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Abstract. The purpose of this article is to present some local and global fixed point
results (existence of the fixed point, well-posedness for the fixed point problem, homo-
topy theorem) for Ćirić type contractions on a set with two separating gauge structures.

1 Preliminaries Throughout this paper X will denote a gauge space endowed with a
separating gauge structure P = {pα}α∈A, where A is a directed set (see [4] for definitions).
Let N := {0, 1, 2, · · · } and let N

∗ := N \ {0}.
A sequence (xn) of elements in X is said to be Cauchy if for every ε > 0 and α ∈ A,

there is an N with pα(xn, xn+p) ≤ ε for all n ≥ N and p ∈ N
∗. The sequence (xn) is called

convergent if there exists an x0 ∈ X such that for every ε > 0 and α ∈ A, there is an N
with pα(x0, xn) ≤ ε for all n ≥ N .

A gauge space is called sequentially complete if any Cauchy sequence is convergent.
A subset of X is said to be sequentially closed if it contains the limit of any convergent
sequence of its elements.

If P = {pα}α∈A and Q = {qβ}β∈B are two separating gauge structures (A, B are
directed sets), then for r = {rβ}β∈B ∈ (0,∞)B and x0 ∈ X we will denote by B

p

q(x0, r) the
closure of Bq(x0, r) in (X,P), where

Bq(x0, r) = {x ∈ X : qβ(x0, x) < rβ for all β ∈ B}.

Let P ((X,P)) be the set of all nonempty subsets of X endowed with the convergence
given by the family P . We will use the following symbols when there is no confusion:

P (X) := {Y ∈ P(X) : Y �= ∅};Pb(X) := {Y ∈ P (X) : Y is bounded };
Pcl(X) := {Y ∈ P (X) : Y is closed }.

Let us define the gap functional between Y and Z in the (X,Q) gauge space
Dβ : P (X) × P (X) → R+ ∪ {+∞}, Dβ(Y, Z) = inf{qβ(y, z) | y ∈ Y, z ∈ Z}

(in particular, if x0 ∈ X then Dβ(x0, Z) := Dβ({x0}, Z)) and the (generalized) Pompeiu-
Hausdorff functional

Hβ : P (X) × P (X) → R+ ∪ {+∞}, Hβ(Y, Z) = max{sup
y∈Y

Dβ(y, Z), sup
z∈Z

Dβ(Y, z)}.

If F : X → P (X) is a multivalued operator, then x ∈ X is called fixed point for F if
and only if x ∈ F (x). The set Fix(F ) := {x ∈ X |x ∈ F (x)} is called the fixed point set of
F , while SFix(F ) := {x ∈ X |{x} = F (x)} denotes the strict fixed point set of F .
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Recall that, in 1972, L.B. Ćirić ([3]) proved that if (X, d) is a complete metric space,
F : X → Pcl(X) is a multivalued operator and there exists α ∈ (0, 1) such that, for every
x, y ∈ X :

H(F (x), F (y)) ≤ αmax{d(x, y),D(x,F (x)),D(y, F (y)),
1
2
[D(x,F (y)) +D(y, F (x))]},

then Fix(F ) �= ∅ and for every x ∈ X and y ∈ F (x) there exists a sequence (xn)n∈N such
that:

(1) x0 = x, x1 = y;

(2) xn+1 ∈ F (xn), n ∈ N;

(3) xn
d→ x∗ ∈ F (x∗), for every n→ ∞.

The aim of this paper is to present some (local and global) fixed point results (existence
of the fixed point, well-posedness for the fixed point problem, homotopy theorem) for Ćirić
type contractions on a set with two separating gauge structures. The results of the paper
extend and generalize some previous theorems given in R.P. Agarwal, J. Dshalalow, D.
O’Regan [1], L.B. Ćirić [3], M. Frigon [6] and [7], T. Lazăr, D. O’Regan, A. Petruşel [8] and
they are related to the works A. Chiş, R. Precup [2] and D. O’Regan, R.P. Agarwal, D.
Jiang [9].

