CONTRACTION SEMIGROUPS ON HYPERGROUP ALGEBRAS

A. R. MEDGHALCHI, S. M. TABATABAIE

Received December 16, 2007; revised September 19, 2008

ABSTRACT. In this paper we develop potential theory on hypergroups and study contraction semigroups on hypergroups, we state and prove a necessary and sufficient condition that the domain of zero-resolvent or the domain of potential operator of $\{P_t\}_{t>0}$ is dense in $L^2(K)$.

1. INTRODUCTION AND NOTATION

Let K be a commutative locally compact hypergroup. We denote by M(K) the space of all regular complex-valued Borel measures on K, by $M^+(K)$ the subset of positive measures in M(K), and by δ_x the Dirac measure at the point x. The closure of any $A \subseteq K$ is denoted by A^c .

First we recall the definition and basic properties of a hypergroup. The main references are [2] and [6]. You can see also [5] and [8] for more properties of hypergroups.

Definition 1.1. Let K be a locally compact Hausdorff space. The space K is a hypergroup if there exists a binary mapping $(x, y) \mapsto \delta_x * \delta_y$ from $K \times K$ into $M^+(K)$ satisfying the following conditions,

(1) The mapping $(\delta_x, \delta_y) \mapsto \delta_x * \delta_y$ extends to a bilinear associative operator * from $M(K) \times M(K)$ into M(K) such that

$$\int_{K} f d(\mu * \nu) = \int_{K} \int_{K} \int_{K} \int_{K} f d(\delta_{x} * \delta_{y}) d\mu(x) d\nu(y)$$

for all continuous functions f on K vanishing at infinity.

(2) For each $x, y \in K$ the measure $\delta_x * \delta_y$ is a probability measure with compact support.

(3) The mapping $(\mu, \nu) \mapsto \mu * \nu$ is continuous from $M^+(K) \times M^+(K)$ into $M^+(K)$; the topology on $M^+(K)$ being the cone topology.

(4) There exists $e \in K$ such that $\delta_e * \delta_x = \delta_x = \delta_x * \delta_e$ for all $x \in K$.

(5) There exists a homeomorphism involution $x \mapsto x^-$ from K onto K such that, for all $x, y \in K$, we have $(\delta_x * \delta_y)^- = \delta_{y^-} * \delta_{x^-}$ where for $\mu \in M(K)$, μ^- is defined by

$$\int_{K} f(t)d\mu^{-}(t) = \int_{K} f(t^{-})d\mu(t),$$

and also,

$$e \in \operatorname{supp}(\delta_x * \delta_y)$$
 if and only if $y = x^{-1}$

where $\operatorname{supp}(\delta_x * \delta_y)$ is the support of the measure $\delta_x * \delta_y$. (6) The mapping $(x, y) \mapsto \operatorname{supp}(\delta_x * \delta_y)$ is continuous from $K \times K$ into the space $\mathbf{C}(K)$ of

²⁰⁰⁰ Mathematics Subject Classification. 43A62, 43A35.

Key words and phrases. Hypergroups, Positive and negative definite functions and measures, Convolution semigroups, Contraction semigroups.

compact subsets of K, where $\mathbf{C}(K)$ is given the topology whose subbasis is given by all

$$\mathbf{C}_{U,V} = \{ A \in \mathbf{C}(K) : A \cap U \neq \emptyset \text{ and } A \subseteq V \}$$

where U, V are open subsets of K.

Note that $\delta_x * \delta_y$ is not necessarily a Dirac measure. A hypergroup K is commutative if $\delta_x * \delta_y = \delta_y * \delta_x$ for all x, y in K. Let 's recall some properties of locally compact commutative hypergroups. Such a hypergroup K carries a Haar measure m such that $\delta_x * m = m$ for all $x \in K$ [11]. In any commutative hypergroup K we have $m = m^-$ ([6], 5.3). Let f, g be Borel functions on K and $\mu \in M(K)$. For any $x, y \in K$ we denote $\overline{f}(x) = \overline{f(x)}, \ f^-(x) = f(x^-), \ \widetilde{f}(x) = \overline{f(x^-)}$ and $pos(f) = \{x \in K : f(x) > 0\}$, and define $f_x(y) = f(x * y) := \int_K fd(\delta_x * \delta_y)$. Also we define

$$(\mu * f)(x) := \int_{K} f(y^{-} * x) \, d\mu(y) \text{ and } (f * g)(x) := \int_{K} f(x * y)g(y^{-}) \, dm(y),$$

where $x \in K$. For any subsets A, B of K, we denote $A * B = \bigcup \{ \operatorname{supp}(\delta_x * \delta_y) : x \in A, y \in B \}$ and $A^- = \{x^- : x \in K\}$. A non-empty closed subset E of K is a subhypergroup of K if $E^- = E$ and $E * E \subseteq E$.

A complex-valued continuous function ξ on K is said to be multiplicative if $\xi(x*y) = \xi(x)\xi(y)$ holds for all $x, y \in K$. The space of all multiplicative functions on K is denoted by $X_b(K)$. A nonzero multiplicative function ξ on K is called a character if $\xi(x^-) = \overline{\xi(x)}$ for all x in K. The dual \hat{K} of K is the locally compact Hausdorff space of all characters with the topology of uniform convergence on compacta. In general \hat{K} is not necessarily a hypergroup. A hypergroup K is called *strong* if its dual \hat{K} is also a hypergroup with complex conjugation as involution, pointwise product as convolution, that is

$$\eta(x)\chi(x) = \int_{\hat{K}} \xi(x) \, d\delta_{\eta} * \delta_{\chi}(\xi)$$

for all $\eta, \chi \in \hat{K}$ and $x \in K$, and the constant function **1** as the identity element.

We denote $L^1(K) = L^1(K, m)$ and $L^1(\hat{K}) = L^1(\hat{K}, \pi)$ where π is the Plancherel measure on \hat{K} associated with m.

For any $f \in L^1(K)$ and $\mu \in M(K)$, the Fourier-Stieltjes transform $\hat{\mu}$ of μ and the Fourier transform \hat{f} of f are defined by

$$\hat{\mu}(\xi) = \int_{K} \overline{\xi(t)} d\mu(t) \text{ and } \hat{f}(\xi) = \int_{K} \overline{\xi(t)} f(t) dm(t),$$

where $\xi \in \hat{K}$.

For any $k \in L^1(\hat{K})$ and $\sigma \in M(\hat{K})$, the inverse Fourier transform \check{k} and $\check{\sigma}$ of k and σ , respectively, are defined by

$$\check{k}(x) = \int_{\hat{K}} \xi(x) k(\xi) \, d\pi(\xi) \text{ and } \check{\sigma}(x) = \int_{\hat{K}} \xi(x) \, d\sigma(\xi),$$

where $x \in K$.

2. The Periodicity on Hypergroups

Definition 2.1. A measure μ on K is called periodic with period $p \in K$ if $\delta_p * \mu = \mu$. The set of all periods of μ is denoted by $Per(\mu)$. We shall show that $Per(\mu)$ is a closed subhypergroup of K.

