FIXED POINT RESULTS FOR ĆIRIĆ TYPE CONTRACTIONS ON A SET WITH TWO SEPARATING GAUGE STRUCTURES

D. O'Regan, A. Petruşel and T.P. Petru

Received September 25, 2008

Abstract

The purpose of this article is to present some local and global fixed point results (existence of the fixed point, well-posedness for the fixed point problem, homotopy theorem) for Ćirić type contractions on a set with two separating gauge structures.

1 Preliminaries Throughout this paper X will denote a gauge space endowed with a separating gauge structure $\mathcal{P}=\left\{p_{\alpha}\right\}_{\alpha \in A}$, where A is a directed set (see [4] for definitions). Let $\mathbb{N}:=\{0,1,2, \cdots\}$ and let $\mathbb{N}^{*}:=\mathbb{N} \backslash\{0\}$.

A sequence $\left(x_{n}\right)$ of elements in X is said to be Cauchy if for every $\varepsilon>0$ and $\alpha \in A$, there is an N with $p_{\alpha}\left(x_{n}, x_{n+p}\right) \leq \varepsilon$ for all $n \geq N$ and $p \in \mathbb{N}^{*}$. The sequence $\left(x_{n}\right)$ is called convergent if there exists an $x_{0} \in X$ such that for every $\varepsilon>0$ and $\alpha \in A$, there is an N with $p_{\alpha}\left(x_{0}, x_{n}\right) \leq \varepsilon$ for all $n \geq N$.

A gauge space is called sequentially complete if any Cauchy sequence is convergent. A subset of X is said to be sequentially closed if it contains the limit of any convergent sequence of its elements.

If $\mathcal{P}=\left\{p_{\alpha}\right\}_{\alpha \in A}$ and $\mathcal{Q}=\left\{q_{\beta}\right\}_{\beta \in B}$ are two separating gauge structures $(A, B$ are directed sets), then for $r=\left\{r_{\beta}\right\}_{\beta \in B} \in(0, \infty)^{B}$ and $x_{0} \in X$ we will denote by $\bar{B}_{q}^{p}\left(x_{0}, r\right)$ the closure of $B_{q}\left(x_{0}, r\right)$ in (X, \mathcal{P}), where

$$
B_{q}\left(x_{0}, r\right)=\left\{x \in X: q_{\beta}\left(x_{0}, x\right)<r_{\beta} \text { for all } \beta \in B\right\} .
$$

Let $P((X, \mathcal{P}))$ be the set of all nonempty subsets of X endowed with the convergence given by the family \mathcal{P}. We will use the following symbols when there is no confusion:

$$
\begin{gathered}
P(X):=\{Y \in \mathcal{P}(X): Y \neq \emptyset\} ; P_{b}(X):=\{Y \in P(X): Y \text { is bounded }\} ; \\
P_{c l}(X):=\{Y \in P(X): Y \text { is closed }\} .
\end{gathered}
$$

Let us define the gap functional between Y and Z in the (X, \mathcal{Q}) gauge space

$$
D_{\beta}: P(X) \times P(X) \rightarrow \mathbb{R}_{+} \cup\{+\infty\}, D_{\beta}(Y, Z)=\inf \left\{q_{\beta}(y, z) \mid y \in Y, z \in Z\right\}
$$

(in particular, if $x_{0} \in X$ then $D_{\beta}\left(x_{0}, Z\right):=D_{\beta}\left(\left\{x_{0}\right\}, Z\right)$) and the (generalized) PompeiuHausdorff functional

$$
H_{\beta}: P(X) \times P(X) \rightarrow \mathbb{R}_{+} \cup\{+\infty\}, H_{\beta}(Y, Z)=\max \left\{\sup _{y \in Y} D_{\beta}(y, Z), \sup _{z \in Z} D_{\beta}(Y, z)\right\}
$$

If $F: X \rightarrow P(X)$ is a multivalued operator, then $x \in X$ is called fixed point for F if and only if $x \in F(x)$. The set $F i x(F):=\{x \in X \mid x \in F(x)\}$ is called the fixed point set of F, while $\operatorname{SFix}(F):=\{x \in X \mid\{x\}=F(x)\}$ denotes the strict fixed point set of F.

Key words and phrases. Gauge space,separating gauge structures, multivalued operator, fixed point, strict fixed point,homotopy theorem..

