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ABSTRACT. In this paper, we introduce a new iterative procedure for finding a solution
of the variational inequality problem over the intersection of fixed point sets of infinite
nonexpansive mappings in a Hilbert space and then discuss the strong convergence of
the iterative procedure.

1. INTRODUCTION

Let C be a closed convex subset of a real Hilbert space H. A mapping A of C into H is
called monotone if (x —y, Ax — Ay) > 0 for all z,y € C. The variational inequality problem
for A is to find z € C such that

(y—2,42)>0

for all y € C. The set of solutions of the variational inequality is denoted by VI(C, A). A
mapping A of C into H is called strongly monotone if there exists a positive real number «
such that

(x —y, Az — Ay) > a ||z — y|*

for all z,y € C. Such A is called a-strongly monotone. A mapping T of C into itself is
called nonexpansive if

[Tz =Tyl < |z -yl

for all z,y € C. We denote by F(T') the set of all fixed points of T'. The well-known iterative
procedure for finding a solution of the variational inequality problem may be the projected
gradient method [3,14]: z; € C and

(1) Tni1 = Po(I — pA)zy,

forn=1,2,..., where P is the metric projection of H onto C and p is a positive real num-
ber. Indeed, when A is strongly monotone and Lipschitzian, the sequence {z,} generated
by (1) converges strongly to a unique solution of VI(C, A). However, the projected gradient
method requires the use of the metric projection Po of which the closed form expression is
not known. In order to reduce the complexity which is caused by Pc, Yamada [13] intro-
duced the following iterative procedure called the hybrid steepest descent method: x1 € H
and

(2) Tnt1 = (I — AMppA)Tzy,
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for all n = 1,2,..., where {\,} is a sequence in (0, 1] and p is a positive real number. He
showed that the sequence {x,} generated by (2) converges strongly to a unique solution of
VI(F(T),A).

On the other hand, Kimura and Takahashi [4] established a weak convergence theorem for
an infinite family of nonexpansive mappings which is connected with the feasibility problem
and generalizes the result of Takahashi and Shimoji [11]. Shimoji and Takahashi [5] also
proved a strong convergence theorem for an infinite family of nonexpansive mappings by
using the methods of proofs of Shioji and Takahashi [6] and Atsushiba and Takahashi [2].

The purpose of the present paper is to prove a strong convergence theorem for finding
a solution of the variational inequality problem over the intersection of fixed point sets of
infinite nonexpansive mappings {7} in a real Hilbert space. We deal with the following
iterative scheme:

r1 € H,
Tnt1 = (I = AppA)W,xy, for alln =1,2,. ..

where {W,,} is a sequence of W-mappings generated by nonexpansive mappings T, Tp,—1,
..., Th of H into itself, A is a strongly monotone and Lipschitzian mapping of H into itself,
{A\n} € (0,1] and p > 0.

2. PRELIMINARIES

Throughout this paper, we denote by N the set of positive integers and by R the set of
real numbers. Let H be a real Hilbert space with inner product (-, -) and norm |- || and
let C' be a closed convex subset of H. We denote the strong convergence and the weak
convergence of x,, to x € H by x, — « and z,, — z, respectively. A mapping T of C into
itself is nonexpansive if

[Tz =Tyl < |z -yl

for all z,y € C. We denote by F(T') the set of all fixed points of T, that is, F(T) = {z €
H : Tz =z} and by R(T) the range of T. We know that if C' is a bounded closed convex
subset of H and T is a nonexpansive mapping of C' into itself, F(T') is nonempty. It is
also well-known that F'(T') is a closed convex subset of H. For every point z € H, there
exists a unique nearest point in C, denoted by Pox, such that ||z — Pox| < ||z — y|| for all
y € C. Pc is called the metric projection of H onto C. We know that P is a nonexpansive
mapping of H onto C and