Let f be a continuous function on K. An element $p \in K$ is called a period of f if $\delta_p * f = f$. Similarly the set of all periods of ϕ is denoted by $Per(\phi)$

We shall see that for every continuous bounded positive definite function ϕ on K and any $\mu \in M(K)$, $Per(\phi)$ and $Per(\mu)$ are closed subhypergroups of K.

Definition 2.2. Let $A \subseteq K$, $B \subseteq \hat{K}$. We denote $A^{\perp} = \{\xi \in \hat{K} : \xi(x) = 1 \text{ for all } x \in A\}$, $B^{\perp} = \{x \in K : \xi(x) = 1 \text{ for all } \xi \in B\}$.

 B^{\perp} is a subhypergroup of K and if K is a strong hypergroup, then A^{\perp} is a subhypergroup of \hat{K} [9].

Definition 2.3. A measure $\mu \in M(K)$ is called shift-bounded if $\mu * f \in C_b(K)$ for all $f \in C_c(K)$, and is called weakly shift-bounded if $\mu * f * \tilde{f} \in C_b(K)$ for all $f \in C_c(K)$.

Remark. Clearly if μ is shift-bounded, then μ is weakly shift-bounded but the converse is not true in general ([2], 1.2.32). If K is a locally compact group, then μ is a positive definite measure (i.e. $\int_K f * \tilde{f} d\mu \geq 0$ for all $f \in C_c(K)$) if and only if $\mu * f * \tilde{f}$ is a continuous positive definite function ([1], proposition 4.4). This result is also true for a hypergroup K. As a consequence, in the group case every positive definite measure is weakly shift-bounded ([1], 4.4) and this is not the case for hypergroups. For instance ($\mathbb{Z}_+, *(Q_n)$) is a polynomial hypergroup with semicharacters $\chi_x(n) = Q_n(x)$ ([2], Theorem 3.2.12), and $\chi_x m$ is positive definite for all $x \in \mathbb{R}$, but for $x > x_0, \chi_x m$ is not shift-bounded.

For every weakly shift-bounded positive definite measure μ on M(K) there is a unique positive measure σ in $M(\hat{K})$ such that

$$\int_{K} f * \tilde{f} d\mu = \int_{\hat{K}} |(f^{-})|^2 d\sigma \quad (f \in C_c(K)).$$

The measure σ has the following properties

(i) $\int |\hat{f}|^2 d\sigma < \infty$

(ii) $(\mu * f * \tilde{f})(x) = \int_{\hat{K}} \xi(x) |\hat{f}(\xi)|^2 d\sigma(\xi)$

(iii) $(\mu * f * \tilde{g})(x) = \int_{\hat{K}} \xi(x) \hat{f}(\xi) \hat{g}(\xi) d\sigma(\xi),$

where $f, g \in C_c(K)$ and $x \in K$. The measure σ is called the associated measure of μ [2].

Lemma 2.4. Let U be a compact neighborhood of identity e in K and $\{V_i\}$ be a neighborhood base at e included in U. There is a bounded approximate identity $\{k_i\}$ in $L^1(K)$ satisfying $k_i \in C_c^+(K)$, $||k_i||_1 = 1$, $\operatorname{supp}(k_i) \subseteq V_i$, $\hat{k}_i \in L^1_+(\hat{K})$ and $\lim_i \hat{k}_i = 1$ uniformly on compact subsets of \hat{K} .

Proof. Refer to Theorem 2.2.28 in [2] page 88.

Theorem 2.5. Let K be a commutative strong hypergroup and μ be a weakly shiftbounded and positive definite measure on K with associated measure σ . For every γ in \hat{K} the measure $\gamma \mu$ is also a positive definite measure with associated measure $\delta_{\gamma} * \sigma$.

Note that the proof of the theorem in the group case is based on $(fg)_x = f_x g_x$ which does not hold for hypergroups. So our proof is completely different (c.f. [1], Proposition 4.10).

Proof. Let g be in $C_c^+(K)$ and put $h^- := g * \tilde{g}$. For each $f \in C_c(K)$ we have

$$\begin{split} \int_{K} [\gamma(f * \bar{f}) * h(x)] d\mu(x) \\ &= \int_{K} \int_{K} \gamma(y)(f * \tilde{f})(y)h(x * y^{-}) dm(y)d\mu(x) \\ &= \int_{K} \gamma(y)(f * \tilde{f})(y) \int_{K} h(x * y^{-}) d\mu(x)dm(y) \\ &= \int_{K} \gamma(y)(f * \tilde{f})(y)(\mu * h^{-})(y) dm(y) \\ &= \int_{K} \gamma(y)(f * \tilde{f})(y)(\mu * g * \tilde{g})(y) dm(y) \\ &= \int_{K} \int_{\hat{K}} \gamma(y)(f * \tilde{f})(y)\xi(y)|\hat{g}(\xi)|^{2} d\sigma(\xi)dm(y) \\ &= \int_{\hat{K}} \int_{\hat{K}} |\hat{g}(\xi)|^{2} \int_{K} (f * \tilde{f})(y)\eta(y) dm(y)d\delta_{\gamma} * \delta_{\xi}(\eta)d\sigma(\xi) \\ &= \int_{\hat{K}} \int_{\hat{K}} |\hat{g}(\xi)|^{2} \int_{K} f(y)(\eta * (\tilde{f})^{-})(y) dm(y)d\delta_{\gamma} * \delta_{\xi}(\eta)d\sigma(\xi) \quad ([6], 5.5O) \\ &= \int_{\hat{K}} \int_{\hat{K}} |\hat{g}(\xi)|^{2} \int_{K} f(y)(\eta * \bar{f})(x) dm(y)d\delta_{\gamma} * \delta_{\xi}(\eta)d\sigma(\xi) \\ &= \int_{\hat{K}} \int_{\hat{K}} |\hat{g}(\xi)|^{2} \int_{K} \int_{K} (\eta f)(y) \overline{(\eta f)(x^{-})} dm(x)dm(y)d\delta_{\gamma} * \delta_{\xi}(\eta)d\sigma(\xi) \\ &= \int_{\hat{K}} \int_{\hat{K}} |\hat{g}(\xi)|^{2}(\eta f)(\mathbf{1}) \overline{(\eta f)(\mathbf{1})} d\delta_{\gamma} * \delta_{\xi}(\eta)d\sigma(\xi) \\ &= \int_{\hat{K}} \int_{\hat{K}} |\hat{g}(\xi)|^{2} |(\eta f)(\mathbf{1})|^{2} d\delta_{\gamma} * \delta_{\xi}(\eta)d\sigma(\xi). \end{split}$$

Now if we put $j(\eta) = |(\eta f)(\mathbf{1})|^2$ then since $j(\gamma * \xi) = \int_{\hat{K}} j(\eta) d(\delta_{\gamma} * \delta_{\xi})(\eta)$ the last integral is equal to

$$\int_{\hat{K}} \int_{\hat{K}} |\hat{g}(\xi)|^2 j(\eta) \, d\sigma(\xi) = \int_{\hat{K}} |\hat{g}(\xi)|^2 j(\gamma * \xi) \, d\sigma(\xi) = \int_{\hat{K}} |\hat{g}(\xi)|^2 j_{\gamma}(\xi) \, d\sigma(\xi).$$

