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Abstract. In this paper, we introduce a new iterative procedure for finding a solution
of the variational inequality problem over the intersection of fixed point sets of infinite
nonexpansive mappings in a Hilbert space and then discuss the strong convergence of
the iterative procedure.

1. Introduction

Let C be a closed convex subset of a real Hilbert space H . A mapping A of C into H is
called monotone if 〈x − y, Ax − Ay〉 ≥ 0 for all x, y ∈ C. The variational inequality problem
for A is to find z ∈ C such that

〈y − z, Az〉 ≥ 0

for all y ∈ C. The set of solutions of the variational inequality is denoted by V I(C,A). A
mapping A of C into H is called strongly monotone if there exists a positive real number α
such that

〈x − y, Ax− Ay〉 ≥ α ‖x − y‖2

for all x, y ∈ C. Such A is called α-strongly monotone. A mapping T of C into itself is
called nonexpansive if

‖Tx − Ty‖ ≤ ‖x − y‖
for all x, y ∈ C. We denote by F (T ) the set of all fixed points of T . The well-known iterative
procedure for finding a solution of the variational inequality problem may be the projected
gradient method [3, 14]: x1 ∈ C and

xn+1 = PC(I − ρA)xn(1)

for n = 1, 2, . . . , where PC is the metric projection of H onto C and ρ is a positive real num-
ber. Indeed, when A is strongly monotone and Lipschitzian, the sequence {xn} generated
by (1) converges strongly to a unique solution of V I(C,A). However, the projected gradient
method requires the use of the metric projection PC of which the closed form expression is
not known. In order to reduce the complexity which is caused by PC , Yamada [13] intro-
duced the following iterative procedure called the hybrid steepest descent method: x1 ∈ H
and

xn+1 = (I − λnρA)Txn(2)
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for all n = 1, 2, . . . , where {λn} is a sequence in (0, 1] and ρ is a positive real number. He
showed that the sequence {xn} generated by (2) converges strongly to a unique solution of
V I(F (T ), A).

On the other hand, Kimura and Takahashi [4] established a weak convergence theorem for
an infinite family of nonexpansive mappings which is connected with the feasibility problem
and generalizes the result of Takahashi and Shimoji [11]. Shimoji and Takahashi [5] also
proved a strong convergence theorem for an infinite family of nonexpansive mappings by
using the methods of proofs of Shioji and Takahashi [6] and Atsushiba and Takahashi [2].

The purpose of the present paper is to prove a strong convergence theorem for finding
a solution of the variational inequality problem over the intersection of fixed point sets of
infinite nonexpansive mappings {Tn} in a real Hilbert space. We deal with the following
iterative scheme: {

x1 ∈ H,

xn+1 = (I − λnρA)Wnxn for all n = 1, 2, . . . ,

where {Wn} is a sequence of W -mappings generated by nonexpansive mappings Tn, Tn−1,
. . . , T1 of H into itself, A is a strongly monotone and Lipschitzian mapping of H into itself,
{λn} ⊂ (0, 1] and ρ > 0.

2. Preliminaries

Throughout this paper, we denote by N the set of positive integers and by R the set of
real numbers. Let H be a real Hilbert space with inner product 〈 · , · 〉 and norm ‖ · ‖ and
let C be a closed convex subset of H . We denote the strong convergence and the weak
convergence of xn to x ∈ H by xn → x and xn ⇀ x, respectively. A mapping T of C into
itself is nonexpansive if

‖Tx − Ty‖ ≤ ‖x − y‖
for all x, y ∈ C. We denote by F (T ) the set of all fixed points of T , that is, F (T ) = {z ∈
H : Tz = z} and by R(T ) the range of T . We know that if C is a bounded closed convex
subset of H and T is a nonexpansive mapping of C into itself, F (T ) is nonempty. It is
also well-known that F (T ) is a closed convex subset of H . For every point x ∈ H , there
exists a unique nearest point in C, denoted by PCx, such that ‖x − PCx‖ ≤ ‖x − y‖ for all
y ∈ C. PC is called the metric projection of H onto C. We know that PC is a nonexpansive
mapping of H onto C and

〈x − PCx, PCx − y〉 ≥ 0 for all y ∈ C.(3)

In the context of the variational inequality problem, this implies that

u ∈ V I(C,A) ⇐⇒ u = PC(u − ρAu)

for all ρ > 0, where A is a monotone mapping of C into H .
A mapping A of C into H is called strongly monotone if there exists a positive real

number α such that

〈x − y, Ax− Ay〉 ≥ α ‖x − y‖2

for all x, y ∈ C. Such A is called α-strongly monotone. If A : C → H is α-strongly
monotone and β-Lipschitzian, then without loss of generality we can assume α < β. The
following lemma is in [14].
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Lemma 2.1 ([14]). Let H be a real Hilbert space, let C be a nonempty closed convex subset
of H and let α, β, ρ > 0. Suppose that A is an α-strongly monotone and β-Lipschitzian
mapping of C into H and ρ ∈ (0, 2α/β2). Then

‖PC(I − ρA)x − PC(I − ρA)y‖ ≤
√

1 − ρ(2α − ρβ2) ‖x − y‖
for all x, y ∈ C. In particular, PC(I − ρA) is a contraction of C into itself.