(3) (x — Pox,Pcx —y) >0 forallyeC.
In the context of the variational inequality problem, this implies that
ueVI(C,A) <= u= Pc(u— pAu)

for all p > 0, where A is a monotone mapping of C' into H.
A mapping A of C into H is called strongly monotone if there exists a positive real
number « such that

(x —y, Az — Ay) > a|lz —y|]°

for all z,y € C. Such A is called a-strongly monotone. If A : C — H is a-strongly
monotone and [(-Lipschitzian, then without loss of generality we can assume a < 3. The
following lemma is in [14].
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Lemma 2.1 ([14]). Let H be a real Hilbert space, let C be a nonempty closed convex subset
of H and let o, B,p > 0. Suppose that A is an a-strongly monotone and (-Lipschitzian
mapping of C into H and p € (0,2a/3%). Then

[Po(I = pA)x — Po(I — pA)yll < V1= p(2a —pf?) [lz -y
for all z,y € C. In particular, Pc(I — pA) is a contraction of C into itself.

Remark 1. In this lemma, p(2ac — p3?) is actually in the interval (0,1). In fact, it is easy
that p(2cc — pB%) > 0. We have that

a<fB=a>-p3*<0
— (%p* —2ap+1>0
= p(2a — pf?) < 1.
The following theorem is due to [14]; see also [3].

Theorem 2.1 (Projected gradient method). Let H be a real Hilbert space, let C' be a nonempty
closed convex subset of H and let o, 3 > 0. Suppose that A is an a-strongly monotone and
B-Lipschitzian mapping of C into H. Then the following hold:

(i) VI(C, A) has its unique solution u* € C;

(ii) for any z1 € C and p € (0,2a/B3?), the sequence {x,} generated by

Tnt1 = Po(I — pA)x,, forneN
converges strongly to a unique solution u* of VI(C, A).

Motivated by Theorem 2.1, Yamada [13] proved the following theorem.

Theorem 2.2 (Hybrid steepest descent method). Let H be a real Hilbert space, let T be a
nonexpansive mapping on H such that F(T) is nonempty and let o, 8 > 0. Suppose that A
is an a-strongly monotone and 3-Lipschitzian mapping of R(T') into H. Then, VI(F(T), A)
has its unique solution u* € C. Further, for any x1 € H and p € (0,2a/(%), let {x,} be
the sequence generated by

Tpt1 = (I — AMppA)Tzy,
for all n € N. Then, the sequence {x,} converges strongly to a unique solution u* of
VI(F(T),A), where {\,} is a sequence of (0,1] satisfying
(C1) limp—oo An = 0;
(C2) 32021 An = 00;

(C3) limy, o0 22572 = 0.
n+1

The above condition (C3) can be generalized to the following condition by Xu [12]:

] An —
(C4) limp—oo oo =1

Let T1,T5, ... be mappings on H and let 1,72, ... be real numbers such that 0 <~; <1
for every ¢ € N. Then, for any n € N, we define a mapping W,, on H as follows:

Un,n+1 = I,
Un,n - 'YnTnUn,n-&-l + (1 - ’Yn)Ia
Un,nfl = 'YnflTnflUn,n + (]- - P)/nfl)-[a

Unk = WIkUnks1 + (1 — )1,
Uno—1 = Yo—1Th—1Unp + (1 — ye—1)1,
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Un2=7ToUps+ (1 —v)I,
W, = n,1 = 71T1Un,2 + (1 - 71)1

Such a mapping W, is called the W-mapping generated by T,,, T, —1,...,71 and vy, Vn—1,
..,71; see [8], [10] and [11]. The following lemma was proved in [11].

Lemma 2.2 ([11]). Let H be a real Hilbert space. Let Ty, Ta, ..., T, be nonexpansive map-
pings on H such that (\;_, F(T;) is nonempty and let v1,72,...,7n be real numbers such
that 0 < v; <1 fori=1,2,...,n. For any n € N, let W,, be the W-mapping generated by
Tn, T,y .., Th and YnyYn—1,--.,71. Then W, is nonezpansive and F(W,,) = (i—, F(T3).

