on K is associated
with a measure 0 € M (K) such that ¢ = 5.

The following theorem has been established in ( [2], Proposition 5.2.40) under the con-
dition that K is strong. Here we prove it with a completely different technique for commu-
tative hypergroups.

Theorem 2.7. Let 0 € MT(K) be the measure associated with a bounded positive
definite function ¢ on K. Then

Per(¢) = supp(o)* = {p € K : ¢(p) = ¢(e)}.
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Proof. Since ¢ = &, p € Per(¢) if and only if & = §, x 5. For any z € K,

(6, % )(x) = / £()5,(€) do(€) = Ep) /K £(2) do(€) = ER)6 (x).

By injectivity of the inverse Fourier transform, this implies that p € Per(¢) if and only if
&(p) = 1 for each ¢ € supp(o). Therefore Per(¢) = supp(c)*.

To prove the second equality we proceed as follows:

If ¢(e) = 0, since for a bounded positive definite function ¢ we have ||¢|lcc = ¢(€)
( [6], Theorem 11.1E), ¢ = 0 and the second equality trivially holds. Let ¢(e) # 0 (and
so ¢(e) > 0). If p € Per(¢) evidently we have ¢(p) = ¢(p~ xe) = ¢(e) = ¢(e), since
positive definity of ¢ implies that ¢(p~) = ¢(p). Conversely let ¢(p) = ¢(e). By inequality
2|¢(z)| < ¢ple) + p(xxx~) (z € K) ([2], Lemma 4.1.3(f)) we have ¢(e) < ¢(p*p~), and
by [|¢llec = ¢(e) we have ¢(p*p~) <

¢(e). Thus ¢(p*p~) = ¢(e). Let y € K and put
k=¢le),l=¢(y), m=o(p*xy~),n=3d(y*y ). Since ¢ is positive definite, the matrix
k k1
kk m
I m n

is positive hermitian, and so its determinant, that is —k |m — [|?, is non-negative. Then
since k > 0, m = [. Hence for any y € K, ¢(p™ xy) = ¢(y), i.e. p € Per(d). O

Proposition 2.8. For every bounded measure p of K we have

(i) Per(u) = supp(p)*,
(ii) Per(f) = supp(p)™*.

Proof. Refer to ( [2], Theorem 5.2.40). O

Corollary 2.9. For every bounded measure p on K, Per(u) is a closed subhypergroup of
K.

Proof. Recall that Per(y) = supp(f2)* and for any subset A of K, AL is a closed subhy-
pergroup of K. O

Proposition 2.10. Let 1) : K — C be a negative definite function such that Re(y) > 0
and (1) = 0. Then Per(y) = {& € K : ¢(§) = 0}.

Proof. £ € Per(1¢) obviously implies that (£ ) (1) = 0. Conversely let ¥(§) = 0. By
inequality in ( [2], Proposition 4.4.3(c)), ¥(§ * ) + (1) < 2¢(1) and so P(E*£~) < 0.
Also since Y(Ex€7) € R, Y(Ex€7) = Re()(Ex£7) > 0. Thus ¥(€ x£7) = 0. Now by the
inequality in ( [2], Proposition 4.4.3(e)), 0¢ * ¢ = ¢ O

3. TRANSLATION INVARIANT CONTRACTION SEMIGROUPS ON HYPERGROUPS

Throughout this section K is a commutative hypergroup.

If f is a continuous function with compact support on K, then the right translations of
fy0ax f (a€ K), are also continuous with compact support (see 3.1B and 4.2F of [6] or
Proposition 1.2.16(iii) of [2]).

Definition 3.1. A positive linear mapping T : C.(K) — C(K) is called translation
invariant if for any a € K and f € Co.(K), T(da % f) = 0a x T f.

Proposition 3.2. A mapping T : C.(K) — C(K) is translation invariant if and only if
there exists a unique positive measure p € M (K) such that Tf = p= f for any f in C.(K).
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Proof. Suppose that there exists a unique positive measure p € M (K) such that Tf = px f
for all f € C.(K). Then T is obviously linear and positive by pos(T'f) = supp(u) * pos(f)
(6], 4.2D). Also we have

T(0a* f)=p+ (0a*f)=0a*(uxf)=0axTf,

where a € K, i.e. T is translation invariant.