Remark 1. In this lemma, ρ(2α − ρβ2) is actually in the interval (0, 1). In fact, it is easy
that ρ(2α − ρβ2) > 0. We have that

α < β =⇒ α2 − β2 < 0

=⇒ β2ρ2 − 2αρ + 1 > 0

=⇒ ρ(2α − ρβ2) < 1.

The following theorem is due to [14]; see also [3].

Theorem 2.1 (Projected gradient method). Let H be a real Hilbert space, let C be a nonempty
closed convex subset of H and let α, β > 0. Suppose that A is an α-strongly monotone and
β-Lipschitzian mapping of C into H. Then the following hold:

(i) V I(C,A) has its unique solution u∗ ∈ C;
(ii) for any x1 ∈ C and ρ ∈ (0, 2α/β2), the sequence {xn} generated by

xn+1 = PC(I − ρA)xn for n ∈ N

converges strongly to a unique solution u∗ of V I(C,A).

Motivated by Theorem 2.1, Yamada [13] proved the following theorem.

Theorem 2.2 (Hybrid steepest descent method). Let H be a real Hilbert space, let T be a
nonexpansive mapping on H such that F (T ) is nonempty and let α, β > 0. Suppose that A
is an α-strongly monotone and β-Lipschitzian mapping of R(T ) into H. Then, V I(F (T ), A)
has its unique solution u∗ ∈ C. Further, for any x1 ∈ H and ρ ∈ (0, 2α/β2), let {xn} be
the sequence generated by

xn+1 = (I − λnρA)Txn

for all n ∈ N. Then, the sequence {xn} converges strongly to a unique solution u∗ of
V I(F (T ), A), where {λn} is a sequence of (0, 1] satisfying
(C1) limn→∞ λn = 0;
(C2)

∑∞
n=1 λn = ∞;

(C3) limn→∞
λn−λn+1

λ2
n+1

= 0.

The above condition (C3) can be generalized to the following condition by Xu [12]:
(C4) limn→∞ λn

λn+1
= 1.

Let T1, T2, . . . be mappings on H and let γ1, γ2, . . . be real numbers such that 0 ≤ γi ≤ 1
for every i ∈ N. Then, for any n ∈ N, we define a mapping Wn on H as follows:

Un,n+1 = I,

Un,n = γnTnUn,n+1 + (1 − γn)I,

Un,n−1 = γn−1Tn−1Un,n + (1 − γn−1)I,

...

Un,k = γkTkUn,k+1 + (1 − γk)I,

Un,k−1 = γk−1Tk−1Un,k + (1 − γk−1)I,



560 SHIGERU IEMOTO AND WATARU TAKAHASHI

...

Un,2 = γ2T2Un,3 + (1 − γ2)I,

Wn = Un,1 = γ1T1Un,2 + (1 − γ1)I.

Such a mapping Wn is called the W -mapping generated by Tn, Tn−1, . . . , T1 and γn, γn−1,
. . . , γ1; see [8], [10] and [11]. The following lemma was proved in [11].

Lemma 2.2 ([11]). Let H be a real Hilbert space. Let T1, T2, . . . , Tn be nonexpansive map-
pings on H such that

⋂n
i=1 F (Ti) is nonempty and let γ1, γ2, . . . , γn be real numbers such

that 0 < γi < 1 for i = 1, 2, . . . , n. For any n ∈ N, let Wn be the W -mapping generated by
Tn, Tn−1, . . . , T1 and γn, γn−1, . . . , γ1. Then Wn is nonexpansive and F (Wn) =

⋂n
i=1 F (Ti).

For k ∈ N, from Lemma 3.2 in [5], we define mappings U∞,k and W on H as follows:

U∞,kx = lim
n→∞Un,kx

and

Wx = lim
n→∞ Wnx = lim

n→∞ Un,1x

for all x ∈ H . Such a mapping W is called the W -mapping generated by T1, T2, . . . and
γ1, γ2, . . . . We know the following two lemmas:

Lemma 2.3 ([5]). Let H be a real Hilbert space. Let T1, T2, . . . be nonexpansive mappings
on H such that

⋂∞
n=1 F (Tn) is nonempty and let γ1, γ2, . . . be real numbers such that 0 <

γi < 1 for all i ∈ N. Let W be the W -mapping generated by T1, T2, . . . and γ1, γ2, . . . . Then
W is nonexpansive and F (W ) =

⋂∞
n=1 F (Tn).

