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Abstract. In this paper, we prove a strong convergence theorem by the hybrid method
for nonexpansive semigroups in Banach spaces. Using this theorem, we obtain some
strong convergence theorems in Banach spaces.

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖ and let C be a
nonempty closed convex subset of H . Then, a mapping T : C → C is called nonexpansive
[5] if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C. We denote by F (T ) the set of fixed points of
T. We know iteration procedures for finding a fixed point of a nonexpansive mapping; see,
for instance, [11, 14]. In 2003, Nakajo and Takahashi [13] studied the following iteration
procedure of finding a fixed point of a nonexpansive mapping in a Hilbert space by using
the hybrid method in mathematical programming:

x1 = x ∈ C,

yn = αnxn + (1 − αn)Txn,

Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x1 − xn〉 ≥ 0},
xn+1 = PCn∩Qn(x1), n = 1, 2, 3, . . . ,

where 0 ≤ αn ≤ 1 and PCn∩Qn is the metric projection of H onto Cn ∩ Qn. Xu [26] also
introduced another hybrid method. Motivated by Nakajo and Takahashi [13] and Xu [26],
Matsushita and Takahashi [12] introduced the following iterative algorithm for finding a
fixed point of a nonexpansive mapping in a Banach space:

x1 = x ∈ C,

Cn = co{z ∈ C : ‖z − Tz‖ ≤ tn‖xn − Txn‖},
Qn = {z ∈ C : 〈xn − z, J(x− xn)〉 ≥ 0},
xn+1 = PCn∩Qn(x1), n = 1, 2, 3, . . . ,

where 0 ≤ tn < ∞ and PCn∩Qn is the metric projection of E onto Cn ∩ Qn (see also [26]).
On the other hand, we also know many convergence theorems for finding common fixed
points of nonexpansive semigroups in Hilbert spaces or Banach spaces; see, for instance,
[1, 2, 3, 4, 15, 16, 17, 18, 19, 21, 22, 23, 24].

In this paper, using the idea of Matsushita and Takahashi [12], we prove a strong con-
vergence theorem for nonexpansive semigroups in Banach spaces by the hybrid method and
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metric projections. Using this theorem, we obtain some strong convergence theorems in
Banach spaces.

1. Preliminaries

Throughout this paper, we assume that E is a real Banach space with norm ‖ · ‖. We
denote by E∗ the topological dual space of E. We denote by R the set of all real numbers.
In addition, we denote by N and R

+ the sets of all positive integers, and all nonnegative
real numbers, respectively.

We write xn → x (or lim
n→∞xn = x) to indicate that the sequence {xn} of vectors in E

converges strongly to x. We also write xn ⇀ x (or w- lim
n→∞xn = x) to indicate that the

sequence {xn} of vectors in E converges weakly to x. We also denote by 〈y, x∗〉 the value
of x∗ ∈ E∗ at y ∈ E. For a subset A of E, coA and coA mean the convex hull of A and the
closure of convex hull of A, respectively.

Let C be a subset of a Banach space and let T be a mapping from C into itself. We
denote by F (T ) the set of fixed points of T . A mapping T is said to be nonexpansive if
‖Tx− Ty‖ ≤ ‖x − y‖ for each x, y ∈ C.

A Banach space E is said to be strictly convex if
‖x + y‖

2
< 1 for x, y ∈ E with ‖x‖ =

‖y‖ = 1 and x 
= y. In a strictly convex Banach space, we have that if ‖x‖ = ‖y‖ =
‖ (1 − λ) x + λy‖ for x, y ∈ E and λ ∈ (0, 1) , then x = y. For every ε with 0 ≤ ε ≤ 2, we
define the modulus δ(ε) of convexity of E by

δ (ε) = inf
{

1 − ‖x + y‖
2

: ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε

}
.