2 The main results Our first result is a local version of Ćirić’s theorem ([3]) on a
set with two separating gauge structures. The results relies on the concept of multivalued
admissible contraction (in the sense of Frigon, see Frigon [6], [7] and R.P. Agarwal, J.
Dshalalow, D. O’Regan [1]) of Ćirić type.

Theorem 2.1 Let X be a nonempty set endowed with two separating gauge structures P =
{pα}α∈A, Q = {qβ}β∈B (A, B are directed sets), r = {rβ}β∈B ∈ (0,∞)B, x0 ∈ X and
F : (B

p

q(x0, r),P) → P ((X,P) be a multivalued operator with closed graph. We suppose
that:

(i) (X,P) is a sequentially complete gauge space;
(ii) there exist a function ψ : A→ B and c = {cα}α∈A ∈ (0,∞)A such that

pα(x, y) ≤ cα · qψ(α)(x, y), for every α ∈ A and x, y ∈ B
p

q(x0, r).

(iii) there exists {aβ}β∈B ∈ (0, 1)B such that, for every β ∈ B, the following implication
holds: for each x, y ∈ B

p

q(x0, r) we have:

Hβ(F (x), F (y)) ≤ aβ ·MF
β (x, y),

where

MF
β (x, y) := max{qβ(x, y),Dβ(x,F (x)),Dβ(y, F (y)),

1
2
[Dβ(x,F (y)) +Dβ(y, F (x))]}.

In addition, assume that the following conditions are satisfied:

Dβ(x0, F (x0)) < (1 − aβ)rβ , for each β ∈ B;(2.1)
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for every x ∈ B
p

q(x0, r) and every k = {kβ}β∈B ∈ (0,∞)B there exists(2.2)
y ∈ F (x) such that qβ(x, y) ≤ Dβ(x,F (x)) + kβ , for every β ∈ B.

Then:
(i) Fix(F ) �= ∅;
(ii) if, additionally, SFix(F ) �= ∅ and {xn}n∈N ⊂ B

p

q(x0, r) is such that
Dβ(xn, F (xn)) → 0 as n → ∞ for every β ∈ B, then qβ(xn, x) → 0 as n → ∞, for
every β ∈ B, where x ∈ SFix(F ) (i.e., the fixed point problem is well-posed in the gen-
eralized sense for F with respect to Dβ, for every β ∈ B). Moreover, we also have that
pα(xn, x) → 0 as n→ ∞, for every α ∈ A.

Proof. From (2.1) we may choose x1 ∈ F (x0) with
qβ(x0, x1) < (1 − aβ)rβ for every β ∈ B.

Thus x1 ∈ B
p

q(x0, r).
Hence, there exists {aβ}β∈B ∈ (0, 1)B such that, for each β ∈ B, we have:

Hβ(F (x0), F (x1)) ≤ aβ ·MF
β (x0, x1)

= aβ · max{qβ(x0, x1),Dβ(x0, F (x0)),Dβ(x1, F (x1)),
1
2
[Dβ(x0, F (x1)) +Dβ(x1, F (x0))]}

≤ aβ · max{qβ(x0, x1),Dβ(x1, F (x1)),
1
2
[qβ(x0, x1) +Dβ(x1, F (x1))]}

= aβ · max{qβ(x0, x1),Dβ(x1, F (x1))}.
Let NF

β (x0, x1) := max{qβ(x0, x1),Dβ(x1, F (x1))}.
If NF

β (x0, x1) = Dβ(x1, F (x1)), then

Hβ(F (x0), F (x1)) ≤ aβ ·Dβ(x1, F (x1)) ≤ aβ ·Hβ(F (x0), F (x1))

which is a contradiction, since {aβ}β∈B ∈ (0, 1)B. Thus NF
β (x0, x1) = qβ(x0, x1). Then, we

have:
Hβ(F (x0), F (x1)) ≤ aβ · qβ(x0, x1), for every β ∈ B.