Now we replace g by k_i in the above relations (the net $\{k_i\}$ has been introduced in Lemma 2.4). Consider $h \in C_c^+(K)$ such that $h \equiv ||f||_{\infty}$ on the compact set $\operatorname{supp}(f) * U$, where U is a compact neighborhood of the identity e as in Lemma 2.4. By ([6], 6.2E) we have $||f| * k_i||_{\infty} \leq ||f||_{\infty} ||k_i||_1 = ||f||_{\infty}$. Then

$$|\gamma(f * \tilde{f}) * h| = |\gamma(f * \tilde{f}) * k_i * k_i^-| \le (|f| * k_i) * (|f| * k_i)^- \le h * h^- \in L^1(K, \mu).$$

On the other hand for any $\xi \in \hat{K}$,

$$|\widehat{k_i}(\xi)| \le \int_K |\overline{\xi(x)}| \, k_i(x) \, dm(x) \le ||k_i||_1 = 1$$

Then for any $\xi \in \hat{K}$, $||\hat{k_i}(\xi)|^2 j_{\gamma}(\xi)| \leq j_{\gamma}(\xi)$. Similar to the above relations we also have

$$\int_{\hat{K}} j_{\gamma}(\xi) \, d\sigma(\xi) = \int_{K} \int_{\hat{K}} \gamma(y) (f * \tilde{f})(y) \xi(y) \, d\sigma(\xi) dm(y)$$
$$= \int_{K} \gamma(y) (f * \tilde{f})(y) \check{\sigma}(y) \, dm(y) < \infty,$$

because $\check{\sigma} \in C(K)$ and so that $\gamma(f * \tilde{f})\check{\sigma} \in C_c(K)$. So $j_{\gamma} \in L^1(\hat{K}, \sigma)$.

Therefore we can apply the dominated convergence theorem on two sides of the equality

$$\int_{K} \gamma(f * \tilde{f}) * (k_i * \tilde{k}_i) d\mu = \int_{\hat{K}} |\hat{k}_i|^2 j_\gamma \, d\sigma,$$

and so by limiting,

$$\int_{K} \gamma(f * \tilde{f}) d\mu = \int_{\hat{K}} j_{\gamma} d\sigma$$
$$= \int_{\hat{K}} (\delta_{\gamma^{-}} * j) d\sigma$$
$$= \int_{\hat{K}} j \ d(\delta_{\gamma} * \sigma) \quad ([6], \text{ Theorem 4.2H})$$

But since $(\eta f)(\mathbf{1}) = \int_K f(x)\eta(x) \, dm(x) = \int_K f(x^-)\eta(x^-) \, dm(x) = (f^-)(\eta)$, we have $j(\eta) = |(\eta f)(\mathbf{1})|^2 = |(f^-)(\eta)|^2.$

Thus

$$\int_{K} f * \tilde{f} d(\gamma \mu) = \int_{\hat{K}} |(f^{-})|^2 d(\delta_{\gamma} * \sigma)$$

This completes the proof.

Corollary 2.6. Let μ be a weakly shift-bounded positive definite measure on K with associated measure σ . Then $Per(\sigma) = \operatorname{supp}(\mu)^{\perp}$.

Proof. Let $\gamma \in \hat{K}$. By Theorem 2.5 the measure associated with $\gamma \mu$ is $\delta_{\gamma} * \sigma$. Then $\gamma \in Per(\sigma)$ if and only if the measure associated with $\gamma \mu$ is σ . But the mapping taking a weakly shift-bounded positive definite measure into its associated measure is injective ([2], Corollary 4.3.11), so $\gamma \in Per(\sigma)$ if and only if $\gamma \mu = \mu$, and this is equivalent with γ being 1 on the support of μ .

A matrix $A = (a_{ij})$ of complex numbers is called *positive hermitian* if

$$\sum_{i,j=1}^{n} a_{ij} c_i \overline{c_j} \ge 0$$

for each complex numbers c_1, c_2, \ldots, c_n .

A continuous function $\phi: K \to \mathbb{C}$ is called

(i) positive definite if the matrix $(\phi(x_i * x_j^-))$ is positive hermitian for every x_1, x_2, \ldots, x_n in K; and

(ii) negative definite if the matrix $(\phi(x_i) + \overline{\phi(x_j)} - \phi(x_i * x_j^-))$ is positive hermitian for every x_1, x_2, \ldots, x_n in K.

By the Bochner theorem every bounded positive definite function ϕ on K is associated with a measure $\sigma \in M^+(K)$ such that $\phi = \check{\sigma}$.

The following theorem has been established in ([2], Proposition 5.2.40) under the condition that K is strong. Here we prove it with a completely different technique for commutative hypergroups.

Theorem 2.7. Let $\sigma \in M^+(K)$ be the measure associated with a bounded positive definite function ϕ on K. Then

$$Per(\phi) = \operatorname{supp}(\sigma)^{\perp} = \{ p \in K : \phi(p) = \phi(e) \}.$$

A. R. MEDGHALCHI, S. M. TABATABAIE

Proof. Since $\phi = \check{\sigma}$, $p \in Per(\phi)$ if and only if $\check{\sigma} = \delta_p * \check{\sigma}$. For any $x \in K$,

$$(\delta_p * \check{\sigma})(x) = (\widehat{\delta_p} \sigma \check{)}(x) = \int_{\hat{K}} \xi(x) \widehat{\delta_p}(\xi) \, d\sigma(\xi) = \overline{\xi(p)} \int_{\hat{K}} \xi(x) \, d\sigma(\xi) = \overline{\xi(p)} \check{\sigma}(x).$$

By injectivity of the inverse Fourier transform, this implies that $p \in Per(\phi)$ if and only if $\xi(p) = 1$ for each $\xi \in \operatorname{supp}(\sigma)$. Therefore $Per(\phi) = \operatorname{supp}(\sigma)^{\perp}$.

To prove the second equality we proceed as follows:

If $\phi(e) = 0$, since for a bounded positive definite function ϕ we have $\|\phi\|_{\infty} = \phi(e)$ ([6], Theorem 11.1E), $\phi \equiv 0$ and the second equality trivially holds. Let $\phi(e) \neq 0$ (and so $\phi(e) > 0$). If $p \in Per(\phi)$ evidently we have $\phi(p) = \overline{\phi(p^- * e)} = \overline{\phi(e)} = \phi(e)$, since positive definity of ϕ implies that $\phi(p^-) = \overline{\phi(p)}$. Conversely let $\phi(p) = \phi(e)$. By inequality $2|\phi(x)| \leq \phi(e) + \phi(x * x^-)$ ($x \in K$) ([2], Lemma 4.1.3(f)) we have $\phi(e) \leq \phi(p * p^-)$, and by $\|\phi\|_{\infty} = \phi(e)$ we have $\phi(p * p^-) \leq \phi(e)$. Thus $\phi(p * p^-) = \phi(e)$. Let $y \in K$ and put $k = \phi(e), l = \overline{\phi(y)}, m = \phi(p * y^-), n = \phi(y * y^-)$. Since ϕ is positive definite, the matrix

$$\begin{pmatrix} k & k & l \\ k & k & m \\ \bar{l} & \bar{m} & n \end{pmatrix}$$

is positive hermitian, and so its determinant, that is $-k |m-l|^2$, is non-negative. Then since k > 0, m = l. Hence for any $y \in K$, $\phi(p^- * y) = \phi(y)$, i.e. $p \in Per(\phi)$.