A Banach space E is said to be uniformly convex if δ (ε) > 0 for every ε > 0. If E is
uniformly convex, then for r, ε with r ≥ ε > 0, we have δ

(
ε
r

)
> 0 and∥∥∥∥x + y

2

∥∥∥∥ ≤ r
(
1 − δ

(ε

r

))
for every x, y ∈ E with ‖x‖ ≤ r, ‖y‖ ≤ r and ‖x− y‖ ≥ ε. It is well-known that a uniformly
convex Banach space is reflexive and strictly convex. The multi-valued mapping J from E
into E∗ defined by

J(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2} for every x ∈ E

is called the duality mapping of E. From the Hahn-Banach theorem, we see that J(x) 
= ∅
for all x ∈ E. A Banach space E is said to be smooth if

lim
t→0

‖x + ty‖ − ‖x‖
t

exists for each x and y in S1, where S1 = {u ∈ E : ‖u‖ = 1}. The norm of E is said to be
uniformly Gâteaux differentiable if for each y in S1, the limit is attained uniformly for x in
S1. We know that if E is smooth, then the duality mapping is single-valued and norm to
weak star continuous and that if the norm of E is uniformly Gâteaux differentiable, then
the duality mapping is single-valued and norm to weak star, uniformly continuous on each
bounded subset of E.

Let C be a closed convex subset of a reflexive, strictly convex and smooth Banach space
E. Then, for any x ∈ E, there exists a unique point x0 in C such that

‖x − x0‖ = min
y∈C

‖x − y‖.
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The mapping PC defined by PCx = x0 is called the metric projection from E onto C. Let
x ∈ E and u ∈ C. Then, it is known that u = PCx if and only if

〈u − y, J(x − u)〉 ≥ 0(1)

for all y ∈ C (see [25]).
The following lemma was proved by Bruck [6].

Lemma 1.1. Let C be a nonempty closed convex subset of a uniformly convex Banach
space E. Then, for each r > 0, there exists a strictly increasing convex continuous function
γ : [0,∞) → [0,∞) such that γ(0) = 0 and

γ

⎛
⎝
∥∥∥∥∥T
⎛
⎝ n∑

j=0

λjxj

⎞
⎠−

n∑
j=0

λjTxj

∥∥∥∥∥
⎞
⎠ ≤ max

0≤j≤k≤n

(‖xj − xk‖ − ‖Txj − Txk‖
)

for all n ∈ N, {λi}n
i=0 ∈ ∆n, {xi}n

i=0 ⊂ C ∩ Br and T ∈ Lip(C, 1), where ∆n =
{{λ0, λ1, λ2, . . . , λn} : 0 ≤ λi(0 ≤ i ≤ n) and

∑n
i=0 λi = 1}, Br = {z ∈ E : ‖z‖ ≤ r}

and Lip(C, 1) is the set of all nonexpansive mappings from C into E.

Let S be a commutative semigroup and let B(S) be the Banach space of all bounded
real-valued functions defined on S with supremum norm. For each s ∈ S and g ∈ B(S),
we can define an element �sg ∈ B(S) by (�sg)(t) = g(st) for all t ∈ S. We also denote by
�∗s the conjugate operator of �s. Let X be a subspace of B(S) containing 1 and let X∗ be
its topological dual. A linear functional µ on X is called a mean on X if ‖µ‖ = µ(1) = 1.
We often write µt(g(t)) or

∫
g(t)dµ(t) instead of µ(g) for µ ∈ X∗ and g ∈ X . Further,

assume that X is invariant under every �s, s ∈ S, i.e., �sX ⊂ X for each s ∈ S. Then, a
mean µ on X is called invariant if µ(�sg) = µ(g) for all s ∈ S and g ∈ X. For s ∈ S, we can
define a point evaluation δs by δs(g) = g(s) for every g ∈ B(S). A convex combination of
point evaluations is called a finite mean on S. A finite mean µ on S is also a mean on any
subspace X of B(S) containing constants.

The following definition which was introduced by Takahashi [21] is crucial in the nonlinear
ergodic theory for abstract semigroups (see also [8]). Let h be a function of S into E such
that the weak closure of {h(t) : t ∈ S} is weakly compact. Let X be a subspace of B(S)
containing constants and invariant under every �s, s ∈ S. Assume that for each x∗ ∈ E∗,
the function t 
→ 〈h(t), x∗〉 is an element of X. Then, for any µ ∈ X∗ there exists a unique
element hµ ∈ E such that

〈hµ, x∗〉 = (µ)t〈h(t), x∗〉 =
∫

〈h(t), x∗〉 dµ(t)

for all x∗ ∈ E∗. If µ is a mean on X , then hµ is contained in co{h(t) : t ∈ S} (for example,
see [9, 10, 21, 25]). Sometimes, hµ will be denoted by

∫
h(t)dµ(t).

