
Scientiae Mathematicae Japonicae Online, e-2008, 531–539 531

TWO PERSON GAMES ON SALE
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Abstract. We consider a class of games which is suggested from a timing problem
for putting some kind of farm products on the market. Two players, Player I and II,
take possession of the right to put some kind of farm products on the market with even
ratio. Each of the players can put the farm products at any time in [0, 1]. The price
of them increases over [0, m] ⊂ [0, 1] and decreases over (m, 1] with pass time t so long
as both of the players do not sell them, however if one of the two players puts his farm
products on the market, the price falls discontinuously and then fluctuates analogously
as before. Both players have to put their farm products on the market within the unit
interval [0, 1]. In such a situation, each player wishes to put at the optimal time which
gives him the highest price, considering opponents action time with each other. This
model yields us a certain class of two person non-zero sum infinite games on the unit
square.

1 Introduction We consider a class of games which is suggested from the correlative
phenomena between the price fluctuations and supply in a market on farm products. Two
players, Player I and II, take possession of the right to put some kind of farm products on
the market with even ratio. We call such kind of products product A in this paper. We
can harvest product A at a specific season every year periodically. Each of the two players
wants to decide the optimal time to put his product A on the market until the next harvest
season. We consider one time period where the harvest time in each year is the beginning
and the next harvest time is the end. The price of product A increases smoothly until some
point and then decreases with time as long as the both players don’t put on the market and
keep their own products. But, when one of the players puts his product A on the market,
the price of product A possessed by his opponent falls discontinuously and then fluctuates
with time analogously as before until his opponent puts the rest on the market. In such a
situation, each player has to decide the optimal action time considering the current price
and his opponent’s action time, with each other.

This problem is applicable to the correlation phenomena between the price and supply
on land, not only to the problem of farm products. As well as the usual games of timing
[1,2], we have to introduce two patterns of information available to the players. If a player
is informed of his opponent’s action time as soon as his opponent put product A on the
market, we say they are in a noisy version. If neither player learns when nor whether his
opponent has put product A on the market, we say both players are in a silent version. We
shall discuss three cases according to the information patterns mentioned above, as follows:

1. Both players are in a noisy version. We call this case noisy game.

2. Both players are in a silent version. We call this case silent game.
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3. Player Iis informed of II’s action time whereas II does not learn when or whether I
has already put his product A on the market, that is, I is the silent player and II is
the noisy player. We call this case silent-noisy game.

We consider the silent game and the noisy game in this paper. Related to our models, there
are two works. Teraoka and Yamada considered two person games on rivalry over territory
[3] and Teraoka and Hohjo extended it to n person games [4]. Also Teraoka and Hohjo
proposed and analyzed the games on sale in which the price is an increasing function with
respect to pass time [5,6].

2 Notations and Assumptions Since we consider one period game, we express the
period as the unit interval [0, 1]. Throughout of this paper, we use the following notations:
v(t) is the price of product A at time t ∈ [0, 1], when both players don’t put their product
A. We assume that v(t) is differentiable and

v′(t)
{ ≥

<

}
0 for

{
0 ≤ t ≤ m
m < t ≤ 1

}
,

that is, v(t) is a unimodal function with respect to t. And we assume that v(t) is known to
both players.

r is the discount factor after one of the players already puts product A on the market
and is assumed 0 < r < 1. That is, if one of the players sells his product A at time t ∈ [0, 1],
the price of his opponent’s falls down from v(t) to rv(t) immediately. It is natural to assume
0 < v(0) < ∞.

Here we also assume the following. If both of the players put their product A at a same
time t ∈ [0, 1], each of the both players has to sell his product A at the price after fall rv(t).

Throughout this paper we use notations on the expectation for real valued function
Mi(x, y) defined on the unit square when Player I and II employ mixed strategies (cdfs) on
[0, 1] F (x) and G(y), respectively, as follows:

Mi(F,G) =
∫ 1

0

∫ 1

0

Mi(x, y)dF (x)dG(y)

and

Mi(x,G) =
∫ 1

0

Mi(x, y)dG(y); Mi(F, y) =
∫ 1

0

Mi(x, y)dF (x).