Proposition 2.8. For every bounded measure μ of K we have (*i*) $Per(\mu) = \operatorname{supp}(\hat{\mu})^{\perp}$, (*ii*) $Per(\hat{\mu}) = \operatorname{supp}(\mu)^{\perp}$.

Proof. Refer to ([2], Theorem 5.2.40).

Corollary 2.9. For every bounded measure μ on K, $Per(\mu)$ is a closed subhypergroup of K.

Proof. Recall that $Per(\mu) = \operatorname{supp}(\hat{\mu})^{\perp}$ and for any subset A of \hat{K} , A^{\perp} is a closed subhypergroup of K.

Proposition 2.10. Let $\psi : \hat{K} \to \mathbb{C}$ be a negative definite function such that $Re(\psi) \ge 0$ and $\psi(\mathbf{1}) = 0$. Then $Per(\psi) = \{\xi \in \hat{K} : \psi(\xi) = 0\}$.

Proof. $\xi \in Per(\psi)$ obviously implies that $\psi(\xi) = \psi(\mathbf{1}) = 0$. Conversely let $\psi(\xi) = 0$. By inequality in ([2], Proposition 4.4.3(c)), $\psi(\xi * \xi^-) + \psi(\mathbf{1}) \leq 2\psi(\mathbf{1})$ and so $\psi(\xi * \xi^-) \leq 0$. Also since $\psi(\xi * \xi^-) \in \mathbb{R}$, $\psi(\xi * \xi^-) = Re(\psi)(\xi * \xi^-) \geq 0$. Thus $\psi(\xi * \xi^-) = 0$. Now by the inequality in ([2], Proposition 4.4.3(e)), $\delta_{\xi} * \psi = \psi$.

3. TRANSLATION INVARIANT CONTRACTION SEMIGROUPS ON HYPERGROUPS

Throughout this section K is a commutative hypergroup.

If f is a continuous function with compact support on K, then the right translations of $f, \delta_a * f$ ($a \in K$), are also continuous with compact support (see 3.1B and 4.2F of [6] or Proposition 1.2.16(iii) of [2]).

Definition 3.1. A positive linear mapping $T : C_c(K) \to C(K)$ is called *translation* invariant if for any $a \in K$ and $f \in C_c(K)$, $T(\delta_a * f) = \delta_a * Tf$.

Proposition 3.2. A mapping $T : C_c(K) \to C(K)$ is translation invariant if and only if there exists a unique positive measure $\mu \in M(K)$ such that $Tf = \mu * f$ for any f in $C_c(K)$.

576

Proof. Suppose that there exists a unique positive measure $\mu \in M(K)$ such that $Tf = \mu * f$ for all $f \in C_c(K)$. Then T is obviously linear and positive by $pos(Tf) = supp(\mu) * pos(f)$ ([6], 4.2D). Also we have

$$T(\delta_a * f) = \mu * (\delta_a * f) = \delta_a * (\mu * f) = \delta_a * Tf,$$

where $a \in K$, i.e. T is translation invariant.

Conversely let T be a translation invariant mapping. Since the mapping $f \mapsto T(f^-)(e)$ is linear and positive, by Rietz representation theorem there is a measure $\mu \in M(K)$ such that

$$T(f^{-})(e) = \int f(x)d\mu(x),$$

where $f \in C_c(K)$. Also for any $f \in C_c(K), x \in K$ we have

$$Tf(x) = Tf(x * e) = (\delta_{x^{-}} * Tf)(e)$$

= $(T(\delta_{x^{-}} * f))(e)$
= $\int (\delta_{x^{-}} * f)(t^{-})d\mu(t)$
= $\int f(x * t^{-})d\mu(t) = (\mu * f)(x).$

The following definition is similar to definition 3.1.

Definition 3.3. Let $1 \le p < \infty$ and $T : L^p(K) \to L^p(K)$ be a bounded operator on $L^p(K)$.

(i) T is called translation invariant if for any $a \in K$ and any $f \in L^p(K)$ we have $\delta_a * Tf = T(\delta_a * f)$.

(ii) T is called submarkovian if for any $f \in L^p(K)$ with $0 \le f \le 1$ a.e. we have $0 \le Tf \le 1$ a.e..

Proposition 3.4. Let $T: L^p(K) \to L^p(K)$ be a bounded operator on $L^p(K)$ $(1 \le p < \infty)$. Then T is submarkovian translation invariant if and only if there exists a positive bounded measure $\mu \in M(K)$ such that $\mu(K) \le 1$ and $Tf = \mu * f$ for any $f \in L^p(K)$.

Proof. First, suppose that for a positive bounded measure $\mu \in M(K)$ with $\mu(K) \leq 1$ we have $Tf = \mu * f$ $(f \in L^p(K))$. Then for every $a \in K$, $\delta_a * Tf = \delta_a * (\mu * f) = \mu * (\delta_a * f) = T(\delta_a * f)$. Also if $f \in L^p(K)$ and $0 \leq f \leq 1$ a.e., then since

$$Tf(x) = \mu * f(x) = \int_{K} f(y^{-} * x) d\mu(y) = \int_{K} \int_{K} f(t) d(\delta_{y^{-}} * \delta_{x})(t) d\mu(y),$$

for almost every x in K, we have

$$0 \leq Tf(x) \leq \int_K \int_K d(\delta_{y^-} * \delta_x)(t) d\mu(y) = \int_K d\mu(y) = \mu(K) \leq 1.$$

Conversely let T be a submarkovian translation invariant operator.

First, assume that for every $f \in C_c(K)$ there exists a h_f in C(K) such that $Tf = h_f$. Then the restriction $T|_{C_c(K)} : C_c(K) \to C(K)$ defined by $f \mapsto h_f$ is obviously translation

invariant. By Proposition 2.2 there exists a positive measure $\mu \in M(K)$ such that $Tf = \mu * f$ for all f in $C_c(K)$. For this μ and any $x_0 \in K$ we have

$$\mu(K) = \int_{K} d\mu(x) = \int_{K} \mathbf{1}(x^{-} * x_{0}) d\mu(x) = (\mu * \mathbf{1})(x_{0}) = T\mathbf{1}(x_{0}).$$

Since T is submarkovian, this shows that $0 \le \mu(K) \le 1$. In addition since $C_c(K)$ is dense in $L^p(K)$, the restricted T has an extension $Tf = \mu * f$ to $L^p(K)$.