Let C be a closed convex subset of a Banach space E. Then, a family S = {T (s) : s ∈ S}
of mappings of C into itself is called a nonexpansive semigroup on C if it satisfies the
following conditions:

(a) T (st) = T (s)T (t) for all s, t ∈ S;
(b) ‖T (s)x− T (s)y‖ ≤ ‖x − y‖ for all x, y ∈ C and s ∈ S.

We denote by F (S) the set of common fixed points of T (t), t ∈ S. Let S = {T (t) : t ∈ S}
be a nonexpansive semigroup on C. Assume that for each x ∈ C and x∗ ∈ E∗, the weak
closure of {T (t)x : t ∈ S} is weakly compact and the mapping t 
→ 〈T (t)x, x∗〉 is an element
of X . Let µ be a mean on X . Following [15], we also write Tµx instead of

∫
T (t)xdµ(t) for

x ∈ C. We remark that Tµ is nonexpansive on C and Tµx = x for each x ∈ F (S). If µ is a
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finite mean, i.e.,

µ =
n∑

i=1

aiδti (ti ∈ S, ai ≥ 0,

n∑
i=1

ai = 1),

then

Tµx =
n∑

i=1

aiT (ti)x.

The following was proved in [17, 1] (see also [8]).

Lemma 1.2. Let C be a nonempty closed convex subset of a uniformly convex Banach
space E. Let S be a commutative semigroup and let S = {T (t) : t ∈ S} be a nonexpansive
semigroup on C such that F (S) 
= ∅. Let X be a subspace of B(S) such that 1 ∈ X, it is �s-
invariant for each s ∈ S, and the function t 
→ 〈T (t)x, x∗〉 is an element of X for each x ∈ C
and x∗ ∈ E∗. Let {µn} be a sequence of means on X such that limn→∞ ‖µn − �∗sµn‖ = 0.
Then, for each r > 0, w ∈ C and t ∈ S,

lim
n→∞ sup

y∈Dr

‖Tµny − T (t)Tµny‖ = 0,

where Dr = {z ∈ C : ‖z − w‖ ≤ r}.

2. Strong convergence theorem

In this section, we prove a strong convergence theorem by the hybrid method for nonex-
pansive semigroups in Banach spaces. Before proving it, we obtain the following lemma.

Lemma 2.1. Let C be a nonempty closed convex subset of a reflexive, strictly convex and
smooth Banach space E, let S be a commutative semigroup and let S = {T (t) : t ∈ S}
be a nonexpansive semigroup on C such that F (S) 
= ∅. Let X be a subspace of B(S)
such that 1 ∈ X, it is �s-invariant for each s ∈ S, and the function t 
→ 〈T (t)x, x∗〉 is an
element of X for each x ∈ C and x∗ ∈ E∗. Let {µn} be a sequence of means on X such
that limn→∞ ‖µn − �∗sµn‖ = 0 for each s ∈ S and let {Tµn} be a sequence of nonexpansive
mappings of C into itself such that

〈Tµnx, x∗〉 = (µn)t〈T (t)x, x∗〉
for all x ∈ C and x∗ ∈ E∗. Consider the following iteration scheme:

x1 = x ∈ C,

Cn = co{z ∈ C : ‖z − Tµnz‖ ≤ tn‖xn − Tµnxn‖},
Dn = {z ∈ C : 〈xn − z, J(x − xn)〉 ≥ 0},
xn+1 = PCn∩Dn(x1)(2)

for each n ∈ N, where PCn∩Dn is the metric projection of E onto Cn ∩ Dn and {tn} is a
sequence in (0, 1) with tn → 0 as n → 0. Then, {xn} is well-defined.