3 Silent Game Here, we deal with the case where both players are in a silent version.
Since both players can’t learn when nor whether his opponent has acted and each player
is informed of the current price v̄(t) immediately after he has sold, we establish the pure
strategies for Player I and II as x ∈ [0, 1] and y ∈ [0, 1], respectively. Then the expected
payoff kernels M1(x, y) for I and M2(x, y) for II are given as follows:

M1(x, y) =
{

v(x), 0 ≤ x < y
rv(x), y ≤ x ≤ 1 ;(1)

M2(x, y) =
{

v(y), 0 ≤ y < x
rv(y), x ≤ y ≤ 1 .(2)

Observing the above payoff kernels, we can’t find any Nash equilibrium points in the class
of pure strategies. Hence we try to find them from a certain class of mixed strategies.
Since v(x) is a unimodal function which has the maximal value at point x = m ∈ [0, 1], we
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suppose that Player I and II use same mixed strategy (cdf) F (x) which consists of density
part f(x) > 0 over an interval (a,m), where 0 ≤ a < m, that is,

F (x) =

⎧⎨
⎩

0, 0 ≤ x < a∫ x

a
f(t)dt, a ≤ x < m

1, m ≤ x ≤ 1
.(3)

Supposing that Player I uses pure strategy x and Player II employs mixed strategy given
by (3), we have the expected payoff kernel to Player I M1(x,F ) as follows:

M1(x,F ) =

⎧⎨
⎩

v(x), 0 ≤ x < a
v(x)[1 − (1 − r)F (x)], a ≤ x < m
rv(x), m ≤ x ≤ 1

.

In a similar way, we get

M2(F, y) =

⎧⎨
⎩

v(y), 0 ≤ y < a
v(y)[1 − (1 − r)F (y)], a ≤ y < m
rv(y), m ≤ y ≤ 1

.

Putting

M1(x,F ) = const for x ∈ (a,m),

we have

v′(x)[1 − (1 − r)F (x)] = (1 − r)f(x)v(x) > 0, a < x < m.

Then we get

F (x) = {1/(1 − r)}[1 − {c/v(x)}], a < x < m,

where c is an integration constant. Since F (x) has to satisfy the boundary value conditions

F (a) = 0 and F (m) = 1,

both of the following equalities have to hold:

c = rv(m); v(a) = rv(m).

The latter equation has its solution, provided that the next inequality holds.

v(0) ≤ rv(m).

Hence, we consider the case where v(0) ≤ rv(m) first. Since the equation v(a) = rv(m)
has the unique root we denote it by a0. Then the following relations hold:

M1(x,F ) =

⎧⎨
⎩

v(x) < v(a0) = rv(m), 0 ≤ x < a0

v(a0) = rv(m), a0 ≤ x ≤ m
rv(x) < rv(m), m < x ≤ 1

.

After all, we obtain Theorem 1.
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Theorem 1. Assume that v(0) ≤ rv(m), and let a0 be the unique root of the equation in
the interval [0, m]. Also consider the following mixed strategy (cdf) given by

F 0(x) =

⎧⎨
⎩

0, 0 ≤ x < a0

{1/(1 − r)}[1 − {v(a0)/v(x)}], a0 ≤ x < m
1, m ≤ x ≤ 1

.

Then the pair of mixed strategy (F 0, F 0) constitutes a Nash equilibrium point of two person
non-zero sum game given by (1) and (2). And the corresponding equilibrium values v1 to
Player I and v2 to II are given as

v1 = M1(F 0, F 0) = rv(m) ; v2 = M2(F 0, F 0) = rv(m).

According to Theorem 1, each player is forced to concentrate his probability to take
his action over the interval where the price of product A increases under the equilibrium,
irrespective of the concrete shape of function v(t).