For k € N, from Lemma 3.2 in [5], we define mappings Us 1 and W on H as follows:

Uso vz = lim Uy, g
n—oo
and
Wz = lim Wyx = lim U, 12
n—oo n—oo
for all z € H. Such a mapping W is called the W-mapping generated by T7,7T5,... and
Y1,7Y2, - - .. We know the following two lemmas:

Lemma 2.3 ([5]). Let H be a real Hilbert space. Let Ty, Ts,... be nonexpansive mappings
on H such that (,__, F(T,) is nonempty and let y1,72, ... be real numbers such that 0 <

v; < 1 for alli € N. Let W be the W -mapping generated by Ty, Ts, ... and y1,7v2,.... Then
W is nonezpansive and F(W) = (7, F(T,).

Lemma 2.4 ([7]). Let {z,} and {y,} be bounded sequences in H and let {5,} be a sequence
in [0,1] with 0 < liminf,, o By < limsup,,_, . Bn < 1. Suppose that xni1 = Bnyn + (1 —
Bn)xn for alln € N and

lim sup([|yn1 = ynll = |21 — zal)) < 0.

n—oo

Then lim, o ||Yyn — xn|| = 0.

Let u be amean on N, i.e., a continuous linear functional on {*° satisfying ||u|| = 1 = u(1).
We know that p is a mean on N if and only if

inf a, < < n

inf an < p(f) < sup a
for each f = (a1, az,...) € 1*°. Occasionally, we use p,(a,) instead of u(f). So, a Banach
limit p is a mean on N satisfying p,(an) = pn(ant1). Let f = (a1,aq2,...) € I with
an — a as n — oo and let p be a Banach limit on N. Then u(f) = pn(a,) = a. We also
know the following lemma [6].

Lemma 2.5 ([6]). Let a be a real number and let (a1,as,...) € 1% such that p,(an) < a
for all Banach limit p and limsup,,_, . (¢n+1 — an) < 0. Then, limsup,,_, . a, < a.

The following lemma is proved in [1].

Lemma 2.6 ([1]). Let {s,} be a sequence of nonnegative real numbers, let {a,} be a se-
quence of [0, 1] with 7| an, = 00, let {3,} be a sequence of real numbers with limsup,, 3, <
0, and let {y,} be a sequence of real numbers with Y .- | ¥n < 00. Suppose that

Spt1 < (1 - an)sn + Oénﬁn + Yn
for alln € N. Then lim,, .0 s, = 0.
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The following lemma is in [9,10].
Lemma 2.7. In a real Hilbert space H, the following inequality holds:
lz +y)1* < l|* + 2@ + y,v)
forallxz,y € H.
The following theorem plays a crucial role for our main theorem.

Theorem 2.3 ([13]). Let H be a real Hilbert space and o, 3 > 0. Let W be a nonexpansive
mapping on H such that F(W) is nonempty and let A be an «a-strongly monotone and (-
Lipschitzian mapping of R(W) into H. For p € (0,2a/3?), define S, : H — H and Cy
by

Sp = (I = AypA)W for alln € N,
Cy = {xGH: le — f]l < w} for all f € F(W),

where {A\,} C (0,1] and r =1 — /1 — p(2a — pB?) € (0,1). Then the following holds:
(i) For eachn € N, Sy, is a contraction which has a unique fized point un € (\pepy Cr-
(i) Suppose that the sequence {\,} C (0,1] satisfies lim, 0o A, = 0. Let uy,, be a unique
fized point of Sy, that is, u, = Spu, = Wup — AnpA(Wuy,). Then the sequence {uy,}
converges strongly to a unique solution u* of VI(F(W), A).

3. MAIN THEOREMS

In this section, we show a strong convergence theorem for finding a solution of the vari-
ational inequality problem over the intersection of fixed point sets of infinite nonexpansive
mappings. Before proving the theorem, we need the following lemma which is essentially
used in the proof.