Lemma 2.4 ([7]). Let {xn} and {yn} be bounded sequences in H and let {βn} be a sequence
in [0, 1] with 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1. Suppose that xn+1 = βnyn + (1 −
βn)xn for all n ∈ N and

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0.

Then limn→∞ ‖yn − xn‖ = 0.

Let µ be a mean on N, i.e., a continuous linear functional on l∞ satisfying ‖µ‖ = 1 = µ(1).
We know that µ is a mean on N if and only if

inf
n∈N

an ≤ µ(f) ≤ sup
n∈N

an

for each f = (a1, a2, . . . ) ∈ l∞. Occasionally, we use µn(an) instead of µ(f). So, a Banach
limit µ is a mean on N satisfying µn(an) = µn(an+1). Let f = (a1, a2, . . . ) ∈ l∞ with
an → a as n → ∞ and let µ be a Banach limit on N. Then µ(f) = µn(an) = a. We also
know the following lemma [6].

Lemma 2.5 ([6]). Let a be a real number and let (a1, a2, . . . ) ∈ l∞ such that µn(an) ≤ a
for all Banach limit µ and lim supn→∞(an+1 − an) ≤ 0. Then, lim supn→∞ an ≤ a.

The following lemma is proved in [1].

Lemma 2.6 ([1]). Let {sn} be a sequence of nonnegative real numbers, let {αn} be a se-
quence of [0, 1] with

∑∞
n=1 αn = ∞, let {βn} be a sequence of real numbers with lim supn βn ≤

0, and let {γn} be a sequence of real numbers with
∑∞

n=1 γn < ∞. Suppose that

sn+1 ≤ (1 − αn)sn + αnβn + γn

for all n ∈ N. Then limn→∞ sn = 0.
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The following lemma is in [9, 10].

Lemma 2.7. In a real Hilbert space H, the following inequality holds:

‖x + y‖2 ≤ ‖x‖2 + 2 〈x + y, y〉
for all x, y ∈ H.

The following theorem plays a crucial role for our main theorem.

Theorem 2.3 ([13]). Let H be a real Hilbert space and α, β > 0. Let W be a nonexpansive
mapping on H such that F (W ) is nonempty and let A be an α-strongly monotone and β-
Lipschitzian mapping of R(W ) into H. For ρ ∈ (0, 2α/β2), define Sn : H → H and Cf

by

Sn = (I − λnρA)W for all n ∈ N,

Cf =
{

x ∈ H : ‖x − f‖ ≤ ‖ρA(Wf)‖
r

}
for all f ∈ F (W ),

where {λn} ⊂ (0, 1] and r = 1 −√1 − ρ(2α − ρβ2) ∈ (0, 1). Then the following holds:
(i) For each n ∈ N, Sn is a contraction which has a unique fixed point un ∈ ⋂f∈F (W ) Cf .
(ii) Suppose that the sequence {λn} ⊂ (0, 1] satisfies limn→∞ λn = 0. Let un be a unique

fixed point of Sn, that is, un = Snun = Wun − λnρA(Wun). Then the sequence {un}
converges strongly to a unique solution u∗ of V I(F (W ), A).

3. Main theorems

In this section, we show a strong convergence theorem for finding a solution of the vari-
ational inequality problem over the intersection of fixed point sets of infinite nonexpansive
mappings. Before proving the theorem, we need the following lemma which is essentially
used in the proof.

Lemma 3.1. Let H be a real Hilbert space and let α, β > 0. Let T1, T2, . . . be nonexpansive
mappings on H such that

⋂∞
n=1 F (Tn) is nonempty and let γ1, γ2, . . . be real numbers such

that 0 < a ≤ γi ≤ b < 1 for all i = 1, 2, . . . and some a, b ∈ (0, 1) with a ≤ b. For any
n ∈ N, let Wn be the W-mapping generated by Tn, Tn−1, . . . , T1 and γn, γn−1, . . . , γ1 and let
A be an α-inverse strongly monotone and β-Lipschitzian mapping on H. Suppose that {xn}
is a sequence generated by x1 ∈ H and

xn+1 = (I − λnρA)Wnxn(4)

for all n ∈ N, where ρ ∈ (0, 2α/β2), and {λn} ⊂ (0, 1] satisfies limn→∞ λn = 0. Then
limn→∞ ‖xn+1 − xn‖ = 0.