Conversely let T be a translation invariant mapping. Since the mapping f — T'(f7)(e)
is linear and positive, by Rietz representation theorem there is a measure p € M(K) such

that
:/ﬂmww>

where f € C.(K). Also for any f € C.(K),z € K we have

Tf(z)=Tf(xxe) = (0- xTf)(e)
= (T(6,- = f))(e)

=[G = D00
:/j@*fmmw=W*ﬂ@)

The following definition is similar to definition 3.1.

Definition 3.3. Let 1 < p < co and T : LP(K) — LP(K) be a bounded operator on
LP(K).
(7) T is called translation invariant if for any a € K and any f € LP?(K) we have §, « Tf =
T(0a* f).
(ii) T is called submarkovian if for any f € LP(K) with 0 < f <1 a.e. wehave 0 <Tf <1
a.e..

Proposition 3.4. Let T : LP(K) — LP(K) be a bounded operator on LP(K) (1 < p <
o0). Then T is submarkovian translation invariant if and only if there exists a positive
bounded measure p € M (K) such that u(K) <1and Tf = p= f for any f € LP(K).

Proof. First, suppose that for a positive bounded measure p € M(K) with u(K) < 1 we

have T'f = px f (f € LP(K)). Then for every a € K, 0o *Tf = g% (u* f) = pu* (dgx f) =
T(0g* f). Alsoif f € LP(K) and 0 < f <1 a.e., then since

Tf@) = s f@) = [ saddnt) = [ [ 506, <50,

for almost every z in K, we have

0<Ts@) < [ [ i, 5 swdut) = [ dute) = ) < 1.

Conversely let T' be a submarkovian translation invariant operator.
First, assume that for every f € C.(K) there exists a hy in C(K) such that T'f = hy.
Then the restriction T'|c, (k) : Cc(K) — C(K) defined by f + hy is obviously translation
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invariant. By Proposition 2.2 there exists a positive measure p € M (K) such that T'f = px f
for all f in C.(K). For this y and any xo € K we have

W) = /K dyu(x) = /K 1( # wo)du(z) = (u* 1) (o) = T(zo).

Since T is submarkovian, this shows that 0 < u(K) < 1. In addition since C.(K) is dense
in LP(K), the restricted T has an extension T'f = p* f to LP(K).

In general case, by Lemma 2.4, for a neighborhood base {V;} at e there is a net {k;} C
CH(K) with bupp(k ) CV; and Hk |1 = 1 such that {k;} is a bounded approximate identity
of LP(K). For every k; we define T; : LP(K) — LP(K) by T;,f = Tf*k;, f € LP(K). Every
T; is clearly linear and since for any f € LP(K), |Tf * kill, < [T fllpllk:llx = T fllp ( [6],
5.5Q), every T; is also bounded. For any a € K and f € LP(K),

Oa % Tif =00 x (Tfxk;)=T(0a*f)xki="T;(0q % f).
Then every T; is translation invariant. If f € LP(K) and 0 < f < 1 a.e., we have

T4 = [ Trwrk 0= [ [ TrORC, 6 @am).

Since T is submarkovian, for almost every = in K,
0< (@) < [ Wy dmly) = il = 1.

Then any T; is submarkovian too. By ( [6], 5.5D) for any f € LP(K), T f = k; is continuous.
Then by case 1 for every T; there is a positive bounded measure p; € M (K) with p;(K) <1
such that T; f = u; * f. By Banach-Alouglu theorem there is a positive bounded measure
w € M(K) with u(K) <1 such that g; — pin o(M(K),C.(K)). Now for every f in C.(K)
we have

Tf=lmTfxk;=lmu;*f=p=f

Since C.(K) is dense in LP(K), we can extend this function to LP(K).
Uniqueness of the measure p is obvious. O

Definition 3.5. Let 1 < p < oo. A family {P;}+>0 of bounded operators on LP(K) is
called strongly continuous contraction semigroup if
(@) [|P|l <1 for all ¢ > 0;
(it) P,Ps = Pyy for all t,s > 0;
(i13) ||Pef — fllp — 0 ast — 0, for all f € LP(K).