Denote kβ := aβ [(1 − aβ)rβ − qβ(x0, x1)] for every β ∈ B.
On the other hand, by (2.2) there exists x2 ∈ F (x1) such that

qβ(x1, x2) ≤ Dβ(x1, F (x1)) + kβ , for every β ∈ B.

Hence

qβ(x1, x2) ≤ Hβ(F (x0), F (x1)) + kβ ≤ aβqβ(x0, x1) + kβ = aβ(1 − aβ)rβ for every β ∈ B.

Moreover we have

qβ(x0, x2) ≤ qβ(x0, x1) + qβ(x1, x2)
< (1 − aβ)rβ + aβ(1 − aβ)rβ
= (1 − a2

β)rβ < rβ .

Therefore x2 ∈ B
p

q(x0, r).
By the same procedure, we obtain the elements xn+1 ∈ F (xn) for n ∈ {1, 2, 3, ...} having

the following properties:
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(a) qβ(xn−1, xn) ≤ an−1
β qβ(x0, x1) ≤ an−1

β (1 − aβ)rβ , for every n ∈ N
∗ and β ∈ B;

(b) qβ(x0, xn) < (1 − anβ)rβ , for every n ∈ N
∗ and β ∈ B.

From (a) it is immediate that {xn} is Q-Cauchy. Now (ii) implies that the sequence {xn}
is P-Cauchy too, hence it is P-convergent to some x ∈ B

p

q(x0, r), from (i). It now remains
to show that x ∈ F (x). This follows since F : (B

p

q(x0, r),P) → P ((X,P) has closed graph.
Let x ∈ SFix(F ). We now show that the fixed point problem is well-posed. Let

{xn}n∈N ⊂ B
p

q(x0, r) be such that Dβ(xn, F (xn)) → 0 as n → ∞ for every β ∈ B. Since x
is a strict fixed point for F , we have qβ(xn, x) ≤ Dβ(xn, F (xn)) +Hβ(F (xn), F (x)). Then:
qβ(xn, x) ≤ Dβ(xn, F (xn)) + aβM

F
β (xn, x)

= Dβ(xn, F (xn)) + aβ max{qβ(xn, x),Dβ(xn, F (xn)),
1
2
[Dβ(xn, F (x)) +Dβ(x,F (xn))]}

≤ Dβ(xn, F (xn)) + aβ max{qβ(xn, x),Dβ(xn, F (xn)),
1
2
[qβ(xn, x) + qβ(x, xn) +Dβ(xn, F (xn))]}

≤ Dβ(xn, F (xn)) + aβ max{Dβ(xn, F (xn)), qβ(xn, x) +
1
2
Dβ(xn, F (xn))}.

If max{Dβ(xn, F (xn)), qβ(xn, x) + 1
2Dβ(xn, F (xn))} = Dβ(xn, F (xn)), then

qβ(xn, x) ≤ (1 + aβ)Dβ(xn, F (xn)).

If max{Dβ(xn, F (xn)), qβ(xn, x) + 1
2Dβ(xn, F (xn))} = qβ(xn, x) + 1

2Dβ(xn, F (xn)) then

qβ(xn, x) ≤ Dβ(xn, F (xn)) + aβqβ(xn, x) +
aβ
2
Dβ(xn, F (xn))

and we have
qβ(xn, x) ≤ 2 + aβ

2(1 − aβ)
Dβ(xn, F (xn)).

From (ii), we also obtain that pα(xn, x) → 0 as n → +∞, for every α ∈ A. Thus the proof
is complete. �

We will obtain now a global version of the theorem above.

Theorem 2.2 Let X be a nonempty set endowed with two separating gauge structures P =
{pα}α∈A, Q = {qβ}β∈B and F : (X,P) → P ((X,P) be a multivalued operator with closed
graph. We suppose that:

(i) (X,P) is a sequentially complete gauge space;
(ii) there exists a function ψ : A→ B and c = {cα}α∈A ∈ (0,∞)A such that

pα(x, y) ≤ cα · qψ(α)(x, y), for every α ∈ A and x, y ∈ X.