Now we consider the case where v(0) > rv(m). If we consider

F (x) =
{ {1/(1 − r)}[1 − {v(0)/v(x)}], 0 ≤ x < m

1, m ≤ x ≤ 1 ,

the following relations hold:

F (0) = {1/(1 − r)}[1 − {v(0)/v(0)}] = 0,

and

F (m) = {1/(1 − r)}[1 − {v(0)/v(m)}]
< {1/(1 − r)}[1 − {rv(m)/v(m)}] = 1.

Putting α as

α = 1 − {1/(1 − r)}[1 − {v(0)/v(m)}],
we obtain

M1(x,F ) =

⎧⎨
⎩

v(0), 0 ≤ x < m
v(a) = rv(m), x = m
rv(x) < rv(m) < v(0), m < x ≤ 1

.

Thus if we consider the following cdf F ∗(x):

F ∗(x) =
{ {1/(1 − α)}{1/(1 − r)}[1 − {v(0)/v(x)}], 0 ≤ x < m

1, m ≤ x ≤ 1 ,

F ∗(x) satisfies

F ∗(0) = 0; F ∗(m) = 1,

and then

v(x)[1 − (1 − r)F ∗(x)] = v(x){1/(1 − α)}{v(0)/v(x)}
= {1/(1 − α)}v(0), 0 ≤ x < m.
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Hence we have

M1(x,F ) =

⎧⎨
⎩

{1/(1 − α)}v(0), 0 ≤ x < m
rv(m), x = m
rv(x) < rv(m) < v(0), m < x ≤ 1

.

After all Theorem 2 holds.

Theorem 2. Assume that v(0) > rv(m), and let α be

α = 1 − {1/(1 − r)}[1 − {v(0)/v(m)}] > 0.

Then we consider the following cdf F ∗(x):

F ∗(x) =
{ {1/(1 − α)}{1/(1 − r)}[1 − {v(0)/v(x)}], 0 ≤ x < m

1, m ≤ x ≤ 1 .

Then the pair of mixed strategy (F ∗, F ∗) constitutes a Nash equilibrium point of two person
non-zero sum game given by (1) and (2). And the corresponding equilibrium values v1 to
Player I and v2 to II are given as

v1 = M1(F ∗, F ∗) = {1/(1 − α)}v(0); v2 = M2(F ∗, F ∗) = {1/(1 − α)}v(0),

respectively.

4 Noisy Game In this section we consider noisy game, that is, both of the two players
are noisy players. Since a player is informed of his opponent’s action time as soon as
his opponent put product A on the market, we establish the pure strategy of Player I as
x ∈ [0, 1]. It means that Player I select point x ∈ [0, 1] in advance, and then if he can
observe his opponent takes the action before x he acts at the time which maximizes the
price v(t), and conversely if he could not find Player II put the product A until time x he
take his action at the time x. In a similar fashion we can establish the pure strategy of
Player II as y ∈ [0, 1].

Then, the expected payoff kernels M1(x, y) to I and M2(x, y) to II are given as

M1(x, y) =

{
v(x), 0 ≤ x < y
r max

x
v(x), y ≤ x ≤ 1 ;

M2(x, y) =

{
v(y), 0 ≤ y < x
r max

y
v(y), x ≤ y ≤ 1 .

Related to the above payoff kernels, if we assume 0 ≤ x1 ≤ m ≤ x2 ≤ 1 we get

M1(x1, y) =
{

v(x1), 0 ≤ x1 < y
rv(m), y ≤ x1 ≤ 1 ; M1(x2, y) =

{
v(x2), 0 ≤ x2 < y
rv(y), y ≤ x2 ≤ 1 ,

and then Player I is forced to choose his action time x before m. Similarly, Player II has
to choose his action time y before m. Therefore, we consider the non-zero sum two person
game given by the following expected payoffs:

M1(x, y) =
{

v(x), 0 ≤ x < y
rv(m), y ≤ x ≤ 1 ;(4)

M2(x, y) =
{

v(y), 0 ≤ y < x
rv(m), x ≤ y ≤ 1 .(5)
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Observing (4), (5) and the analysis of silent game, we can suppose that the equilibrium
point is determined by considering the relation of v(0) and rv(m).