Proof. Putting Tn = (I − λnρA)Wn, we can rewrite (4) to xn+1 = Tnxn. Let u ∈⋂∞
n=1 F (Tn). It follows from Lemma 2.2 that

‖xn+1 − u‖ = ‖Tnxn − u‖
≤ ‖Tnxn − Tnu‖ + ‖Tnu − u‖
≤ (1 − λnr) ‖xn − u‖ + ‖(I − λnρA)Wnu − Wnu‖
= (1 − λnr) ‖xn − u‖ + λnρ ‖Au‖
= (1 − λnr) ‖xn − u‖ + λnr

ρ

r
‖Au‖

≤ max
{
‖xn − u‖ ,

ρ

r
‖Au‖

}
,
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where r = 1 −√1 − ρ(2α − ρβ2) ∈ (0, 1). By induction, we get

‖xn − u‖ ≤ max
{
‖x1 − u‖ ,

ρ

r
‖Au‖

}
=: K

and hence {xn} is bounded. So, {Tnxn} is also bounded. From (4), we note that

xn+1 = (I − λnρA)Wnxn

= λn(I − ρA)Wnxn + (1 − λn)Wnxn

= λn(I − ρA)Wnxn + (1 − λn)(γ1T1Un,2xn + (1 − γ1)xn).

Put

yn =
λn(I − ρA)Wnxn + (1 − λn)γ1T1Un,2xn

λn + (1 − λn)γ1
.

Then, we have

‖yn − u‖ =
∥∥∥∥λn{(I − ρA)Wnxn − u} + (1 − λn)γ1(T1Un,2xn − u)

λn + (1 − λn)γ1

∥∥∥∥
≤ λn ‖(I − ρA)Wnxn − u‖ + (1 − λn)γ1 ‖T1Un,2xn − u‖

λn + (1 − λn)γ1

≤ 1
λn + (1 − λn)γ1

{λn ‖(I − ρA)Wnxn − (I − ρA)Wnu‖
+ λn ‖(I − ρA)Wnu − u‖ + (1 − λn)γ1 ‖T1Un,2xn − u‖}

≤ 1
λn + (1 − λn)γ1

{λn(1 − r) ‖xn − u‖ + λnρ ‖Au‖
+ (1 − λn)γ1 ‖Un,2xn − u‖}

≤ λn(1 − r)K + λnrK + (1 − λn)γ1K

λn + (1 − λn)γ1

= K.

So, the sequence {yn} is also bounded. Furthermore, we have that

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖)

= lim sup
n→∞

(∥∥∥∥λn+1(I − ρA)Wn+1xn+1 + (1 − λn+1)γ1T1Un+1,2xn+1

λn+1 + (1 − λn+1)γ1

−λn(I − ρA)Wnxn + (1 − λn)γ1T1Un,2xn

λn + (1 − λn)γ1

∥∥∥∥− ‖xn+1 − xn‖
)

≤ lim sup
n→∞

(∥∥∥∥λn+1(I − ρA)Wn+1xn+1 − λn+1(I − ρA)Wn+1xn

λn+1 + (1 − λn+1)γ1

∥∥∥∥
+

λn+1

λn+1 + (1 − λn+1)γ1
‖(I − ρA)Wn+1xn − (I − ρA)Wnxn‖

+
∣∣∣∣ λn+1

λn+1 + (1 − λn+1)γ1
− λn

λn + (1 − λn)γ1

∣∣∣∣ ‖(1 − ρA)Wnxn‖

+
(1 − λn+1)γ1

λn+1 + (1 − λn+1)γ1
‖T1Un+1,2xn+1 − T1Un,2xn+1‖

+
(1 − λn+1)γ1

λn+1 + (1 − λn+1)γ1
‖T1Un,2xn+1 − T1Un,2xn‖

+
∣∣∣∣ (1 − λn+1)γ1

λn+1 + (1 − λn+1)γ1
− (1 − λn)γ1

λn + (1 − λn)γ1

∣∣∣∣ ‖T1Un,2xn‖ − ‖xn+1 − xn‖
)
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≤ lim sup
n→∞

(
λn+1

λn+1 + (1 − λn+1)γ1
‖xn+1 − xn‖

+
λn+1

λn+1 + (1 − λn+1)γ1
‖Wn+1xn − Wnxn‖

+
∣∣∣∣ λn+1

λn+1 + (1 − λn+1)γ1
− λn

λn + (1 − λn)γ1

∣∣∣∣ ‖(1 − ρA)Wnxn‖

+
(1 − λn+1)γ1

λn+1 + (1 − λn+1)γ1
‖T1Un+1,2xn+1 − T1Un,2xn+1‖

+
(1 − λn+1)γ1

λn+1 + (1 − λn+1)γ1
‖xn+1 − xn‖

+
∣∣∣∣ (1 − λn+1)γ1

λn+1 + (1 − λn+1)γ1
− (1 − λn)γ1

λn + (1 − λn)γ1

∣∣∣∣ ‖T1Un,2xn‖ − ‖xn+1 − xn‖
)