Proof. It is easy to check that Cn∩Dn is closed and convex, and F (S) ⊂ Cn for each n ∈ N.
Since F (S) ⊂ C1 and D1 = C, we obtain F (S) ⊂ C1∩D1. Suppose F (S) ⊂ Ck∩Dk for each
k ∈ N. Then, there exists a unique element xk+1 ∈ Ck ∩ Dk such that xk+1 = PCk∩Dk

x. It
follows from (1) and F (S) ⊂ Ck ∩ Dk that

〈xk+1 − u, J(x − xk+1)〉 ≥ 0

for all u ∈ F (S). This gives us F (S) ⊂ Dk+1. It follows that F (S) ⊂ Ck+1 ∩ Dk+1. By
mathematical induction, we obtain that F (S) ⊂ Cn ∩ Dn for all n ∈ N. Therefore, {xn} is
well-defined.
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Theorem 2.2. Let C be a nonempty bounded closed convex subset of a uniformly convex
and smooth Banach space E. Let S be a commutative semigroup and let S = {T (t) : t ∈ S}
be a nonexpansive semigroup on C. Let X be a subspace of B(S) such that 1 ∈ X, it is �s-
invariant for each s ∈ S, and the function t 
→ 〈T (t)x, x∗〉 is an element of X for each x ∈ C
and x∗ ∈ E∗. Let {µn} be a sequence of means on X such that limn→∞ ‖µn − �∗sµn‖ = 0
for each s ∈ S and let {Tµn} be a sequence of nonexpansive mappings of C into itself such
that

〈Tµnx, x∗〉 = (µn)t〈T (t)x, x∗〉
for all x ∈ C and x∗ ∈ E∗. Consider the following iteration scheme:

x1 = x ∈ C,

Cn = co{z ∈ C : ‖z − Tµnz‖ ≤ tn‖xn − Tµnxn‖},
Dn = {z ∈ C : 〈xn − z, J(x − xn)〉 ≥ 0},
xn+1 = PCn∩Dn(x1)(3)

for each n ∈ N, where {tn} is a sequence in (0, 1) with tn → 0 as n → 0 and PCn∩Dn is
the metric projection of E onto Cn ∩ Dn. Then, {xn} converges strongly to the element
PF (S)x, where PF (S) is the metric projection from E onto F (S).

Proof. Since S is commutative, it follows from [7, 20] that F (S) is nonempty. Put u =
PF (S)x. Since F (S) ⊂ Cn ∩ Dn and xn+1 = PCn∩Dnx, we have that

‖x − xn+1‖ ≤ ‖x − u‖(4)

for all n ∈ N. Since xn+1 ∈ Cn and tn > 0, there exists m ∈ N, {λi}m
i=0 ∈ ∆m and

{yi}m
i=0 ⊂ C such that ∥∥∥∥∥xn+1 −

m∑
i=0

λiyi

∥∥∥∥∥ < tn(5)

and

‖yi − Tµnyi‖ ≤ tn‖xn − Tµnxn‖(6)

for all i = {0, 1, . . . , m}. Put r0 = 2 supn ‖xn − u‖. Since C is bounded, it follows from
Lemma 1.1, (5) and (6) that

‖xn+1 − Tµnxn+1‖

≤
∥∥∥∥∥xn+1 −

m∑
i=0

λiyi

∥∥∥∥∥+

∥∥∥∥∥
m∑

i=0

λiyi −
m∑

i=0

λiTµnyi

∥∥∥∥∥
+

∥∥∥∥∥
m∑

i=0

λiTµnyi − Tµn

(
m∑

i=0

λiyi

)∥∥∥∥∥+

∥∥∥∥∥Tµn

(
m∑

i=0

λiyi

)
− Tµnxn+1

∥∥∥∥∥
≤ (2 + r0)tn + γ−1

(
max

0≤i≤j≤m
(‖yi − yj‖ − ‖Tµnyi − Tµnyj‖)

)

≤ (2 + r0)tn + γ−1

(
max

0≤i≤j≤m
(‖yi − Tµnyi‖ + ‖yj − Tµnyj‖)

)
≤ (2 + r0)tn + γ−1(2r0tn).