In general case, by Lemma 2.4, for a neighborhood base $\{V_i\}$ at e there is a net $\{k_i\} \subseteq C_c^+(K)$ with $\operatorname{supp}(k_i) \subseteq V_i$ and $||k_i||_1 = 1$ such that $\{k_i\}$ is a bounded approximate identity of $L^p(K)$. For every k_i we define $T_i: L^p(K) \to L^p(K)$ by $T_i f = Tf * k_i, f \in L^p(K)$. Every T_i is clearly linear and since for any $f \in L^p(K)$, $||Tf * k_i||_p \leq ||Tf||_p ||k_i||_1 = ||Tf||_p$ ([6], 5.5Q), every T_i is also bounded. For any $a \in K$ and $f \in L^p(K)$,

$$\delta_a * T_i f = \delta_a * (Tf * k_i) = T(\delta_a * f) * k_i = T_i(\delta_a * f)$$

Then every T_i is translation invariant. If $f \in L^p(K)$ and $0 \le f \le 1$ a.e., we have

$$T_i f(x) = \int_K Tf(x * y)k_i(y^-)dm(y) = \int_K \int_K Tf(t)k_i(y^-)d(\delta_x * \delta_y)(t)dm(y).$$

Since T is submarkovian, for almost every x in K,

$$0 \le T_i f(x) \le \int_K k_i(y^-) dm(y) = ||k_i||_1 = 1.$$

Then any T_i is submarkovian too. By ([6], 5.5D) for any $f \in L^p(K)$, $Tf * k_i$ is continuous. Then by case 1 for every T_i there is a positive bounded measure $\mu_i \in M(K)$ with $\mu_i(K) \leq 1$ such that $T_i f = \mu_i * f$. By Banach-Alouglu theorem there is a positive bounded measure $\mu \in M(K)$ with $\mu(K) \leq 1$ such that $\mu_i \to \mu$ in $\sigma(M(K), C_c(K))$. Now for every f in $C_c(K)$ we have

$$Tf = \lim Tf * k_i = \lim \mu_i * f = \mu * f.$$

Since $C_c(K)$ is dense in $L^p(K)$, we can extend this function to $L^p(K)$.

Uniqueness of the measure μ is obvious.

Definition 3.5. Let $1 \le p < \infty$. A family $\{P_t\}_{t>0}$ of bounded operators on $L^p(K)$ is called *strongly continuous contraction semigroup* if (i) $||P_t|| \le 1$ for all t > 0;

(ii) $P_t P_s = P_{t+s}$ for all t, s > 0;

(iii) $||P_t f - f||_p \to 0$ as $t \to 0^+$, for all $f \in L^p(K)$.

Definition 3.6. A family $\{\mu_t\}_{t>0}$ of positive bounded measures in M(K) is called a *convolution semigroup* on K if

(i) $\mu_t(K) \leq 1$ for all t > 0;

(*ii*) $\mu_t * \mu_s = \mu_{t+s}$ for all t, s > 0;

(*iii*) $\mu_t \to \delta_e$ as $t \to 0^+$ in $\sigma(M(K), C_c(K))$.

For a strong hypergroup K, if $\{\mu_t\}_{t>0}$ is a convolution semigroup on K, then there exists a unique negative definite function ψ on \hat{K} such that $Re(\psi) \ge 0$ and $\hat{\mu}_t = e^{-t\psi}$ for every t > 0. The function ψ is called the negative definite function associated with $\{\mu_t\}_{t>0}$. We refer to [7] or [2] for basic properties of convolution semigroups.

Theorem 3.7. Let $1 \leq p < \infty$. There is a one to one correspondence between convolution semigroups on K and strongly continuous contraction semigroups of translation invariant and submarkovian operators on $L^{p}(K)$.

Proof. Suppose that $\{\mu_t\}_{t>0}$ is a convolution semigroup on K. We define $P_t : L^p(K) \to L^p(K)$ by $P_t f = \mu_t * f, f \in L^p(K)$. By Proposition 3.4 every P_t is a translation invariant and submarkovian bounded operator. In addition since $\|\mu_t * f\|_p \leq \|\mu_t\| \|f\|_p$ ([6], 5.4G), $\|P_t\| = \sup_{\|f\|_p=1} \|P_t f\| \leq \|\mu_t\| = \mu_t(K) \leq 1$ and $P_t P_s f = P_t(\mu_s * f) = \mu_t * \mu_s * f = \mu_{t+s} * f = P_{t+s} f$. By taking $\alpha = 1$ in Theorem 2.2 of [7] we have $\mu_t(K) > 0$ for any t > 0, so for every $f \in L^p(K)$,

$$\begin{split} \|P_t f - f\|_p^p &= \int_K |\mu_t * f(x) - f(x)|^p \, dm(x) \\ &= \int_K |\int_K f(x * y^-) - \frac{f(x)}{\mu_t(K)} \, d\mu_t(y)|^p \, dm(x) \\ &\leq \int_K \int_K |f(x * y^-) - \frac{f(x)}{\mu_t(K)}|^p \, d\mu_t(y) \, dm(x) \\ &= \int_K \int_K |\delta_y * f - \frac{f}{\mu_t(K)}|^p \, dm \, d\mu_t(y) \\ &= \int_K g_t(y) \, d\mu_t(y), \end{split}$$

where $g_t(y) = \|\delta_y * f - \frac{f}{\mu_t(K)}\|_p^p$. We put $g(y) = \|\delta_y * f - f\|_p^p$. Then g, g_t are bounded and continuous. Consider $h \in C_c^+(K)$ such that $0 \le h \le 1$ and h(e) = 1. Since $\mu_t(K) = \hat{\mu}_t(\mathbf{1}) = e^{-t\psi(\mathbf{1})}, \ \mu_t(K) \to 1$ as $t \to 0^+$. We have

$$\int_{K} g_t d\mu_t = \int_{K} hg d\mu_t - \int_{K} h(g - g_t) d\mu_t + \int_{K} (1 - h)g_t d\mu_t,$$

and so

$$0 \le \limsup_{t} \int_{K} g_{t}(y) d\mu_{t}(y) \le 2^{p} ||f||_{p}^{p} \int_{K} (1-h) d\delta_{e} = 0.$$

Therefore $\{P_t\}_{t>0}$ is a strongly continuous contraction semigroup.

Conversely let $\{P_t\}_{t>0}$ be a strongly continuous contraction semigroup of translation invariant and submarkovian operators on $L^p(K)$. By Proposition 3.4 for every t > 0 there exists a unique positive and bounded measure $\mu_t \in M(K)$ such that $\mu_t(K) \leq 1$ and $P_t f = \mu_t * f$, for all $f \in L^p(K)$. For any $f \in C_c(K)$ and any t, s > 0,

$$\begin{split} \int_{K} f(x) d\mu_{t+s}(x) &= \int_{K} f^{-}(e \ast x^{-}) d\mu_{t+s}(x) = (\mu_{t+s} \ast f^{-})(e) \\ &= P_{t+s} f^{-}(e) = (P_{t} P_{s} f^{-})(e) \\ &= (\mu_{t} \ast \mu_{s} \ast f^{-})(e) = \int_{K} f(x) d\mu_{t} \ast \mu_{s}(x), \end{split}$$

so that $\mu_{t+s} = \mu_t * \mu_s$.