Recall that, in 1972 , L.B. Ćirić ([3]) proved that if (X, d) is a complete metric space, $F: X \rightarrow P_{c l}(X)$ is a multivalued operator and there exists $\alpha \in(0,1)$ such that, for every $x, y \in X:$

$$
H(F(x), F(y)) \leq \alpha \max \left\{d(x, y), D(x, F(x)), D(y, F(y)), \frac{1}{2}[D(x, F(y))+D(y, F(x))]\right\}
$$

then $\operatorname{Fix}(F) \neq \emptyset$ and for every $x \in X$ and $y \in F(x)$ there exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ such that:
(1) $x_{0}=x, x_{1}=y$;
(2) $x_{n+1} \in F\left(x_{n}\right), n \in \mathbb{N}$;
(3) $x_{n} \xrightarrow{d} x^{*} \in F\left(x^{*}\right)$, for every $n \rightarrow \infty$.

The aim of this paper is to present some (local and global) fixed point results (existence of the fixed point, well-posedness for the fixed point problem, homotopy theorem) for Ćirić type contractions on a set with two separating gauge structures. The results of the paper extend and generalize some previous theorems given in R.P. Agarwal, J. Dshalalow, D. O'Regan [1], L.B. Ćrićć [3], M. Frigon [6] and [7], T. Lazăr, D. O'Regan, A. Petruşel [8] and they are related to the works A. Chis, R. Precup [2] and D. O'Regan, R.P. Agarwal, D. Jiang [9].

2 The main results Our first result is a local version of Ćirić's theorem ([3]) on a set with two separating gauge structures. The results relies on the concept of multivalued admissible contraction (in the sense of Frigon, see Frigon [6], [7] and R.P. Agarwal, J. Dshalalow, D. O'Regan [1]) of Ćirić type.

Theorem 2.1 Let X be a nonempty set endowed with two separating gauge structures $\mathcal{P}=$ $\left\{p_{\alpha}\right\}_{\alpha \in A}, \mathcal{Q}=\left\{q_{\beta}\right\}_{\beta \in B}\left(A, B\right.$ are directed sets), $r=\left\{r_{\beta}\right\}_{\beta \in B} \in(0, \infty)^{B}, x_{0} \in X$ and $F:\left(\bar{B}_{q}^{p}\left(x_{0}, r\right), \mathcal{P}\right) \rightarrow P((X, \mathcal{P})$ be a multivalued operator with closed graph. We suppose that:
(i) (X, \mathcal{P}) is a sequentially complete gauge space;
(ii) there exist a function $\psi: A \rightarrow B$ and $c=\left\{c_{\alpha}\right\}_{\alpha \in A} \in(0, \infty)^{A}$ such that

$$
p_{\alpha}(x, y) \leq c_{\alpha} \cdot q_{\psi(\alpha)}(x, y), \text { for every } \alpha \in A \text { and } x, y \in \bar{B}_{q}^{p}\left(x_{0}, r\right)
$$

(iii) there exists $\left\{a_{\beta}\right\}_{\beta \in B} \in(0,1)^{B}$ such that, for every $\beta \in B$, the following implication holds: for each $x, y \in \bar{B}_{q}^{p}\left(x_{0}, r\right)$ we have:

$$
H_{\beta}(F(x), F(y)) \leq a_{\beta} \cdot M_{\beta}^{F}(x, y)
$$

where

$$
M_{\beta}^{F}(x, y):=\max \left\{q_{\beta}(x, y), D_{\beta}(x, F(x)), D_{\beta}(y, F(y)), \frac{1}{2}\left[D_{\beta}(x, F(y))+D_{\beta}(y, F(x))\right]\right\}
$$

In addition, assume that the following conditions are satisfied:

$$
\begin{equation*}
D_{\beta}\left(x_{0}, F\left(x_{0}\right)\right)<\left(1-a_{\beta}\right) r_{\beta}, \text { for each } \beta \in B \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
\text { for every } x \in \bar{B}_{q}^{p}\left(x_{0}, r\right) \text { and every } k=\left\{k_{\beta}\right\}_{\beta \in B} \in(0, \infty)^{B} \text { there exists } \tag{2.2}
\end{equation*}
$$ $y \in F(x)$ such that $q_{\beta}(x, y) \leq D_{\beta}(x, F(x))+k_{\beta}$, for every $\beta \in B$.