Lemma 3.1. Let H be a real Hilbert space and let a, 3 > 0. Let T1,Ts, ... be nonerpansive
mappings on H such that (.2, F(T,,) is nonempty and let 1,72, ... be real numbers such
that 0 < a < v <b< 1 foralli=1,2,... and some a,b € (0,1) with a < b. For any
n € N, let W, be the W-mapping generated by Ty, Tp—1,...,T1 and v, Vn—1,...,71 and let
A be an a-inverse strongly monotone and (3-Lipschitzian mapping on H. Suppose that {z,}
is a sequence generated by x1 € H and

(4) Tpt1 = (I — AppA)W, 2,
for all n € N, where p € (0,2a/3%), and {\,} C (0,1] satisfies lim, o0 A, = 0. Then

limy, oo || Tn+1 — 2nl|| = 0.

Proof. Putting T,, = (I — A\,pA)W,,, we can rewrite (4) to zpy1 = Thz,. Let u €
N~ F(Ty). It follows from Lemma 2.2 that
[#n41 — ull = [[Than — ull
< (I =2an) [|zn —ull + (I = AnpA)Wou — Wil
= (1= Aur) lzn — ull + Anp [ Au|l

p
= (L= A7) [|zn — ull + )‘nr; (| Aul|

< max {|len — ull, 2 | Aul }
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where 7 = 1 — /1 — p(2a — pf?) € (0,1). By induction, we get
o = ull < max {[lo = ull, 2 4u] | = K
and hence {z,} is bounded. So, {T,,z,} is also bounded. From (4), we note that
Tnt1 = (I — AppAYWy
= AT = pAY Wz, + (1= Ap) Wiy
=M = pA)Wozn + (1 = X)) (nT1Un 220 + (1 = 71)20).
Put

A = pAYWozy + (1= X)) ThUp o2y
Yn = An+ (1 =AM .

Then, we have
M = pAYWyzy, —u} + (1 = X))y (T Up 22 — w)
A+ (1 =AM
< Ml = pA)Wyzn —ul| + (1 = Ao)n [ TaUn 220 — ul]
- A+ (1= X)m
1

g — ull = ]

< —— I = pAW,zp, — (I — pAYW,
< e e I = Pz, — (= pA) W]
+ A [(1 = pA)Wou — ull + (1 = X)m1 ([ T2 U 20 — ul|}
1
< — (1= " — np || A
< ey Pt = 1) o = ull + Awp 4u]