First, we consider the case where v(0) ≤ rv(m). Let a be the unique root of the equation
v(a) = rv(m) in the interval [0, m]. Then if Player II chooses pure strategy a, we have

M1(x, a) =

⎧⎪⎪⎨
⎪⎪⎩

v(x) < v(a) = rv(m), 0 ≤ x < a
rv(a) < rv(m), x = a
rv(m), a < x ≤ m
rv(x) < rv(m), m < x ≤ 1

.(6)

Therefore, it is optimal for Player I to select point a. Similarly, if Player I chooses pure
strategy a, we also obtain

M2(a, y) =

⎧⎪⎪⎨
⎪⎪⎩

v(y) < v(a) = rv(m), 0 ≤ y < a
rv(a) < rv(m), y = a
rv(m), a < y ≤ m
rv(y) < rv(m), m < y ≤ 1

.(7)

The two relations of (6) and (7) means that the pair (a, a) cannot constitute Nash equi-
librium, however, give the candidate of an equilibrium by means of limit for the response
to avoid that both players act at the same time. Here, we consider the following mixed
strategy.

For any ε > 0 we choose δ ∈ (0, m − a) which satisfies v(a + δ) − v(a) < ε and then
define cdf Ha(x) as

Ha(x) =

⎧⎨
⎩

0, 0 ≤ x < a∫ x

a
(1/δ)dt, a ≤ x ≤ a + δ

1, a + δ < x ≤ 1
.

So we get the following relation on the expected payoff for cdf Ha(x):

M2(Ha(x), y) =

⎧⎪⎪⎨
⎪⎪⎩

v(y) < rv(m), 0 ≤ y < a
rv(m){(y − a)/δ} + v(y){(a + δ − y)/δ}, a ≤ y ≤ a + δ
rv(m), a + δ < y ≤ m
rv(y) < rv(m), m < y ≤ 1

.

For the case of a ≤ y ≤ a + δ, since v(a) = rv(m) we get

rv(m){(y − a)/δ} + v(y){(a + δ − y)/δ}
≤ rv(m){(y − a)/δ} + v(a + δ){(a + δ − y)/δ}
≤ rv(m){(y − a)/δ} + {v(a) + ε}{(a + δ − y)/δ}
≤ rv(m) + ε{(a + δ − y)/δ}
≤ rv(m) + ε.

Thus we have

M2(Ha(x), y) ≤ rv(m) + ε, for all y ∈ [0, 1].

We also get

rv(m){(y − a)/δ} + v(y){(a + δ − y)/δ}
≥ rv(m){(y − a)/δ} + v(a){(a + δ − y)/δ}
= rv(m) for all y ∈ [a, a + δ],
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the following inequality holds:

rv(m) ≤ M2(Ha(x), y) ≤ rv(m) + ε, for all y ∈ [a, a + δ].

Similar arguments give

M1(x,Ha(y)) ≤ rv(m) + ε, for all x ∈ [0, 1]

and so

rv(m) ≤ M1(x,Ha(y)) ≤ rv(m) + ε, for all x ∈ [a, a + δ].

After all, we have Theorem 3.

Theorem 3. Assume that v(0) ≤ rv(m), and let a be the unique root of equation v(a) =
rv(m) in the interval [0, m]. Then for any ε > 0 we choose δ ∈ (0, m − a) which satisfies
v(a + δ) − v(a) < ε and consider cdf Ha(x) given as

Ha(x) =

⎧⎨
⎩

0, 0 ≤ x < a∫ x

a (1/δ)dt, a ≤ x ≤ a + δ
1, a + δ < x ≤ 1

.

So we have

M1(x,Ha(y)) ≤ rv(m) + ε, for all x ∈ [0, 1];
M2(Ha(x), y) ≤ rv(m) + ε, for all y ∈ [0, 1]

and

rv(m) ≤ M1(x,Ha(y)) ≤ rv(m) + ε, for all x ∈ [a, a + δ];
rv(m) ≤ M2(Ha(x), y) ≤ rv(m) + ε, for all y ∈ [a, a + δ].