(iii) there exists {aβ}β∈B ∈ (0, 1)B such that, for each x, y ∈ X, we have:

Hβ(F (x), F (y)) ≤ aβ ·Mβ(x, y), for every β ∈ B.

In addition, assume that

for every x ∈ X and every k = {kβ}β∈B ∈ (0,∞)B there exists(2.3)
y ∈ F (x) such that qβ(x, y) ≤ Dβ(x,F (x)) + kβ , for every β ∈ B.
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Then F has a fixed point. Furthermore, if SFix(F ) �= ∅ and {xn}n∈N ⊂ X is such that
Dβ(xn, F (xn)) → 0 as n → ∞ for every β ∈ B, then qβ(xn, x) → 0 as n → ∞, where
x ∈ SFix(F ) (i.e. the fixed point problem is well-posed in the generalized sense for F with
respect to Dβ, for every β ∈ B).

Proof. Let x0 ∈ X be arbitrary and choose r = {rβ}β∈B ∈ (0,∞)B such that
Dβ(x0, F (x0)) < (1 − aβ)rβ , for each β ∈ B. Next, the proof follows from Theorem 2.1. �.

Another global result is based on the concept of multivalued admissible contraction (in
the sense of Esṕinola and Petruşel, see [5]) of Ćirić type.

Theorem 2.3 Let X be a nonempty set endowed with two separating gauge structures P =
{pα}α∈A, Q = {qβ}β∈B (A, B are directed sets) and let F : (X,P) → P ((X,P) be a
multivalued operator with closed graph. We suppose that:

(i) (X,P) is a sequentially complete gauge space;
(ii) there exists a function ψ : A→ B and c = {cα}α∈A ∈ (0,∞)Asuch that

pα(x, y) ≤ cα · qψ(α)(x, y), for every α ∈ A and x, y ∈ X ;
(iii) there exists {aβ}β∈B ∈ (0, 1)B such that for every β ∈ B we have:

Hβ(F (x), F (y)) ≤ aβ ·Mβ(x, y), for each x, y ∈ X.

(iv) for every x, y ∈ X, every u ∈ F (x) and every k = {kβ}β∈B ∈ (1,∞)B there exists
v ∈ F (y) such that qβ(u, v) ≤ kβ ·Hβ(F (x), F (y)), for every β ∈ B;

Then Fix(F ) �= ∅. Furthermore, if SFix(F ) �= ∅ and {xn}n∈N ⊂ X is such that
Dβ(xn, F (xn)) → 0 as n → ∞ for every β ∈ B, then qβ(xn, x) → 0 as n → ∞, where
x ∈ SFix(F ) (i.e. the fixed point problem is well-posed in the generalized sense for F with
respect to Dβ, for every β ∈ B).

Proof. Let x0 ∈ X and x1 ∈ F (x0) be arbitrary. For every k = {kβ}β∈B ∈ (1,∞)B , by
(iv), there exists x2 ∈ F (x1) such that

qβ(x1, x2) ≤ kβHβ(F (x0), F (x1)), for each β ∈ B.

Then:
qβ(x1, x2) ≤ kβHβ(F (x0), F (x1))

≤ kβaβM
F
β (x0, x1)

= kβaβ max{qβ(x0, x1),Dβ(x0, F (x0)),Dβ(x1, F (x1)),
1
2
Dβ(x0, F (x1))}.