+ (1= X)m ||Un,2xn - UH}
< A(l=1)K + XK + (1 = Ay)m K
- An + (1 — )\n)')/l

=K.
So, the sequence {y,} is also bounded. Furthermore, we have that
Hm sup(||yns1 — Ynll = [|Tns1 — 2al))
i (‘ M1 (I = pAYWoi12ns1 + (1= M )N T1Un 41 2T0 11
= lim sup
n—oo /\n+1 + (1 — An—i—l)’)/l
)\”(I - pA)ann + (1 - )\n)'}/lTlUn,%Cn
B - H:L.T%Fl - an
An + (1 - /\n)')/l
S hm sup (‘ )\'rrFl(I - PA)Wn+1xn+1 — )\n+1(I — pA)WrH»lxn
n— o0 )\n—l—l + (1 — )‘n+1)71
)‘nJrl
+ I— pAAW,i12, — (I — pAYW, 20,
Ant1 + (1= Apy1)m (I = pA)Wiia (I —pA) [
)‘nJrl )‘n ’
* - 1= pA) W,y
/\n+1 + (1 - )\n+1)f>/1 /\n + (1 _ )\n)’Yl ||( p ) H
(1= Apg1)m
T Un n =T Un n
* At + (1= Ag1)m IT1Un+1,22n41 = TaUn 2T
(1 - )‘n+1)71
T Un n =T Un n
A1+ (1= Anp)m IT2Un 21 = Tiln 2
(1= Ang)mn (1-=X)m ‘ )
+ - T Un In|l — || Tn — Tp
Ant1 + (1 - )‘nJrl)’Yl A, + (1 _ )\n)’h ” 1Un,2 H || 41 ||
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< limsup ( Aty T——
n—00 /\n+1 + (1 - An+1)’)/1
/\n+1
Ant1 + (1= Ang1)m [Waia |
/\n+1 /\77« ‘
+ — 1— pAYW,x,
‘MH+O—MMM A (= A | 11— AW
(1= Anp)m
U, nt1 — ThUp 22
St 7 (1= dngy T1Um12Tnes =Tl
(1= Ay1)m [
Ant1+ (1= Ang1)m
(1 — )‘nJrl)'Yl (1 - )‘n)'yl ‘ )
oo Cas ol et et AL B BN
. )\nJrl
= limsu Woa12n — Whay,
n—»oop (An—i-l + (1 - An+1)’)/1 || 1 ||
/\n+1 /\77«
+ — 1— pAYW,x,
)\nJrl + (1 - >\n+1)’71 )\n + (1 - >\n)’71 ”( P ) H
(1= Anp)m
T\U, nt1 — ThUp 22
St 7 (1= dngy TUm12Tnes =Tl
1-— )\n 1- )\n
+ ‘ ( +1)’71 _ ( )’71 ‘ ||T1Un2$n|)
)\n+1 + (1 - >\n+1)'71 )\n + (1 - >\n)'71
and that
HWn+1xn - annH - ||Un+1,1xn - n,lan

= V1T Uns1,22n + (1 —71)zn — {1 T1Un22n + (1 —71) 20 }|
=1 [|[Thtunt1,22n — T1Ug 22, ||

<m HUn+172xn - Un,233nH

= 2T2Uns1,320 + (1 = v2)@n — {7212Un32n + (1 — 72)zn) }|
= 7172 | T2Un+1,32n — ToUy 325 |

<72 [|Uns1,3%0 — Up 325|

IA

n
<H'Yz> HUn+17n+1xn - n,nJrlxn”

i=1

= (H %‘) 1Vn+1Tn+1Un+1,n+2%n + (1 — Yni1)Tn — Ta|

=1

n+1
(H%)mm%—%n

i=1
<" Ty 2n — 20| -

Similarly, we have that

1T U1 22041 — T1Un 2@n41]| < O™ || Tos1Tnt1 — Tosall -
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So, we have

Hmsup([|yn+1 — Ynll = [Tns1 — znll)
. )\n+1
< limsu bt T 2 — T,
- n—>oop <>\n+1 +(1=Ar1i)m [Tt |
)\nJrl )\n
+ — 1— pAYW, x,
A1+ L =Ar)n A+ A= A)m I(X=pA) |
(1= Ar)m
b | Th+1Zne1 — ZTn
e LI 710, 00
/\n+1 + (1 - An+1)’)/1 An + (1 - /\n)’h e
. )\nJrl
< limsu prtl
o nﬂoop <)\n+1 + (1 - An+1)'7/1
+ )\nJrl o )\n
/\n+1 + (1 - An+1)’)/1 An + (1 - /\n)’h
1- n
n (1= Anr)m B
Ant1+ (1= As1)m
n (1= Ant1)m =X )L
/\n+1 + (1 - An+1)’)/1 An + (1 - /\n)’h ’

where L = max{2K, K + ||(I — pA)u||} with v € (,—, F(T}). Since lim,_. A\, = 0 and
Y < b < 1 for all n € N, we obtain

limsup([|yn+1 — ynll = |1 — 2a|) < 0.

n—oo

Now, we note that

Tnt+1 = (]- - An)(]- - Pyl)xn + {]- - (]- - An)(]- - 71)}yn
for all n € N and that
0 < liminf(1 — Ap)(1 — ) <limsup(l — Ap)(1 — 1) < 1.

n—oo n—00

From Lemma 2.4, we get lim,, o ||yn — @n|| = 0. Therefore we have

lim [|zy41 — 2, = Hm {1 — (1= X)) (1 =71)} [yn — znll = 0.

n—oo n—oo
This completes the proof. O
We are now in a position to prove our main theorem.