Next we consider the case where v(0) > rv(m). As well as the previous case, we consider
the following mixed strategy.

For any ε > 0 we choose δ ∈ (0, m) which satisfies v(δ) − v(0) < ε, and then define cdf
H0(x) as

H0(x) =
{ ∫ x

0
(1/δ)dt, 0 ≤ x ≤ δ

1, δ < x ≤ 1 .

Then we get the following relation on the expected payoff for cdf H0(x):

M2(H0(x), y) =

⎧⎨
⎩

rv(m)(y/δ) + v(y){(δ − y)/δ}, 0 ≤ y ≤ δ
rv(m) < v(0), δ < y ≤ m
rv(y) < rv(m) < v(0), m < y ≤ 1

.
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First we consider the case where 0 ≤ y ≤ δ, since v(0) ≥ rv(m) we get

rv(m)(y/δ) + v(y){(δ − y)/δ}
≤ rv(m)(y/δ) + v(δ){(δ − y)/δ}
≤ rv(m)(y/δ) + {v(0) + ε}{(δ − y)/δ}
≤ v(0) + ε{(δ − y)/δ}
≤ v(0) + ε,

and then the following relation holds:

M2(H0(x), y) ≤ v(0) + ε, for all y ∈ [0, 1].

We also get

rv(m)(y/δ) + v(y){(δ − y)/δ}
≥ rv(m)(y/δ) + v(0){(δ − y)/δ}
≥ rv(m).

Then the following inequalities hold

rv(m) ≤ M2(H0(x), y) ≤ v(0) + ε, for all y ∈ [0, δ].

Almost same arguments give

M1(x,H0(y)) ≤ v(0) + ε, for all x ∈ [0, 1]

and

rv(m) ≤ M1(x,H0(y)) ≤ v(0) + ε, for all x ∈ [0, δ].

Now then we suppose that both of the two players use cdf H0(x) as their mixed strategies,
we have

{rv(m) + v(0)}/2 <

∫ δ

0

M2(H0(x), y)(1/δ)dy < {rv(m) + v(δ)}/2.

And then the following inequalities hold:

{v(0) + rv(m)}/2 < M2(H0(x),H0(y)) < {v(0) + rv(m)}/2 + ε.

Similar arguments give

{v(0) + rv(m)}/2 < M1(H0(x),H0(y)) < {v(0) + rv(m)}/2 + ε.

After all we obtain Theorem 4.

Theorem 4. Assume that v(0) > rv(m). Consider the following mixed strategy: For any
δ ∈ (0, m) we define cdf H0(x) given by

H0(x) =
{ ∫ x

0
(1/δ)dt, 0 ≤ x ≤ δ

1, δ < x ≤ 1 .

Then we have

M1(x,H0(y)) ≤ v(0) + ε, for all x ∈ [0, 1];
M2(H0(x), y) ≤ v(0) + ε, for all y ∈ [0, 1]
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and

rv(m) ≤ M1(x,H0(y)) ≤ v(0) + ε, for all x ∈ [0, δ];
rv(m) ≤ M2(H0(x), y) ≤ v(0) + ε, for all y ∈ [0, δ].

Furthermore, both of the two players use cdf H0(x) as their mixed strategies, the following
inequalities hold

{v(0) + rv(m)}/2 < M1(H0(x),H0(y)) < {v(0) + rv(m)}/2 + ε;
{v(0) + rv(m)}/2 < M2(H0(x),H0(y)) < {v(0) + rv(m)}/2 + ε.

5 Concluding Remarks We proposed and analyzed a new model on games of timing.
According to the previous sections, we find the silent game is essentially different from the
noisy game. If we observe the realistic phenomena, it is more interest for us to consider the
noisy game, however, our results gives us ε-equilibrium but not Nash equilibrium.

We supposed the discount factor r is constant over the interval [0, 1]. Observing the real
sale problem, it may be natural to generalize our model to the case where r is a function
of the pass time t ∈ [0, 1]. We also have to consider more realistic models, even if it is
complicate to formulate the models and difficult to analyze them.
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