Definition 3.6. A family {u:}:~0 of positive bounded measures in M (K) is called a
convolution semigroup on K if
(1) pe(K) <1 forallt>0;
(40) pue * s = peys for all t,s > 0;
(i19) pp — e as t — 07 in o(M(K), C.(K)).

For a strong hypergroup K, if {{: }+>0 is a convolution semigroup on K, then there exists
a unique negative definite function ¢ on K such that Re() > 0 and fi; = e~ for every
t > 0. The function 1 is called the negative definite function associated with {pu}i>0. We
refer to [7] or [2] for basic properties of convolution semigroups.

Theorem 3.7. Let 1 < p < co. There is a one to one correspondence between con-
volution semigroups on K and strongly continuous contraction semigroups of translation
invariant and submarkovian operators on LP(K).
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Proof. Suppose that {p:}~0 is a convolution semigroup on K. We define P; : LP(K) —
LP(K) by Pif = pe = f, f € LP(K). By Proposition 3.4 every P, is a translation invariant
and submarkovian bounded operator. In addition since ||p * fllp, < el | f]lp ( [6], 5.4G),
[Pl = supyp,=1l|Pefl| < llpell = pe(K) < 1 and PoPof = Pi(ps * f) = pe * ps * [ =
tits * [ = Piysf. By taking o = 1 in Theorem 2.2 of [7] we have u:(K) > 0 for any ¢ > 0,
so for every f € LP(K),

1P — 17 = /K e * £(2) — F(@)P dm(x)

= x*’—f(x) Pdm(z
= [0 s - Lok awwlr an)

< [ [ 1) - ! Ex)ﬂpdut(y)dm(x)

= [ [aer- )Ipdmdut()
- /K 0u(y) dpu(y),

where gi(y) = ||0, * f — ||p We put g(y) = |6, * f — f|b. Then g, g; are bounded

and continuous. Conmder h e CH(K) such that 0 < h <1 and h(e) = 1. Since u(K) =
fie(1) = e Dy (K) — 1 as t — 0. We have

/gtdutz/ hgdut—/ h(g—gt)dutJr/ (1 = h)gedp,
K K K K

and so
0<tmsup [ gilw)daty) <2613 [ (1= myas. <o,
K K

Therefore {P;}+~¢ is a strongly continuous contraction semigroup.

Conversely let {P;}:~0 be a strongly continuous contraction semigroup of translation
invariant and submarkovian operators on LP(K). By Proposition 3.4 for every ¢t > 0 there
exists a unique positive and bounded measure p; € M (K) such that pu(K) <1 and P, f =
e * f, for all f € LP(K). For any f € C.(K) and any t,s > 0,

/f )dpits(@ /f (exa™ )dprrs(x) = (pegs * f7)(e)
= Pisf(e) = (PP f7)

= (pe * ps * f7) /f Ydpie * s (),

so that ppqs = e * ps.

Now let {k } C C*( ) be the approximate identity as in the Lemma 2.4. For any f in
K), [x(f r)dp(x) = (e (f * ki) 7)(e) = (e * [~ ki) (e) = (B (f7) x k7 )(e) =
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S Pi(f7)(@)ki(z)dm(z). Also for any = € K we have

1 # ki) < /K|f<my>\-ki<y->dm<y>

< [ ([ 1501d6 +5,)0) ko) amy)
SM-/Kk(y ) dm(y)

=M [ ) dmly) = 3l = M
where M := sup,c g | f(t)|. So the net ([, (f * ki) () dp(x))s is bounded, because
[ k@) (o) < [ 1)l dusla) < M - pl) < M.

Therefore ( [}, (f*ki)(x) dpe(x));, is convergent ( by passing to a subnet if necessary). Then

lim/fd,ut lim hm/ (f * ki)(z) dpe (2)

t—0+

=lim lim [ (f*k;)(z)du:(z)

i t—0t K
—tiw [ f kidm = 1 (0) = £(o).
¢ JK
This shows that {u}¢~0 is a convolution semigroup on K. O

For a convolution semigroup {u:}+>0 on K, the contraction semigroup defined by P.f =
wex f, f € LP(K), is called the contraction semigroup on LP(K) induced by {f}¢>0-