This implies that

‖xn+1 − Tµnxn+1‖ → 0.(7)



518 S. ATSUSHIBA and W. TAKAHASHI

Let t ∈ S. We also have

‖T (t)xn+1 − xn+1‖
≤ ‖T (t)xn+1 − T (t)Tµnxn+1‖ + ‖T (t)Tµnxn+1 − Tµnxn+1‖ + ‖Tµnxn+1 − xn+1‖
≤ 2‖Tµnxn+1 − xn+1‖ + ‖T (t)Tµnxn+1 − Tµnxn+1‖.(8)

We also know from Lemma 1.2 that

lim
n→∞

sup
y∈C

‖Tµny − T (t)Tµny‖ = 0.

So, by (7)and (8) we have

lim
n→∞ ‖T (t)xn+1 − xn+1‖ = 0.(9)

for each t ∈ S.
Since T (t) is nonexpansive, T (t) is demiclosed. So, we have that if {xni} is a subsequence

of {xn} such that {xni} converges weakly to w0 ∈ C, then w0 ∈ F (T (t)) for each t ∈ S.
Finally, we prove that xn → u. Since xni ⇀ w0 and the norm ‖ · ‖ is weakly lower

semicontinuous, by (4) we also obtain

‖x − u‖ ≤ ‖x − w0‖ ≤ lim
i→∞

‖x − xni‖ ≤ lim
i→∞

‖x − xni‖ ≤ ‖x − u‖.(10)

This implies that u = w0 and hence xni ⇀ u. Therefore, we have xn ⇀ u. By (10), we also
have

lim
n→∞ ‖x − xn‖ = ‖x − u‖.

Since E is uniformly convex, we have xn − x → x − u and hence xn → u.

3. Applcations

Throughout this section, we assume that C is a nonempty bounded closed convex subset
of a uniformly convex and smooth Banach space E. Using Theorem 2.2, we can prove some
strong convergence theorems as in [25].

Theorem 3.1. Let T be a nonexpansive mapping of C into itself such that F (T ) 
= ∅ and
let x ∈ C. Consider the following iteration scheme:

x1 = x ∈ C,

Cn = co

{
z ∈ C :

∥∥∥∥∥z − 1
n

n∑
i=1

T iz

∥∥∥∥∥ ≤ tn

∥∥∥∥∥xn − 1
n

n∑
i=1

T ixn

∥∥∥∥∥
}

,

Dn = {z ∈ C : 〈xn − z, J(x − xn)〉 ≥ 0},
xn+1 = PCn∩Dn(x1)(11)

for each n ∈ N, where {tn} be a sequence in (0, 1) with tn → 0 as n → 0 and PCn∩Dn is
the metric projection of E onto Cn ∩ Dn. Then, {xn} converges strongly to the element
PF (T )x, where PF (T ) is the metric projection from E onto F (T ).

Theorem 3.2. Let T be a nonexpansive mapping of C into itself such that F (T ) 
= ∅ and
let x ∈ C. Let {qn,m : n, m ∈ N} be a sequence of real numbers such that qn,m ≥ 0,∑∞

m=0 qn,m = 1 for each n ∈ N and limn

∑∞
m=0 |qn,m+1 − qn,m| = 0. Consider the following
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iteration scheme:

x1 = x ∈ C,

Cn = co

{
z ∈ C :

∥∥∥∥∥z −
∞∑

m=0

qn,mT mz

∥∥∥∥∥ ≤ tn

∥∥∥∥∥xn −
∞∑

m=0

qn,mT mxn

∥∥∥∥∥
}

,

Dn = {z ∈ C : 〈xn − z, J(x− xn)〉 ≥ 0},
xn+1 = PCn∩Dn(x1)(12)

for each n ∈ N, where {tn} be a sequence in (0, 1) with tn → 0 as n → 0 and PCn∩Dn is
the metric projection of E onto Cn ∩ Dn. Then, {xn} converges strongly to the element
PF (T )x, where PF (T ) is the metric projection from E onto F (T ).