= lim sup
n→∞

(
λn+1

λn+1 + (1 − λn+1)γ1
‖Wn+1xn − Wnxn‖

+
∣∣∣∣ λn+1

λn+1 + (1 − λn+1)γ1
− λn

λn + (1 − λn)γ1

∣∣∣∣ ‖(1 − ρA)Wnxn‖

+
(1 − λn+1)γ1

λn+1 + (1 − λn+1)γ1
‖T1Un+1,2xn+1 − T1Un,2xn+1‖

+
∣∣∣∣ (1 − λn+1)γ1

λn+1 + (1 − λn+1)γ1
− (1 − λn)γ1

λn + (1 − λn)γ1

∣∣∣∣ ‖T1Un,2xn‖
)

and that

‖Wn+1xn − Wnxn‖ = ‖Un+1,1xn − Un,1xn‖
= ‖γ1T1Un+1,2xn + (1 − γ1)xn − {γ1T1Un,2xn + (1 − γ1)xn}‖
= γ1 ‖T1un+1,2xn − T1Un,2xn‖
≤ γ1 ‖Un+1,2xn − Un,2xn‖
= γ1 ‖γ2T2Un+1,3xn + (1 − γ2)xn − {γ2T2Un,3xn + (1 − γ2)xn)}‖
= γ1γ2 ‖T2Un+1,3xn − T2Un,3xn‖
≤ γ1γ2 ‖Un+1,3xn − Un,3xn‖
...

≤
(

n∏
i=1

γi

)
‖Un+1,n+1xn − Un,n+1xn‖

=

(
n∏

i=1

γi

)
‖γn+1Tn+1Un+1,n+2xn + (1 − γn+1)xn − xn‖

=

(
n+1∏
i=1

γi

)
‖Tn+1xn − xn‖

≤ bn+1 ‖Tn+1xn − xn‖ .

Similarly, we have that

‖T1Un+1,2xn+1 − T1Un,2xn+1‖ ≤ bn ‖Tn+1xn+1 − xn+1‖ .
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So, we have

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖)

≤ lim sup
n→∞

(
λn+1

λn+1 + (1 − λn+1)γ1
bn+1 ‖Tn+1xn − xn‖

+
∣∣∣∣ λn+1

λn+1 + (1 − λn+1)γ1
− λn

λn + (1 − λn)γ1

∣∣∣∣ ‖(1 − ρA)Wnxn‖

+
(1 − λn+1)γ1

λn+1 + (1 − λn+1)γ1
bn ‖Tn+1xn+1 − xn+1‖

+
∣∣∣∣ (1 − λn+1)γ1

λn+1 + (1 − λn+1)γ1
− (1 − λn)γ1

λn + (1 − λn)γ1

∣∣∣∣ ‖T1Un,2xn‖
)

≤ lim sup
n→∞

(
λn+1

λn+1 + (1 − λn+1)γ1
bn+1

+
∣∣∣∣ λn+1

λn+1 + (1 − λn+1)γ1
− λn

λn + (1 − λn)γ1

∣∣∣∣
+

(1 − λn+1)γ1

λn+1 + (1 − λn+1)γ1
bn

+
∣∣∣∣ (1 − λn+1)γ1

λn+1 + (1 − λn+1)γ1
− (1 − λn)γ1

λn + (1 − λn)γ1

∣∣∣∣
)

L,

where L = max{2K, K + ‖(I − ρA)u‖} with u ∈ ⋂∞
n=1 F (Tn). Since limn→∞ λn = 0 and

γn ≤ b < 1 for all n ∈ N, we obtain

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0.

Now, we note that

xn+1 = (1 − λn)(1 − γ1)xn + {1 − (1 − λn)(1 − γ1)}yn

for all n ∈ N and that

0 < lim inf
n→∞ (1 − λn)(1 − γ1) ≤ lim sup

n→∞
(1 − λn)(1 − γ1) < 1.

From Lemma 2.4, we get limn→∞ ‖yn − xn‖ = 0. Therefore we have

lim
n→∞ ‖xn+1 − xn‖ = lim

n→∞{1 − (1 − λn)(1 − γ1)} ‖yn − xn‖ = 0.

This completes the proof.

We are now in a position to prove our main theorem.