We introduce the following notation:

Γ := max{qβ(x0, x1),Dβ(x0, F (x0)),Dβ(x1, F (x1)),
1
2
Dβ(x0, F (x1))}

and we choose k = {kβ}β∈B ∈ (1,∞)B such that 1 < kβ <
1
aβ

, for each β ∈ B.
If Γ = qβ(x0, x1) then qβ(x1, x2) ≤ kβaβqβ(x0, x1).
If Γ = Dβ(x0, F (x0)) then since Dβ(x0, F (x0)) ≤ qβ(x0, x1) we have qβ(x1, x2) ≤

kβaβqβ(x0, x1).
If Γ = Dβ(x1, F (x1)) then qβ(x1, x2) ≤ kβaβDβ(x1, F (x1)) ≤ kβaβqβ(x1, x2), which is

a contradiction since 1 < kβ <
1
aβ

, for each β ∈ B.
If Γ = 1

2Dβ(x0, F (x1)) then

qβ(x1, x2) ≤ kβaβ
1
2
Dβ(x0, F (x1)) ≤ kβaβ

2
qβ(x0, x2)

≤ kβaβ
2

[qβ(x0, x1) + qβ(x1, x2)].
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Hence, we obtain that

qβ(x1, x2) ≤ kβaβ
2 − kβaβ

qβ(x0, x1).

Then

Γ =
1
2
Dβ(x0, F (x1)) ≤ 1

2
qβ(x0, x2) ≤ 1

2
[qβ(x0, x1) + qβ(x1, x2)]

≤ 1
2
[1 +

kβaβ
2 − kβaβ

]qβ(x0, x1) =
1

2 − kβaβ
qβ(x0, x1) < qβ(x0, x1),

which is a contradiction with the definition of Γ.
Thus in all cases we have that

qβ(x1, x2) ≤ kβaβqβ(x0, x1).

By induction, we will obtain a sequence (xn)n∈N of succesive approximations for F starting
from x0, satisfying the following assertion:

qβ(xn, xn+1) ≤ (kβaβ)nqβ(x0, x1), for every n ∈ N
∗ and β ∈ B.

For each n, p ∈ N
∗ and for every β ∈ B we have

qβ(xn, xn+p) ≤ qβ(xn, xn+1) + ...+ qβ(xn+p−1, xn+p)
≤ [1 + ...+ (kβaβ)p−1] · (kβaβ)nqβ(x0, x1)

=
1 − (kβaβ)p

1 − kβaβ
· (kβaβ)nqβ(x0, x1) ≤ (kβaβ)n

1 − kβaβ
qβ(x0, x1).

Letting n → +∞ and taking into account (i), we obtain that the sequence (xn)n∈N is
Q-Cauchy. Thus, by (ii), the sequence is convergent in (X,P). Denote by u its limit. Notice
that u ∈ Fix(F ) since the operator F : (X,P) → P ((X,P) has closed graph. The second
part follows in a similar way as in Theorem 2.1. The proof is complete. �

For the particular case of a unique gauge structure, we get the following data dependence
result.

Theorem 2.4 Let X be a nonempty set endowed with a separating gauge structure P =
{pα}α∈A, and let F1, F2 : X → P (X) be two multivalued operators with closed graph. We
suppose that:

(i) (X,P) is a sequentially complete gauge space;
(ii) there exists {a(i)

α }α∈A ∈ (0, 1)A such that, for each x, y ∈ X, we have:

Hα(Fi(x), Fi(y)) ≤ a(i)
α ·MFi

α (x, y), for every α ∈ A, for i ∈ {1, 2}.

In addition, assume that:

(a) for every x, y ∈ X every u ∈ Fi(x) and every k := {kα}α∈B ∈ (1,∞)A

there exists v ∈ Fi(x) such that qα(u, v) ≤ kαHα(Fi(x), Fi(y)), for every α ∈ A,

for i ∈ {1, 2};

(b) for every x ∈ X every u ∈ F1(x) and every k := {kα}α∈B ∈ (1,∞)A

there exists v ∈ F2(x) such that qα(u, v) ≤ kαHα(F1(x), F2(x)), for every α ∈ A;
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Then:
1)

Fix(Fi) ∈ Pcl(X), for i ∈ {1, 2};
2) If there exists η := {ηα}α∈A ∈ (0,∞)A such that Hα(F1(x), F2(x)) ≤ ηα for each

α ∈ A, then

Hα(Fix(F1), F ix(F2)) ≤ ηα

1 − max{a(1)
α , a

(2)
α }

, for each α ∈ A.