Theorem 3.1. Let H be a real Hilbert space and let o, 3 > 0. Let T1,Ts, ... be nonexpan-
sive mappings on H such that (\,_, F(T,) is nonempty and let 1,72, ... be real numbers
such that 0 < a <, <b< 1 foralli=1,2,... and some a,b € (0,1) with a < b. For any
n € N, let W, be the W-mapping generated by Ty, Ty—1,...,T1 and yn,Yn—1,---,71 and let
A be an a-inverse strongly monotone and (3-Lipschitzian mapping on H. Suppose that {x,}
is a sequence generated by x1 € H and

Tnt1 = (I — AppAYW, 2,
for all n € N, where p € (0,2a/3%), and {\n} C (0,1] satisfies (C1) and (C2), that is,

lim A\, =0 and Z)\n:oo.
n=1



HYBRID STEEPEST DESCENT METHOD 565

oo

Then the sequence {x,} converges strongly to a unique solution u* of VI((,_, F(T), A).

Proof. As in the proof of Lemma 3.1, {z,} and {AW,z,} are bounded. Let W be the
W-mapping generated by 13,75, ... and 1,72, ... such that Wz = lim,,_,oc Wy« for each
2 € H. Using the mapping W and A\ = 1/k in Theorem 2.3, we have from Lemma 2.3 that
there exists the sequence {u} such that {ux} converges strongly to a unique solution u* of
VI(N,—, F(T,),A). Then we have that for all n,k € N,

|Tnt1 — Wuk|| = |Waxn — AnpAW,zn — Wug|
< |Wazn — Woug || + [[Whuk — Waugl| + Aup [ AW 2|
< lwn — ugll + [[Waug — Wug|| + Anp | AW,z || -

Since limy, 0o Ay, = 0 and Wuy, = lim, oo Wyuy for each k € N, for any Banach limit g,
we obtain

2 2 2
(5) pin |70 — Wug]|” = pn (2041 — W™ < pon ||2n — wie]|” .

From the definition of {uy}, we have

1
Ty — U = Ty — (Wuy, — EpAWuk)

1 1
= <1 — E) (xn, — Wug) + E(xn — Wuy, + pAWuy,)

and hence

1 1
(1 — E) (T, — Wug) = (vn — ug) — E(Jjn = Wug + pAWuy).

So we have

2
> |lzn — il — Z (Tn, — Uky T, — Wug + pAWuy)
2
= ||lzn — ui|® — Z (@n, — Uky T, — Ug, + up — Wug, + pAWuy,)
P , 2
= 1_E |27 — k| —l—E(xn—uk,—uk—i—Wuk—pAWuk).

From (5), we have

1\? 2 1\? 2
(1=3) ol = el > (1= 3) oo = W

2
= (1) tllen =

2
+ E'u" (T — Uk, —ug, + Wuy — pAWuy)

and hence
1

ﬁ,un
for all k € N. Letting k — oo, from u* € VI(F (W), A) we obtain
0> pin (T —u*, —u* + Wu* — pAWu™)

= i, (T, — U, —pAWU")

2 — url® > pin (0 — wp, —ug, + Wug — pAWuy)
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and hence
0> pn (xy —u*, —AWU").
In addition, from Lemma 3.1 we have
nanQO [(@pi1 —u™, —AWU") — (z, —u*, —AWu")|
= T}LII;O [(Tp41 — Tn, —AWu™)| = 0.

Therefore, it follows from Lemma 2.5 that

(6) 0 > limsup (z, — u*, —AWu").
Finally, we show that lim,, . ||, — u*|| = 0. In fact, from Lemma 2.7 we have
%112 * (12
[#nt1 = u*[|” = [|Tnwn — 7|

= |[(Tan — Tpu*) + (Tu* —u)||?