Definition 3.8. Let 1 < p < oo and {P;}+>0 be a strongly continuous contraction
semigroup on LP(K).
(i) We define N : D(N) — LP(K) by
t

Nf=lim [ Pfds, (feD(N))
— /o

where D(N) = {f € LP(K) : lim;_ fg P, fds exists in LP(K)}. The function N is called
the potential operator for {P;};0, and is denoted by (N, D(N)).
(#4) For any A > 0 the function Ny : LP(K) — LP(K) defined by

Nif = / e MPfdt, (f€LP(K))
0
is a bounded operator with domain L?(K) and of norm || Nx| < 1 ( [1], Proposition 11.10).
We define Ny : D(Ng) — LP(K) by
Nof = lim Npf, (7 € D(Ny))
where D(Ny) = {f € LP(K) : limy_,o+ Ny f exists in LP(K)}. The function Ny is called
the zero-resolvent for {P;};~¢ and is denoted by (No, D(Np)).

(#94) If {ui}i>0 is a convolution semigroup then for any A > 0 we define the measure
px € M(K) by

pap) = / T e M) dt (o € Cu(E)).
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{pa}r>0 is called the resolvent of measures on K. For basic properties of {py } a0 refer to [2].

Proposition 3.9. Let 1 < p < oo and {P;}s~0 be a strongly continuous contraction
semigroup on LP(K).
(1) D(Np) is dense in LP(K) if and only if limy .o+ ANxf =0 for all f € LP(K).
(#9) D(N) is dense in LP(K) if and only if lim;_,o P.f = 0 for all f € LP(K).

Proof. Refer to the Propositions 11.9 and 11.14 of [1]. O

Theorem 3.10. Let K be a commutative strong hypergroup, { P; };~¢ be the contraction
semigroup on L?(K) induced by {s}¢>0 and 1 be the continuous negative definite function
on K associated with {1t }e>0-

(i) The domain of zero-resolvent (N, D(Ng)) of {P;}4~0 is dense in L?(K) if and only if
1) # 0 locally almost everywhere on K.

(ii) The domain of potential operator (N, D(N)) of {P;};~0 is dense in L?(K) if and only
if Reyy # 0 locally almost everywhere on K.

Proof. (i) Since 1 is a negative definite function with Rey > 0, then #(1) > 0. We prove
the theorem in two cases. Put B = {£ € K :(£) = (1)}.

Case 1. ¥(1) =
For any k € C.(K ) and any A > 0 we have Nx(k) = [° e Py (k)dt and Ny (k) € L*(K).
Then for any ¢ € K,

(N () (€) = / ED N (k) () dm(x)

30) /K koox(@) [ X0 duae(y) dr(x) dm(z) di

et tar = O 1

I,
= [ [ e [ Gnta) dm(a) dnt) i
/0 e A+(E)

where Mg_lsz |€(x)|2dm(z). So by ( [6], 7.31),

INAEE = IR = [ 158 Pare).
We have KO . \2

NS - )2 2_ N 2

o < MOR G e < HOP

since Rey > 0. If ¢ # 0 locally almost everywhere then B is a locally null set and so by
using of the dominated convergence theorem,
k(&) A

i AN R) I = [ 1 T2 s

as A — 07. The latter relation shows that {k : k € C.(K)} C {f € L*(K) : limy_o+ ANy f =
0}. But the set {k : k € C.(K)} is dense in L?(K) ( [2], p. 85) and the set {f € L*(K) :

*dm(€) =0
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limy_o ANy f = 0} is closed ( [1], p. 82). Then for each f € L?(K), limy_ o+ ANyf =0
and so by Proposition 3.9(i) D(Np) is dense in L*(K).