Now let $\{k_i\} \subseteq C_c^+(K)$ be the approximate identity as in the Lemma 2.4. For any f in $C_c(K)$, $\int_K (f * k_i)(x) d\mu_t(x) = (\mu_t * (f * k_i)^-)(e) = (\mu_t * f^- * k_i^-)(e) = (P_t(f^-) * k_i^-)$

 $\int_{K} P_t(f^-)(x)k_i(x)dm(x)$. Also for any $x \in K$ we have

$$\begin{aligned} f * k_i(x) &| \leq \int_K |f(x * y)| \cdot k_i(y^-) \, dm(y) \\ &\leq \int_K \left(\int_K |f(t)| \, d(\delta_x * \delta_y)(t) \right) k_i(y^-) \, dm(y) \\ &\leq M \cdot \int_K k_i(y^-) \, dm(y) \\ &= M \cdot \int_K k_i(y) \, dm(y) = M \cdot \|k_i\|_1 = M, \end{aligned}$$

where $M := \sup_{t \in K} |f(t)|$. So the net $(\int_K (f * k_i)(x) d\mu_t(x))_{i,t}$ is bounded, because

$$|\int_{K} (f * k_{i})(x) \, d\mu_{t}(x)| \leq \int_{K} |f * k_{i}(x)| \, d\mu_{t}(x) \leq M \cdot \mu_{t}(K) \leq M.$$

Therefore $(\int_K (f * k_i)(x) d\mu_t(x))_{i,t}$ is convergent (by passing to a subnet if necessary). Then

$$\lim_{t \to 0^+} \int_K f \, d\mu_t = \lim_{t \to 0^+} \lim_i \int_K (f * k_i)(x) \, d\mu_t(x)$$
$$= \lim_i \lim_{t \to 0^+} \int_K (f * k_i)(x) \, d\mu_t(x)$$
$$= \lim_i \int_K f^- k_i \, dm = f^-(e) = f(e).$$

This shows that $\{\mu_t\}_{t>0}$ is a convolution semigroup on K.

For a convolution semigroup $\{\mu_t\}_{t>0}$ on K, the contraction semigroup defined by $P_t f = \mu_t * f$, $f \in L^p(K)$, is called the contraction semigroup on $L^p(K)$ induced by $\{\mu_t\}_{t>0}$.

Definition 3.8. Let $1 \le p < \infty$ and $\{P_t\}_{t>0}$ be a strongly continuous contraction semigroup on $L^p(K)$.

(i) We define $N: D(N) \to L^p(K)$ by

$$Nf = \lim_{t \to \infty} \int_0^t P_s f \, ds, \quad (f \in D(N))$$

where $D(N) = \{f \in L^p(K) : \lim_{t \to \infty} \int_0^t P_s f ds \text{ exists in } L^p(K)\}$. The function N is called the potential operator for $\{P_t\}_{t>0}$, and is denoted by (N, D(N)). (*ii*) For any $\lambda > 0$ the function $N_{\lambda} : L^p(K) \to L^p(K)$ defined by

$$N_{\lambda}f = \int_0^{\infty} e^{-\lambda t} P_t f \, dt, \quad (f \in L^p(K))$$

is a bounded operator with domain $L^p(K)$ and of norm $||N_{\lambda}|| \leq \frac{1}{\lambda}$ ([1], Proposition 11.10). We define $N_0: D(N_0) \to L^p(K)$ by

$$N_0 f = \lim_{\lambda \to 0^+} N_\lambda f, \quad (f \in D(N_0))$$

where $D(N_0) = \{f \in L^p(K) : \lim_{\lambda \to 0^+} N_\lambda f \text{ exists in } L^p(K)\}$. The function N_0 is called the zero-resolvent for $\{P_t\}_{t>0}$ and is denoted by $(N_0, D(N_0))$.

(iii) If $\{\mu_t\}_{t>0}$ is a convolution semigroup then for any $\lambda > 0$ we define the measure $\rho_{\lambda} \in M(K)$ by

$$\rho_{\lambda}(\varphi) = \int_{0}^{\infty} e^{-\lambda t} \mu_{t}(\varphi) dt \quad (\varphi \in C_{c}(K)).$$

580

 $\{\rho_{\lambda}\}_{\lambda>0}$ is called the resolvent of measures on K. For basic properties of $\{\rho_{\lambda}\}_{\lambda>0}$ refer to [2].

Proposition 3.9. Let $1 \le p < \infty$ and $\{P_t\}_{t>0}$ be a strongly continuous contraction semigroup on $L^p(K)$.

(i) $D(N_0)$ is dense in $L^p(K)$ if and only if $\lim_{\lambda \to 0^+} \lambda N_\lambda f = 0$ for all $f \in L^p(K)$. (ii) D(N) is dense in $L^p(K)$ if and only if $\lim_{t\to\infty} P_t f = 0$ for all $f \in L^p(K)$.

Proof. Refer to the Propositions 11.9 and 11.14 of [1].

Theorem 3.10. Let K be a commutative strong hypergroup, $\{P_t\}_{t>0}$ be the contraction semigroup on $L^2(K)$ induced by $\{\mu_t\}_{t>0}$ and ψ be the continuous negative definite function on \hat{K} associated with $\{\mu_t\}_{t>0}$.

(i) The domain of zero-resolvent $(N_0, D(N_0))$ of $\{P_t\}_{t>0}$ is dense in $L^2(K)$ if and only if $\psi \neq 0$ locally almost everywhere on \hat{K} .

(*ii*) The domain of potential operator (N, D(N)) of $\{P_t\}_{t>0}$ is dense in $L^2(K)$ if and only if $Re\psi \neq 0$ locally almost everywhere on \hat{K} .

Proof. (i) Since ψ is a negative definite function with $Re\psi \ge 0$, then $\psi(\mathbf{1}) \ge 0$. We prove the theorem in two cases. Put $B = \{\xi \in \hat{K} : \psi(\xi) = \psi(\mathbf{1})\}.$

Case 1. $\psi(1) = 0$.

For any $k \in C_c(\hat{K})$ and any $\lambda > 0$ we have $N_\lambda(\check{k}) = \int_0^\infty e^{-\lambda t} P_t(\check{k}) dt$ and $N_\lambda(\check{k}) \in L^2(K)$. Then for any $\xi \in \hat{K}$,

$$(N_{\lambda}(\check{k}))(\xi) = \int_{K} \overline{\xi(x)} N_{\lambda}(\check{k})(x) dm(x)$$

$$= \int_{K} \int_{0}^{\infty} \overline{\xi(x)} e^{-\lambda t} (\mu_{t} * \check{k})(x) dt dm(x)$$

$$= \int_{K} \int_{0}^{\infty} \int_{K} \int_{\hat{K}} \overline{\xi(x)} e^{-\lambda t} k(\chi) \overline{\chi(y)} \chi(x) d\pi(\chi) d\mu_{t}(y) dt dm(x)$$

$$= \int_{0}^{\infty} e^{-\lambda t} \int_{K} \overline{\xi(x)} \int_{\hat{K}} k(\chi) \chi(x) \int_{K} \overline{\chi(y)} d\mu_{t}(y) d\pi(\chi) dm(x) dt$$

$$= \int_{0}^{\infty} e^{-\lambda t} \int_{\hat{K}} k(\chi) e^{-t\psi(\chi)} \int_{K} \overline{\xi(x)} \chi(x) dm(x) d\pi(\chi) dt$$

$$= \int_{0}^{\infty} e^{(-\lambda - \psi(\xi))t} k(\xi) M_{\xi}^{-1} dt = \frac{k(\xi)}{M_{\xi}} \frac{1}{\lambda + \psi(\xi)},$$

where $M_{\xi}^{-1} = \int_{K} |\xi(x)|^2 dm(x)$. So by ([6], 7.3I),

$$\|N_{\lambda}(\check{k})\|_{2}^{2} = \|(N_{\lambda}(\check{k}))\|_{2}^{2} = \int_{\hat{K}} |\frac{k(\xi)}{M_{\xi}} \frac{1}{\lambda + \psi(\xi)}|^{2} d\pi(\xi).$$