< ||Thzn — Tnu*||2 +2(xpt1 —u*, Tou™ —u™)

= | Tnan — Tt ||* + 2 (2p g1 — u*, Wyt — AppAW,u* — u*)
< (1= A7) |20 — u”‘||2 + 2o (Tpp1 — u, —AWLU™)

2
= (1= M) lzm — u*|)* + Anr {7[)(<$n+1 —u*, —AWu*)
+{xpg1 —u, AWUT — AWnu*))}
* (12 2p * *
< (1= nr) ||n — w*||” + At 7(<xn+1 —u*, —AWu*)

MW —Wnu*n)},

where M = fsup,,cy ||zn —v*||. From Lemma 2.6 and (6), we obtain that the sequence
{x,} converges strongly to a unique solution u* of VI o, F(T,), A). O

n=1

Using Theorem 3.1, we obtain the following theorem for finding a solution of the variational
inequality problem over the intersection of fixed point sets of finite nonexpansive mappings.

Theorem 3.2. Let H be a real Hilbert space and let o, 3 > 0. Let T1,T5,...,T, be non-
expansive mappings on H such that (\,_, F(T;) is nonempty and let 1,72, ..., be real
numbers such that 0 < a < v; < b <1 foralli=1,2,...,r and some a,b € (0,1) with
a <b. Let W be the W-mapping generated by Ty, Ts, ..., T, and v1,72,-- .,V and let A be
an a-inverse strongly monotone and [3-Lipschitzian mapping on H. Suppose that {z,} is a
sequence generated by x1 € H and

Tpt1 = (I — AppA)Wa,
for all n € N, where p € (0,2a/3%), and {\,} C (0,1] satisfies (C1) and (C2), that is,
lim A\, =0 and Z/\n:oo.

n—o00
n=1

Then, {x,} converges strongly to a unique solution u* of VI((;_, F(T}), A).

The following theorem is connected with the projected gradient method; see Theorem
2.1.
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Theorem 3.3. Let H be a real Hilbert space and let a, 8 > 0. Let C1,Cs, ... be nonempty
closed convex subsets of H such that C := (), _, C,, is nonempty, let Pc, be the metric

n=1
projections of H onto C,, for each n € N and let v1,72,... be real numbers such that
0<a<vy<b<l1forali=1,2,... and some a,b € (0,1) with a < b. For anyn € N, let
W, be the W-mapping generated by Pc,, Pey, ... and v1,%2,... and let A be an a-inverse
strongly monotone and [3-Lipschitzian mapping on H. Suppose that {x,} is a sequence
generated by x1 € H and

Tnt1 = (I — AppAYW,

for all n € N, where p € (0,2a/3%), and {\,} C (0,1] satisfies (C1) and (C2), that is,
lim A\, =0 and Z/\n:oo.

n— o0
n=1

Then, the sequence {x,} converges strongly to a unique solution u* of VI(C, A).

Proof. Since F(W) = >, F(Pc,) = ,~,; C,, = C, from Theorem 3.1 we obtain the
conclusion. (|

4. APPLICATION

Let C be a nonempty closed convex subset of a real Hilbert space H. Let A: C — H
be a bounded linear operator and let A(C) be the range of A. Given an element b € H,
consider the following convexly constrained linear inverse problem:

(7) Find z € C such that z € argmin || Az — b||*.
zeC
We denote the set of solutions (7) by Sp. Then it is known that S, is nonempty if and only
if
Pie(b) € A(C),

where Pg is the metric projection of H onto C. Indeed, the necessary part is trivial.
Suppose that there exists z € C' such that z € argmin, . ||Az — b||>. Then we have