Conversely, if B is not locally null then by Theorem 2.2.45(h) of [2] B+ is compact. So
there exist f,g € CH(K) suchthat g=1lon Bt and g < f*f~. So1< f*f~ on B+. On
the other hand for any A > 0,

supp(pa * py ) € (supp(pa) * supp(pa) )¢
CSxS™
C B+« B+ C B,

where § = supp(pa) = (Uys supp(ir))°. For any A > 0 we have
Jic |ox* f(w)]*dm(u)

f J(E™ s u)dpx(s)dpx(t)dm(u)

fs(u) fi= (w)dm(u)dpx(s~)dpx(t)

f(u) fi-(s7 * w)dm(u)dpx(s~)dpa(t)

f(u) fu(s * t)dm(u)dpx(s)dpa(t™)

- / / / F7 ) f e 2)dim(u)dS, + 6(x)dpa(s)dpx ()
KJK

:/K/K/Kf*f_(x)d(Ss*5t(x)dp,\(s)dp,\(t_)

The latter integral is greater than (or equal with) [, dpx * p) (z) = pA(K)? = 5z, since

o0 o0 1
pa(K) = ga(1) = / M iy(L)dt = / e Mgy = 1
0 0

But

px* fx /fx*y ) dpx(y / /fx*y ) dpe(y)dt
—/0 M (i 5 f) (@)t

= Ny f(x).

Then [[ANxf|l2 > 1 and by Proposition 3.9(z), this implies that D(Np) is not dense in
2
K).

Case 2. (1) # 0.
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For any f € L*(K),
IANAfll2 = | / Ne NP, ], < / Xe M| P ||t
0 0
< / Ae‘“e—w(l)ﬂ Flladt

as A — 07, since [|Pyfll2 = [lue* fll2 < lluell [1f]l2 = @ Q)| £]l2 = e @[ fl2. Then D(No)
is dense in LP(K). On the other hand by Theorem 2.2 and Proposition 1.3(a) in [7] we have

{¢ e K : ¢(€) =0} =0 and so that ¢ # 0 locally almost everywhere.
(1) Put D = {¢ E K : Reyp(&) = (1)} and again consider two cases.
Case 1. (1) =

),

By continuity of ¢, D is closed. For any ¢ € C.(
- | @ity am(@) = [ [ T@otox@ arin()
= [ o(x)
K

fow]

&(x)x(x) dm(z)dr(x)

K
and then
(Pd)(€) = (ue * 9)(&) = @(€)(9)() = m(E)P(&) M " = wz(;f@
So
IRl =13l = [ 1R e
We have
|M|Q < e~ RO |9()]2 < |(6))2.

Mf -
If Rey # 0 locally almost everywhere then D is locally null, and so by dominated con-
vergence theorem we have lim; .o, P;¢ = 0 in L?(K) (note that by Theorem 2.2 in [7],
Retp > 0). Thus {¢ : ¢ € C.(K)} C {f € L*(K) : limy_.o. P,f = 0}. But as before the
set {¢: ¢ € Co(K)} is dense in L(K) and the set Ey := {f € L*(K) : limy_.o P,f = 0}
is closed because if f is in its closure then for any ¢ > 0 there is a g € Ey such that
|lf —gll2 < § and there is a ¢y > 0 such that for any ¢ € [0,to], || P;g||2 < §. Then for any
t € [0,t0] we have

[Pcfll2 < Pef = Prigllz + 1 Pigllz < 1P = gll2 + ([ Pgll2 <6

since ||P|| < 1. So f € Ep. Therefore for any f € L*(K),lim;_o P.f = 0. Then by
Proposition 3.9(ii), D(N) is dense in L?(K).

Conversely if D is not locally null, then by Proposition 2.2.45(h) in [2] D+ is compact,
and by [9] it is a subhypergroup of K. For any ¢ > 0 we have supp(u;) € D*. Then

supp (g * 1y ) = (supp(pee) * (supp(pe))~)°
C (DJ_ *DJ_)C C (DJ_)C — DJ_.
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On the other hand for f € C.(K) with f* f~ > 1 on D™,
IPufI2 = /K e % £ () Pdmi(z) = /K F o (@) dpn iy ().

The last integral is greater than (or equal with) [, i * p; (2) = (ue(K))? = 1 (note that
pi(K) = (1) = e~ = 1). Thus lim; .o, P;f # 0. Now Proposition 3.9(ii) shows that
D(N) is not dense in L?(K).

Case 2. (1) # 0.

For any f € L?(K) we have

1Pefll2 = [l % fll2 < ™D fll2 = 0,
as t — 00, see the case 2 of (i). Then D(N) is dense in L?(K). Also as in the case 2 of (i),
{€ € K: Rep(€) =0} = 0 and so Retp # 0 locally almost everywhere. O
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