Theorem 3.3. Let T and U be nonexpansive mappings from C into itself such that TU =
UT and F (T ) ∩ F (U) 
= ∅ and let x ∈ C. Consider the following iteration scheme:

x1 = x ∈ C,

Cn = co

⎧⎨
⎩z ∈ C :

∥∥∥∥∥∥z − 1
(n + 1)2

n∑
i,j=0

T iU jz

∥∥∥∥∥∥ ≤ tn

∥∥∥∥∥∥xn − 1
(n + 1)2

n∑
i,j=0

T iU jxn

∥∥∥∥∥∥
⎫⎬
⎭,

Dn = {z ∈ C : 〈xn − z, J(x− xn)〉 ≥ 0},
xn+1 = PCn∩Dn(x1)(13)

for each n ∈ N, where {tn} be a sequence in (0, 1) with tn → 0 as n → 0 and PCn∩Dn is
the metric projection of E onto Cn ∩ Dn. Then, {xn} converges strongly to the element
PF (T )∩F (U)x, where PF (T )∩F (U) is the metric projection from E onto F (T ) ∩ F (U).

Theorem 3.4. Let S = {T (t) : t ∈ [0,∞)} be a nonexpansive semigroup on C such that the
functions t 
→ 〈T (t)x, x∗〉, t 
→ ‖T (t)x − y‖ are measurable for each x, y ∈ C and x∗ ∈ E∗

and
⋂

t∈R+ F (T (t)) 
= ∅. Let x ∈ C and let {sn} be a sequence of positive real numbers with
sn → ∞. Consider the following iteration scheme:

x1 = x ∈ C,

Cn = co
{

z ∈ C :
∥∥∥∥z − 1

sn

∫ sn

0

T (t)z dt

∥∥∥∥ ≤ tn

∥∥∥∥xn − 1
sn

∫ sn

0

T (t)xn dt

∥∥∥∥
}

,

Dn = {z ∈ C : 〈xn − z, J(x− xn)〉 ≥ 0},
xn+1 = PCn∩Dn(x1)(14)

for each n ∈ N, where {tn} be a sequence in (0, 1) with tn → 0 as n → 0 and PCn∩Dn is
the metric projection of E onto Cn ∩ Dn. Then, {xn} converges strongly to the element
PF (S)x, where PF (S) is the metric projection from E onto F (S).

Theorem 3.5. Let S be as in Theorem 3.4 and let x ∈ C. Let {rn} be a sequence of
positive real numbers with rn → 0. Consider the following iteration scheme:

x1 = x ∈ C,

Cn = co
{

z ∈ C :
∥∥∥∥z − rn

∫ ∞

0

e−rntT (t)z dt

∥∥∥∥ ≤ tn

∥∥∥∥xn − rn

∫ ∞

0

e−rntT (t)xn dt

∥∥∥∥
}

,

Dn = {z ∈ C : 〈xn − z, J(x − xn)〉 ≥ 0},
xn+1 = PCn∩Dn(x1)(15)

for each n ∈ N, where {tn} be a sequence in (0, 1) with tn → 0 as n → 0 and PCn∩Dn is
the metric projection of E onto Cn ∩ Dn. Then, {xn} converges strongly to the element
PF (S)x, where PF (S) is the metric projection from E onto F (S).
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Theorem 3.6. Let S be as in Theorem 3.4 and let x ∈ C. Let {qn} be a sequence of
measurable functions from [0,∞) into itself such that

∫∞
0 qn(t) dt = 1 for each n ∈ N,

limn qn(t) = 0 for almost every t ≥ 0, limn

∫∞
0 |qn(t + s) − qn(t)| dt = 0 for all s ≥ 0

and there exists r ∈ L1
loc[0,∞) such that supn qn(t) ≤ r(t) for almost every t ≥ 0, where

r ∈ L1
loc[0,∞) means the restriction of r on [0, s] belongs to L1[0, s] for each s > 0. Consider

the following iteration scheme:

x1 = x ∈ C,

Cn = co
{

z ∈ C :
∥∥∥∥z −

∫ ∞

0

qn(t)T (t)z dt

∥∥∥∥ ≤ tn

∥∥∥∥xn −
∫ ∞

0

qn(t)T (t)xn dt

∥∥∥∥
}

,

Dn = {z ∈ C : 〈xn − z, J(x − xn)〉 ≥ 0},
xn+1 = PCn∩Dn(x1)(16)

for each n ∈ N, where {tn} be a sequence in (0, 1) with tn → 0 as n → 0 and PCn∩Dn is
the metric projection of E onto Cn ∩ Dn. Then, {xn} converges strongly to the element
PF (S)x, where PF (S) is the metric projection from E onto F (S).
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