Proof. 1) The existence of the fixed point follows from Theorem 2.3. Let (xn)n∈N be a
sequence in Fix(F ) (where F is F1 or F2), such that xn converges to x∗. Denote aα := a

(1)
α

if F := F1 and aα := a
(2)
α if F := F2. Then, we have:

Dα(x∗, F (x∗)) ≤ dα(x∗, xn) + Hα(F (xn), F (x∗)) ≤ dα(x∗, xn) +
aαmax{dα(x∗, xn),Dα(x∗, F (x∗)), 1

2 [Dα(x∗, F (xn)) + Dα(xn, F (x∗))]} ≤ dα(x∗, xn) +
aαmax{dα(x∗, xn) + 1

2Dα(x∗, F (x∗)),Dα(x∗, F (x∗))}, for each α ∈ A. Then, we immedi-
ately get that Dα(x∗, F (x∗)) = 0, for each α ∈ A and hence x∗ ∈ Fix(F ).

2) For the second conclusion, let x0 ∈ Fix(F1) and kα ∈ (1,min{ 1

a
(1)
α

, 1

a
(2)
α

}) be arbitrary
chosen. Then, as in the proof of Theorem 2.3, there exists a convergent sequence (xn)n∈N

of successive approximations for F2 (i.e., xn+1 ∈ F2(xn), n ∈ N) starting from x0 and
x1 ∈ F2(x0) with the following property:

qα(xn, xn+p) ≤ (kαa
(2)
α )n

1 − kαa
(2)
α

qα(x0, x1), for n ∈ N and p ∈ N
∗.

Letting p→ +∞ we get that

qα(xn, x∗2) ≤
(kαa

(2)
α )n

1 − kαa
(2)
α

qα(x0, x1), for n ∈ N.

As before, x∗2 ∈ Fix(F2). For n := 0 in the above relation, we get that

qα(x0, x
∗
2) ≤

1

1 − kαa
(2)
α

qα(x0, x1).

Since x0 ∈ F1(x0), by (b), there exists x1 ∈ F2(x0) such that qα(x0, x1) ≤ kαηα, for each
α ∈ A. Thus,

qα(x0, x
∗
2) ≤

kαηα

1 − kαa
(2)
α

, for each α ∈ A.

Thus
Dα(x0, F ix(F2)) ≤ kαηα

1 − kαa
(2)
α

, for each α ∈ A,

and since x0 ∈ FixF1 is arbitrary we have

sup
y∈Fix(F1)

Dα(y, F ix(F2)) ≤ kαηα

1 − kαa
(2)
α

, for each α ∈ A.

By the above relation and by a similar approach, with the roles of F1 and F2 reversed,
we obtain that

Hα(Fix(F1), F ix(F2)) ≤ kαηα

1 − kαmax{a(1)
α , a

(2)
α }

, for each α ∈ A.
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Letting, for each α ∈ A, kα ↘ 1 we get the conclusion. �
In what follows we will present a homotopy result for Ćirić type contractions on a set

with two separating gauge structures.

Theorem 2.5 Let X be a nonempty set endowed with two separating gauge structures
P = {pα}α∈A and Q = {qβ}β∈B, such that (X,P) is a sequentially complete gauge space.
Suppose there exists a function ψ : A→ B and c = {cα}α∈A ∈ (0,∞)A such that pα(x, y) ≤
cα · qψ(α)(x, y) for every α ∈ A and x, y ∈ X. Let U be an open subset of (X,Q). Let
G : U

p× [0, 1] → P (X,P) be a multivalued operator such that the following assumptions are
satisfied:

(i) x /∈ G(x, t), for each x ∈ ∂U and each t ∈ [0, 1];

(ii) there exists {aβ}β∈B ∈ (0, 1)B for every β ∈ B such that for each x, y ∈ U we have

Hβ(G(x, t), G(y, t)) ≤ aβ ·MG(·,t)
β (x, y),

where
M

G(·,t)
β (x, y) = max{qβ(x, y),Dβ(x,G(x, t)),Dβ(y,G(y, t)),

1
2
[Dβ(x,G(y, t)) +Dβ(y,G(x, t))]}.