We have

$$|\frac{k(\xi)}{M_{\xi}}\frac{1}{\lambda+\psi(\xi)}|^{2} \leq |k(\xi)|^{2}\frac{\lambda^{2}}{(\lambda+Re\psi(\xi))^{2}} \leq |k(\xi)|^{2}$$

since $Re\psi \ge 0$. If $\psi \ne 0$ locally almost everywhere then B is a locally null set and so by using of the dominated convergence theorem,

$$\lim \|\lambda N_{\lambda}(\check{k})\|_{2}^{2} = \int_{\hat{K}} \lim |\frac{k(\xi)}{M_{\xi}} \frac{\lambda}{\lambda + \psi(\xi)}|^{2} dm(\xi) = 0$$

as $\lambda \to 0^+$. The latter relation shows that $\{\check{k} : k \in C_c(\hat{K})\} \subseteq \{f \in L^2(K) : \lim_{\lambda \to 0^+} \lambda N_\lambda f = 0\}$. But the set $\{\check{k} : k \in C_c(\hat{K})\}$ is dense in $L^2(\hat{K})$ ([2], p. 85) and the set $\{f \in L^2(K) : 0\}$

 $\lim_{\lambda\to 0} \lambda N_{\lambda} f = 0$ is closed ([1], p. 82). Then for each $f \in L^2(K)$, $\lim_{\lambda\to 0^+} \lambda N_{\lambda} f = 0$ and so by Proposition 3.9(*i*) $D(N_0)$ is dense in $L^2(K)$.

Conversely, if B is not locally null then by Theorem 2.2.45(h) of [2] B^{\perp} is compact. So there exist $f, g \in C_c^+(K)$ such that $g \equiv 1$ on B^{\perp} and $g \leq f * f^-$. So $1 \leq f * f^-$ on B^{\perp} . On the other hand for any $\lambda > 0$,

$$\operatorname{supp}(\rho_{\lambda} * \rho_{\lambda}^{-}) \subseteq (\operatorname{supp}(\rho_{\lambda}) * \operatorname{supp}(\rho_{\lambda})^{-})^{c}$$
$$\subseteq S * S^{-}$$
$$\subseteq B^{\perp} * B^{\perp} \subseteq B^{\perp},$$

where $S = \operatorname{supp}(\rho_{\lambda}) = (\bigcup_{t \ge 0} \operatorname{supp}(\mu_t))^c$. For any $\lambda > 0$ we have

$$\begin{split} \int_{K} |\rho_{\lambda} * f(u)|^{2} dm(u) \\ &= \int_{K} \int_{K} \int_{K} f(s^{-} * u) f(t^{-} * u) d\rho_{\lambda}(s) d\rho_{\lambda}(t) dm(u) \\ &= \int_{K} \int_{K} \int_{K} f_{s}(u) f_{t^{-}}(u) dm(u) d\rho_{\lambda}(s^{-}) d\rho_{\lambda}(t) \\ &= \int_{K} \int_{K} \int_{K} f(u) f_{t^{-}}(s^{-} * u) dm(u) d\rho_{\lambda}(s) d\rho_{\lambda}(t^{-}) \\ &= \int_{K} \int_{K} \int_{K} \int_{K} f(u) f_{u}(s * t) dm(u) d\rho_{\lambda}(s) d\rho_{\lambda}(t^{-}) \\ &= \int_{K} \int_{K} \int_{K} \int_{K} f^{-}(u^{-}) f(u * x) dm(u) d\delta_{s} * \delta_{t}(x) d\rho_{\lambda}(s) d\rho_{\lambda}(t^{-}) \\ &= \int_{K} \int_{K} \int_{K} f * f^{-}(x) d\delta_{s} * \delta_{t}(x) d\rho_{\lambda}(s) d\rho_{\lambda}(t^{-}) \\ &= \int_{K} \int_{K} f * f^{-}(s * t) d\rho_{\lambda}(s) d\rho_{\lambda}^{-}(t) \\ &= \int_{K} f * f^{-}(x) d\rho_{\lambda} * \rho_{\lambda}^{-}(t). \end{split}$$

The latter integral is greater than (or equal with) $\int_K d\rho_\lambda * \rho_\lambda^-(x) = \rho_\lambda(K)^2 = \frac{1}{\lambda^2}$, since

$$\rho_{\lambda}(K) = \hat{\rho_{\lambda}}(\mathbf{1}) = \int_0^\infty e^{-\lambda t} \hat{\mu_t}(\mathbf{1}) dt = \int_0^\infty e^{-\lambda t} e^{-t\psi(\mathbf{1})} dt = \frac{1}{\lambda}.$$

But

$$\begin{split} \rho_{\lambda} * f(x) &= \int_{K} f(x * y^{-}) \, d\rho_{\lambda}(y) = \int_{0}^{\infty} e^{-\lambda t} \int_{K} f(x * y^{-}) \, d\mu_{t}(y) dt \\ &= \int_{0}^{\infty} e^{-\lambda t} (\mu_{t} * f)(x) dt \\ &= N_{\lambda} f(x). \end{split}$$

Then $\|\lambda N_{\lambda}f\|_{2} \geq 1$ and by Proposition 3.9(*i*), this implies that $D(N_{0})$ is not dense in $L^{2}(K)$.

Case 2. $\psi(1) \neq 0$.

For any $f \in L^2(K)$,

$$\begin{aligned} \|\lambda N_{\lambda}f\|_{2} &= \|\int_{0}^{\infty} \lambda e^{-\lambda t} P_{t}fdt\|_{2} \leq \int_{0}^{\infty} \lambda e^{-\lambda t} \|P_{t}f\|_{2}dt \\ &\leq \int_{0}^{\infty} \lambda e^{-\lambda t} e^{-t\psi(1)} \|f\|_{2}dt \\ &= \frac{\lambda}{\lambda + \psi(1)} \|f\|_{2} \to 0, \end{aligned}$$

as $\lambda \to 0^+$, since $||P_t f||_2 = ||\mu_t * f||_2 \le ||\mu_t|| ||f||_2 = \hat{\mu}_t(\mathbf{1}) ||f||_2 = e^{-t\psi(\mathbf{1})} ||f||_2$. Then $D(N_0)$ is dense in $L^p(K)$. On the other hand by Theorem 2.2 and Proposition 1.3(a) in [7] we have $\{\xi \in \hat{K} : \psi(\xi) = 0\} = \emptyset$ and so that $\psi \neq 0$ locally almost everywhere.