Theorem 3.1. Let H be a real Hilbert space and let α, β > 0. Let T1, T2, . . . be nonexpan-
sive mappings on H such that

⋂∞
n=1 F (Tn) is nonempty and let γ1, γ2, . . . be real numbers

such that 0 < a ≤ γi ≤ b < 1 for all i = 1, 2, . . . and some a, b ∈ (0, 1) with a ≤ b. For any
n ∈ N, let Wn be the W-mapping generated by Tn, Tn−1, . . . , T1 and γn, γn−1, . . . , γ1 and let
A be an α-inverse strongly monotone and β-Lipschitzian mapping on H. Suppose that {xn}
is a sequence generated by x1 ∈ H and

xn+1 = (I − λnρA)Wnxn

for all n ∈ N, where ρ ∈ (0, 2α/β2), and {λn} ⊂ (0, 1] satisfies (C1) and (C2), that is,

lim
n→∞λn = 0 and

∞∑
n=1

λn = ∞.
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Then the sequence {xn} converges strongly to a unique solution u∗ of V I(
⋂∞

n=1 F (Tn), A).

Proof. As in the proof of Lemma 3.1, {xn} and {AWnxn} are bounded. Let W be the
W -mapping generated by T1, T2, . . . and γ1, γ2, . . . such that Wx = limn→∞ Wnx for each
x ∈ H . Using the mapping W and λk = 1/k in Theorem 2.3, we have from Lemma 2.3 that
there exists the sequence {uk} such that {uk} converges strongly to a unique solution u∗ of
V I(

⋂∞
n=1 F (Tn), A). Then we have that for all n, k ∈ N,

‖xn+1 − Wuk‖ = ‖Wnxn − λnρAWnxn − Wuk‖
≤ ‖Wnxn − Wnuk‖ + ‖Wnuk − Wuk‖ + λnρ ‖AWnxn‖
≤ ‖xn − uk‖ + ‖Wnuk − Wuk‖ + λnρ ‖AWnxn‖ .

Since limn→∞ λn = 0 and Wuk = limn→∞ Wnuk for each k ∈ N, for any Banach limit µ,
we obtain

µn ‖xn − Wuk‖2 = µn ‖xn+1 − Wuk‖2 ≤ µn ‖xn − uk‖2
.(5)

From the definition of {uk}, we have

xn − uk = xn − (Wuk − 1
k
ρAWuk)

=
(

1 − 1
k

)
(xn − Wuk) +

1
k

(xn − Wuk + ρAWuk)

and hence (
1 − 1

k

)
(xn − Wuk) = (xn − uk) − 1

k
(xn − Wuk + ρAWuk).

So we have (
1 − 1

k

)2

‖xn − Wuk‖2

≥ ‖xn − uk‖2 − 2
k
〈xn − uk, xn − Wuk + ρAWuk〉

= ‖xn − uk‖2 − 2
k
〈xn − uk, xn − uk + uk − Wuk + ρAWuk〉

=
(

1 − 2
k

)
‖xn − uk‖2 +

2
k
〈xn − uk,−uk + Wuk − ρAWuk〉 .

From (5), we have(
1 − 1

k

)2

µn ‖xn − uk‖2 ≥
(

1 − 1
k

)2

µn ‖xn − Wuk‖2

=
(

1 − 2
k

)
µn ‖xn − uk‖2

+
2
k

µn 〈xn − uk,−uk + Wuk − ρAWuk〉
and hence

1
2k

µn ‖xn − uk‖2 ≥ µn 〈xn − uk,−uk + Wuk − ρAWuk〉
for all k ∈ N. Letting k → ∞, from u∗ ∈ V I(F (W ), A) we obtain

0 ≥ µn 〈xn − u∗,−u∗ + Wu∗ − ρAWu∗〉
= µn 〈xn − u∗,−ρAWu∗〉
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and hence

0 ≥ µn 〈xn − u∗,−AWu∗〉 .

In addition, from Lemma 3.1 we have

lim
n→∞ |〈xn+1 − u∗,−AWu∗〉 − 〈xn − u∗,−AWu∗〉|

= lim
n→∞ |〈xn+1 − xn,−AWu∗〉| = 0.