(iii) there exists a continuous function φ : [0, 1] → R such that

Hβ(G(x, t), G(x, s)) ≤ |φ(t) − φ(s)|, for all t, s ∈ [0, 1] and each x ∈ U
p
;

(iv) G : (U
p
,P)× [0, 1] → P (X,P) is closed.

(v) for each t ∈ [0, 1], for every x ∈ U
p

and every k = {kβ}β∈B ∈ (0,∞)B

there exists y ∈ G(x, t) such that

qβ(x, y) ≤ Dβ(x,G(x, t)) + kβ , for every β ∈ B.

Then G(·, 0) has a fixed point if and only if G(·, 1) has a fixed point.

Proof. Suppose that z ∈ Fix(G(·, 0)). From (i) we have that z ∈ U . Consider the set:

E := {(t, x) ∈ [0, 1] × U : x ∈ G(x, t)}.

Since (0, z) ∈ E, we have that E �= ∅ . We introduce a partial order defined on E

(t, x) ≤ (s, y) if and only if t ≤ s and qβ(x, y) ≤ 2
1 − aβ

[φ(s) − φ(t)].

Let M be a totally ordered subset of E, t∗ := sup{t : (t, x) ∈M} and (tn, xn)n∈N∗ ⊂M
be a sequence such that (tn, xn) ≤ (tn+1, xn+1) and tn → t∗ as n→ ∞. Then

qβ(xm, xn) ≤ 2
1 − aβ

[φ(tm) − φ(tn)], for each m,n ∈ N
∗, m > n.

Letting m,n→ +∞ we obtain that qβ(xm, xn) → 0, thus (xn)n∈N∗ is Q-Cauchy, so it is
P-Cauchy too. Denote by x∗ ∈ (X,P) its limit. We know that xn ∈ G(xn, tn), n ∈ N

∗ and
G is P-closed. Therefore we have that x∗ ∈ G(x∗, t∗). From (i) we note that x∗ ∈ U . Thus
(t∗, x∗) ∈ E.
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From the fact thatM is totally ordered we have that (t, x) ≤ (t∗, x∗), for each (t, x) ∈M .
Thus (t∗, x∗) is an upper bound of M . We can apply Zorn’s Lemma, so E admits a maximal
element (t0, x0) ∈ E. We now prove that t0 = 1.

Suppose that t0 < 1. Let r = {rβ}β∈B ∈ (0,∞)B and t ∈]t0, 1] be such that Bq(x0, rβ) ⊂
U and rβ := 2

1−aβ
[φ(t) − φ(t0)] for every β ∈ B. Then for each β ∈ B we have

Dβ(x0, G(x0, t)) ≤ Dβ(x0, G(x0, t0)) +Hβ(G(x0, t0), G(x0, t))

≤ φ(t) − φ(t0) =
rβ(1 − aβ)

2
< (1 − aβ)rβ .

Since B
p

q(x0, rβ) ⊂ U
p
, the closed multivalued operator G(·, t) : B

p

q(x0, r) → P (X,P)
satisfies the assumptions of Theorem 2.1, for all t ∈ [0, 1]. Hence there exists x ∈ B

p

q(x0, rβ)
such that x ∈ G(x, t). Thus (t, x) ∈ E. However we know that

qβ(x0, x) ≤ rβ =
2

1 − aβ
[φ(t) − φ(t0)],

so we have that
(t0, x0) < (t, x),

which contradicts the maximality of (t0, x0). Thus t0 = 1 and the proof is complete. �
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