(*ii*) Put $D = \{\xi \in \hat{K} : Re\psi(\xi) = \psi(\mathbf{1})\}$ and again consider two cases. Case 1. $\psi(\mathbf{1}) = 0$.

By continuity of ψ , D is closed. For any $\phi \in C_c(\hat{K})$,

$$\begin{split} (\check{\phi})(\xi) &= \int_{K} \overline{\xi(x)}\check{\phi}(x) \, dm(x) = \int_{K} \int_{\hat{K}} \overline{\xi(x)}\phi(\chi)\chi(x) \, d\pi(\chi) dm(x) \\ &= \int_{\hat{K}} \phi(\chi) \int_{K} \overline{\xi(x)}\chi(x) \, dm(x) d\pi(\chi) \\ &= \int_{K} \phi(\xi) |\xi(x)|^2 \, dm(x) = \phi(\xi) \, M_{\xi}^{-1} \end{split}$$

and then

$$(P_t\check{\phi})(\xi) = (\mu_t * \check{\phi})(\xi) = \hat{\mu_t}(\xi)(\check{\phi})(\xi) = \hat{\mu_t}(\xi)\phi(\xi)M_{\xi}^{-1} = \frac{e^{-t\psi(\xi)}\phi(\xi)}{M_{\xi}}.$$

 So

$$|P_t\check{\phi}||_2^2 = \|(P_t\check{\phi})\|_2^2 = \int_{\hat{K}} |\frac{e^{-t\psi(\xi)}\phi(\xi)}{M_{\xi}}|^2 \, d\pi(\xi).$$

We have

$$|\frac{e^{-t\psi(\xi)}\phi(\xi)}{M_{\xi}}|^{2} \le e^{-tRe\psi(\xi)}|\phi(\xi)|^{2} \le |\phi(\xi)|^{2}.$$

If $Re\psi \neq 0$ locally almost everywhere then D is locally null, and so by dominated convergence theorem we have $\lim_{t\to\infty} P_t\check{\phi} = 0$ in $L^2(K)$ (note that by Theorem 2.2 in [7], $Re\psi \geq 0$). Thus $\{\check{\phi} : \phi \in C_c(\hat{K})\} \subseteq \{f \in L^2(K) : \lim_{t\to\infty} P_t f = 0\}$. But as before the set $\{\check{\phi} : \phi \in C_c(\hat{K})\}$ is dense in $L^2(K)$ and the set $E_0 := \{f \in L^2(K) : \lim_{t\to\infty} P_t f = 0\}$ is closed because if f is in its closure then for any $\epsilon > 0$ there is a $g \in E_0$ such that $\|f - g\|_2 < \frac{\epsilon}{2}$ and there is a $t_0 > 0$ such that for any $t \in [0, t_0], \|P_tg\|_2 < \frac{\epsilon}{2}$. Then for any $t \in [0, t_0]$ we have

$$||P_t f||_2 \le ||P_t f - P_t g||_2 + ||P_t g||_2 \le ||P_t|| \, ||f - g||_2 + ||P_t g||_2 < \epsilon,$$

since $||P_t|| \leq 1$. So $f \in E_0$. Therefore for any $f \in L^2(K)$, $\lim_{t\to\infty} P_t f = 0$. Then by Proposition 3.9(*ii*), D(N) is dense in $L^2(K)$.

Conversely if D is not locally null, then by Proposition 2.2.45(h) in [2] D^{\perp} is compact, and by [9] it is a subhypergroup of K. For any t > 0 we have $\operatorname{supp}(\mu_t) \subseteq D^{\perp}$. Then

$$\operatorname{supp}(\mu_t * \mu_t^-) = (\operatorname{supp}(\mu_t) * (\operatorname{supp}(\mu_t))^-)^c$$
$$\subseteq (D^\perp * D^\perp)^c \subseteq (D^\perp)^c = D^\perp.$$

On the other hand for $f \in C_c(K)$ with $f * f^- \ge 1$ on D^{\perp} ,

$$||P_t f||_2^2 = \int_K |\mu_t * f(x)|^2 dm(x) = \int_K f * f^-(x) \, d\mu_t * \mu_t^-(x).$$

The last integral is greater than (or equal with) $\int_{K} \mu_t * \mu_t^-(x) = (\mu_t(K))^2 = 1$ (note that $\mu_t(K) = \hat{\mu}_t(\mathbf{1}) = e^{-t\psi(\mathbf{1})} = 1$). Thus $\lim_{t\to\infty} P_t f \neq 0$. Now Proposition 3.9(*ii*) shows that D(N) is not dense in $L^2(K)$.

Case 2. $\psi(1) \neq 0$.

For any $f \in L^2(K)$ we have

$$||P_t f||_2 = ||\mu_t * f||_2 \le e^{-t\psi(1)} ||f||_2 \to 0,$$

as $t \to \infty$, see the case 2 of (i). Then D(N) is dense in $L^2(K)$. Also as in the case 2 of (i), $\{\xi \in \hat{K} : Re\psi(\xi) = 0\} = \emptyset$ and so $Re\psi \neq 0$ locally almost everywhere.

References

- [1] C. Berg, C. Fort, Potential theory on locally compact abelian groups. Springer-Verlag (1975).
- [2] W. R. Bloom, H.Heyer, Harmonic Analysis of Probability Measures on Hypergroups. De Gruyter (1995).
- [3] A. K. Chilana, K.A.Ross, Spectral synthesis in hypergroups. Pacific J. Math **76** (1978), 313-328.
- [4] C. F. Dunkle, The measure algebra of a locally compact hypergroup. Trans. Amer. Math. Soc. 179 (1973), 331-348.
- [5] F. Ghahramani, A. R. Medghalchi, Compact multipliers on weighted hypergroup algebras I. Math. Proc. Cambridge Pholos. Soc. 98(1985) No. 3, 493-500.
- [6] R. I. Jewett, Spaces with an abstract convolution of measures. Adv. in Math. 18 (1975),1-101.
- [7] R. Lasser, Convolution semigroups on hypergroups. Pacific J. Math., 127 (1981) No.2, 353-371.
- [8] A. R. Medghalchi, The second dual algebra of a hypergroup. Math. Z. 210(1992) No. 4, 615-624.
- [9] K. A. Ross, Centers of hypergroups, Trans. Amer. Math. Soc. 243 (1978), 251-269.
- [10] R. Spector, Apercu de la theorie des hypergroups, In: Analyse Harmonique sur les Groupes de Lie, Lecture Notes in Mathematics, Vol. 497, Springer (1975), 643-673.
- [11] R. Spector, Measures invariantes sur les hypergroups, Trans. Amer. Math. Soc. 239 (1978), 147-165.

Faculty of mathematics and computer sciences, Tarbiat moallem university, Tehran, Iran $E\text{-}mail\ address: a_medghalchi@saba.tmu.ac.ir$

FACULTY OF MATHEMATICS AND COMPUTER SCIENCES, TARBIAT MOALLEM UNIVERSITY ,TEHRAN, IRAN, AND DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF QOM, QOM, IRAN

E-mail address: sm-tabatabaei@qom.ac.ir