Therefore, it follows from Lemma 2.5 that

0 ≥ lim sup
n→∞

〈xn − u∗,−AWu∗〉 .(6)

Finally, we show that limn→∞ ‖xn − u∗‖ = 0. In fact, from Lemma 2.7 we have

‖xn+1 − u∗‖2 = ‖Tnxn − u∗‖2

= ‖(Tnxn − Tnu∗) + (Tnu∗ − u∗)‖2

≤ ‖Tnxn − Tnu∗‖2 + 2 〈xn+1 − u∗, Tnu∗ − u∗〉
= ‖Tnxn − Tnu∗‖2 + 2 〈xn+1 − u∗, Wnu∗ − λnρAWnu∗ − u∗〉
≤ (1 − λnr) ‖xn − u∗‖2 + 2λnρ 〈xn+1 − u∗,−AWnu∗〉

= (1 − λnr) ‖xn − u∗‖2 + λnr

{
2ρ

r
(〈xn+1 − u∗,−AWu∗〉

+ 〈xn+1 − u∗, AWu∗ − AWnu∗〉)
}

≤ (1 − λnr) ‖xn − u∗‖2 + λnr

{
2ρ

r
(〈xn+1 − u∗,−AWu∗〉

+ M ‖Wu∗ − Wnu∗‖)
}

,

where M = β supn∈N
‖xn − u∗‖. From Lemma 2.6 and (6), we obtain that the sequence

{xn} converges strongly to a unique solution u∗ of V I(
⋂∞

n=1 F (Tn), A).

Using Theorem 3.1, we obtain the following theorem for finding a solution of the variational
inequality problem over the intersection of fixed point sets of finite nonexpansive mappings.

Theorem 3.2. Let H be a real Hilbert space and let α, β > 0. Let T1, T2, . . . , Tr be non-
expansive mappings on H such that

⋂r
i=1 F (Ti) is nonempty and let γ1, γ2, . . . , γr be real

numbers such that 0 < a ≤ γi ≤ b < 1 for all i = 1, 2, . . . , r and some a, b ∈ (0, 1) with
a ≤ b. Let W be the W-mapping generated by T1, T2, . . . , Tr and γ1, γ2, . . . , γr and let A be
an α-inverse strongly monotone and β-Lipschitzian mapping on H. Suppose that {xn} is a
sequence generated by x1 ∈ H and

xn+1 = (I − λnρA)Wxn

for all n ∈ N, where ρ ∈ (0, 2α/β2), and {λn} ⊂ (0, 1] satisfies (C1) and (C2), that is,

lim
n→∞λn = 0 and

∞∑
n=1

λn = ∞.

Then, {xn} converges strongly to a unique solution u∗ of V I(
⋂r

i=1 F (Ti), A).

The following theorem is connected with the projected gradient method; see Theorem
2.1.
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Theorem 3.3. Let H be a real Hilbert space and let α, β > 0. Let C1, C2, . . . be nonempty
closed convex subsets of H such that C :=

⋂∞
n=1 Cn is nonempty, let PCn be the metric

projections of H onto Cn for each n ∈ N and let γ1, γ2, . . . be real numbers such that
0 < a ≤ γi ≤ b < 1 for all i = 1, 2, . . . and some a, b ∈ (0, 1) with a ≤ b. For any n ∈ N, let
Wn be the W-mapping generated by PC1 , PC2 , . . . and γ1, γ2, . . . and let A be an α-inverse
strongly monotone and β-Lipschitzian mapping on H. Suppose that {xn} is a sequence
generated by x1 ∈ H and

xn+1 = (I − λnρA)Wnxn

for all n ∈ N, where ρ ∈ (0, 2α/β2), and {λn} ⊂ (0, 1] satisfies (C1) and (C2), that is,

lim
n→∞λn = 0 and

∞∑
n=1

λn = ∞.

Then, the sequence {xn} converges strongly to a unique solution u∗ of V I(C,A).

Proof. Since F (W ) =
⋂∞

n=1 F (PCn) =
⋂∞

n=1 Cn = C, from Theorem 3.1 we obtain the
conclusion.

4. Application

Let C be a nonempty closed convex subset of a real Hilbert space H . Let A : C → H
be a bounded linear operator and let A(C) be the range of A. Given an element b ∈ H ,
consider the following convexly constrained linear inverse problem:

Find z ∈ C such that z ∈ argmin
x∈C

‖Ax − b‖2
.(7)

We denote the set of solutions (7) by Sb. Then it is known that Sb is nonempty if and only
if

PA(C)(b) ∈ A(C),

where PC is the metric projection of H onto C. Indeed, the necessary part is trivial.
Suppose that there exists z ∈ C such that z ∈ argminx∈C ‖Ax − b‖2. Then we have

‖Az − b‖2 ≤ ‖y − b‖2(8)

for all y ∈ A(C). Let y0 be in A(C). Then there exists a sequence {yn} ⊂ A(C) such that
yn → y0 as n → ∞. So, from (8) we have

‖Az − b‖2 ≤ ‖yn − b‖2
.

Letting n → ∞, we get

‖Az − b‖2 ≤ ‖y0 − b‖2
.