(8) 14z = b)1* < Jly — bIJ*

for all y € A(C). Let yo be in A(C). Then there exists a sequence {y,} C A(C) such that
Yn — Yo as n — 00. So, from (8) we have
2 2
[Az = b]" < [lyn — b]".
Letting n — oo, we get
2 2
[Az —bl|” < llyo — blI"
Since yo € A(C) is arbitrary, we obtain Pm(b) = Az € A(C). If Sy is nonempty, then we
know that S is closed and convex because of the continuity of A. In this case, Sy has a
unique element z € S with minimum norm, that is, zZ € S} satisfies

(9) I1211° = mindlje] : = € Sy}

The C-constrained pseudoinverse of A (denoted by ATC) is defined as
D(AL) = {b € H : Pyg(b) € A(C)},
AL(b) = 2, be D(AL),

where Z € S is a unique solution to (9).
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We now introduce the C-constrained generalized pseudoinverse of A; see [13]. Let f be
a Fréchet differentiable convex function from H to R such that Vf is a k-Lipschitzian and
a-strongly monotone operator for some k > 0 and a > 0. Under these assumptions, there
exists a unique element z' € S, for b € D(ATC) such that

(10) f(ZN) = min{f(z) : z € Sp}.
The C-constrained generalized pseudoinverse of A associated with f (denoted by ATa f) is
defined as
D(AL ) = D(AL),
AL () = =", be DAL ),
where zT € S}, is a unique solution to (10).

We now apply our main theorem to construct the C-constrained generalized pseudoin-
verse ATc s of A. We know from (3) that

z2€ 8, <= Az = Pm(b) € A(C)

= <b ~ Pres(8), Py () — Ax> >0 forall v € C
— (b—Az,Az— Ax) >0 forallz € C
<— (A"(Az—b),z —z) > 0 for all x € C,
where A* is the adjoint of A. This means that for each r > 0,
{rAv+ (I —rA*A)z—z},x —z) >0 for all x € C,
and hence
(11) Po(rA*b+ (I —rA*A)z) = 2.

Now, assume that {S},S?...} is a family of the solution sets of (7) for {C*',C?,...} such
that

Sy = (") Sh #0.

i=1
For each i € N, define a mapping T; : H — H by
(12) Tix = Poi(rA*b+ (I —rA*A)z) for all x € H,

where P is the metric projection of H onto C*. The following lemma was shown by Xu
and Kim [12].

Lemma 4.1. Let H be a real Hilbert space and b € H. Let S} be a family of the solution
sets of (7) such that ;= Si # 0 and let T; be a mapping of H onto C* which is defined
by (12) for each i € N. If r € (0,2/ ||A|]*) and b € D(ATC), then T; is nonezpansive and
F(T;) = S} for alli € N.

Using these settings, we obtain the following theorem.

Theorem 4.1. Let H be a real Hilbert space. Let T1,T5,... be mappings on H defined by
(12) such that Sy := (\o—, F(T},) is nonempty and let y1,72, ... be real numbers such that
0<a<~v<b<1lforalieN and some a,b with a < b. For anyn € N, let W,, be
the W-mapping generated by T, Tp—1,...,T1 and yp,VYn—1,---,71 and let f be a Fréchet

differentiable convex function from H to R such that V f is a k-Lipschitzian and a-strongly
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monotone mapping on H for some k,a > 0. Suppose that {x,} is a sequence generated by
r1 € H and

(13) Tnt1 = (I — AppV )Woz

for all n € N, where p € (0,2a/k?), and {\,} C (0,1] satisfies (C1) and (C2), that is,

lim A, =0 and Z)\n:oo.
n=1

Then, the sequence {x,} converges strongly to ATSb,f(b) which is a unique solution of (10).
Proof. Put A‘Lc (b)y =zt forbe D(AI;). Then we have that

71 € argmin f(z) <= 0¢€ Vf(z") + Ng, (2"
TESy

= (Vf(Z"),z -2 >0forallz € S,
— z1 e VI(S,, V),

where Ng, is the normal cone to Sy; see [10] for more details. So, it follows from Theorem 3.1
and Lemma 4.1 that the sequence {x,,} generated by (13) converges strongly to Agb’ ;). O
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