Since y0 ∈ A(C) is arbitrary, we obtain PA(C)(b) = Az ∈ A(C). If Sb is nonempty, then we
know that Sb is closed and convex because of the continuity of A. In this case, Sb has a
unique element z̄ ∈ Sb with minimum norm, that is, z̄ ∈ Sb satisfies

‖z̄‖2 = min{‖x‖2 : x ∈ Sb}.(9)

The C-constrained pseudoinverse of A (denoted by A†
C) is defined as

D(A†
C) = {b ∈ H : PA(C)(b) ∈ A(C)},

A†
C(b) = z̄, b ∈ D(A†

C),

where z̄ ∈ Sb is a unique solution to (9).
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We now introduce the C-constrained generalized pseudoinverse of A; see [13]. Let f be
a Fréchet differentiable convex function from H to R such that ∇f is a k-Lipschitzian and
α-strongly monotone operator for some k > 0 and α > 0. Under these assumptions, there
exists a unique element z̄† ∈ Sb for b ∈ D(A†

C) such that

f(z̄†) = min{f(x) : x ∈ Sb}.(10)

The C-constrained generalized pseudoinverse of A associated with f (denoted by A†
C,f ) is

defined as

D(A†
C,f ) = D(A†

C),

A†
C,f (b) = z̄†, b ∈ D(A†

C,f ),

where z̄† ∈ Sb is a unique solution to (10).
We now apply our main theorem to construct the C-constrained generalized pseudoin-

verse A†
C,f of A. We know from (3) that

z ∈ Sb ⇐⇒ Az = PA(C)(b) ∈ A(C)

⇐⇒
〈
b − PA(C)(b), PA(C)(b) − Ax

〉
≥ 0 for all x ∈ C

⇐⇒ 〈b − Az, Az − Ax〉 ≥ 0 for all x ∈ C

⇐⇒ 〈A∗(Az − b), x − z〉 ≥ 0 for all x ∈ C,

where A∗ is the adjoint of A. This means that for each r > 0,

〈{rA∗b + (I − rA∗A)z − z}, x − z〉 ≥ 0 for all x ∈ C,

and hence

PC(rA∗b + (I − rA∗A)z) = z.(11)

Now, assume that {S1
b , S2

b . . . } is a family of the solution sets of (7) for {C1, C2, . . . } such
that

Sb :=
∞⋂

i=1

Si
b = ∅.

For each i ∈ N, define a mapping Ti : H → H by

Tix = PCi(rA∗b + (I − rA∗A)x) for all x ∈ H,(12)

where PCi is the metric projection of H onto Ci. The following lemma was shown by Xu
and Kim [12].

Lemma 4.1. Let H be a real Hilbert space and b ∈ H. Let Si
b be a family of the solution

sets of (7) such that
⋂∞

i=1 Si
b = ∅ and let Ti be a mapping of H onto Ci which is defined

by (12) for each i ∈ N. If r ∈ (0, 2/ ‖A‖2) and b ∈ D(A†
C), then Ti is nonexpansive and

F (Ti) = Si
b for all i ∈ N.

Using these settings, we obtain the following theorem.

Theorem 4.1. Let H be a real Hilbert space. Let T1, T2, . . . be mappings on H defined by
(12) such that Sb :=

⋂∞
n=1 F (Tn) is nonempty and let γ1, γ2, . . . be real numbers such that

0 < a ≤ γi ≤ b < 1 for all i ∈ N and some a, b with a ≤ b. For any n ∈ N, let Wn be
the W-mapping generated by Tn, Tn−1, . . . , T1 and γn, γn−1, . . . , γ1 and let f be a Fréchet
differentiable convex function from H to R such that ∇f is a k-Lipschitzian and α-strongly
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monotone mapping on H for some k, α > 0. Suppose that {xn} is a sequence generated by
x1 ∈ H and

xn+1 = (I − λnρ∇f)Wnxn(13)

for all n ∈ N, where ρ ∈ (0, 2α/k2), and {λn} ⊂ (0, 1] satisfies (C1) and (C2), that is,

lim
n→∞λn = 0 and

∞∑
n=1

λn = ∞.

Then, the sequence {xn} converges strongly to A†
Sb,f (b) which is a unique solution of (10).

Proof. Put A†
C(b) = z̄† for b ∈ D(A†

C). Then we have that

z̄† ∈ argmin
x∈Sb

f(x) ⇐⇒ 0 ∈ ∇f(z̄†) + NSb
(z̄†)

⇐⇒ 〈∇f(z̄†), x − z̄†
〉 ≥ 0 for all x ∈ Sb

⇐⇒ z̄† ∈ V I(Sb,∇f),

where NSb
is the normal cone to Sb; see [10] for more details. So, it follows from Theorem 3.1

and Lemma 4.1 that the sequence {xn} generated by (13) converges strongly to A†
Sb,f (b).
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