Then:
(i) $\operatorname{Fix}(F) \neq \emptyset$;
(ii) if, additionally, $S F i x(F) \neq \emptyset$ and $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset \bar{B}_{q}^{p}\left(x_{0}, r\right)$ is such that $D_{\beta}\left(x_{n}, F\left(x_{n}\right)\right) \rightarrow 0$ as $n \rightarrow \infty$ for every $\beta \in B$, then $q_{\beta}\left(x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$, for every $\beta \in B$, where $x \in \operatorname{SFix}(F)$ (i.e., the fixed point problem is well-posed in the generalized sense for F with respect to D_{β}, for every $\beta \in B$). Moreover, we also have that $p_{\alpha}\left(x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$, for every $\alpha \in A$.

Proof. From (2.1) we may choose $x_{1} \in F\left(x_{0}\right)$ with

$$
q_{\beta}\left(x_{0}, x_{1}\right)<\left(1-a_{\beta}\right) r_{\beta} \text { for every } \beta \in B
$$

Thus $x_{1} \in \bar{B}_{q}^{p}\left(x_{0}, r\right)$.
Hence, there exists $\left\{a_{\beta}\right\}_{\beta \in B} \in(0,1)^{B}$ such that, for each $\beta \in B$, we have:

$$
\begin{aligned}
H_{\beta}\left(F\left(x_{0}\right), F\left(x_{1}\right)\right) & \leq \\
& a_{\beta} \cdot M_{\beta}^{F}\left(x_{0}, x_{1}\right) \\
& =a_{\beta} \cdot \max \left\{q_{\beta}\left(x_{0}, x_{1}\right), D_{\beta}\left(x_{0}, F\left(x_{0}\right)\right), D_{\beta}\left(x_{1}, F\left(x_{1}\right)\right)\right. \\
& \left.\frac{1}{2}\left[D_{\beta}\left(x_{0}, F\left(x_{1}\right)\right)+D_{\beta}\left(x_{1}, F\left(x_{0}\right)\right)\right]\right\} \\
& \leq a_{\beta} \cdot \max \left\{q_{\beta}\left(x_{0}, x_{1}\right), D_{\beta}\left(x_{1}, F\left(x_{1}\right)\right)\right. \\
& \left.\frac{1}{2}\left[q_{\beta}\left(x_{0}, x_{1}\right)+D_{\beta}\left(x_{1}, F\left(x_{1}\right)\right)\right]\right\} \\
& =a_{\beta} \cdot \max \left\{q_{\beta}\left(x_{0}, x_{1}\right), D_{\beta}\left(x_{1}, F\left(x_{1}\right)\right)\right\}
\end{aligned}
$$

Let $N_{\beta}^{F}\left(x_{0}, x_{1}\right):=\max \left\{q_{\beta}\left(x_{0}, x_{1}\right), D_{\beta}\left(x_{1}, F\left(x_{1}\right)\right)\right\}$.
If $N_{\beta}^{F}\left(x_{0}, x_{1}\right)=D_{\beta}\left(x_{1}, F\left(x_{1}\right)\right)$, then

$$
H_{\beta}\left(F\left(x_{0}\right), F\left(x_{1}\right)\right) \leq a_{\beta} \cdot D_{\beta}\left(x_{1}, F\left(x_{1}\right)\right) \leq a_{\beta} \cdot H_{\beta}\left(F\left(x_{0}\right), F\left(x_{1}\right)\right)
$$

which is a contradiction, since $\left\{a_{\beta}\right\}_{\beta \in B} \in(0,1)^{B}$. Thus $N_{\beta}^{F}\left(x_{0}, x_{1}\right)=q_{\beta}\left(x_{0}, x_{1}\right)$. Then, we have:

$$
H_{\beta}\left(F\left(x_{0}\right), F\left(x_{1}\right)\right) \leq a_{\beta} \cdot q_{\beta}\left(x_{0}, x_{1}\right), \text { for every } \beta \in B
$$

Denote $k_{\beta}:=a_{\beta}\left[\left(1-a_{\beta}\right) r_{\beta}-q_{\beta}\left(x_{0}, x_{1}\right)\right]$ for every $\beta \in B$.
On the other hand, by (2.2) there exists $x_{2} \in F\left(x_{1}\right)$ such that

$$
q_{\beta}\left(x_{1}, x_{2}\right) \leq D_{\beta}\left(x_{1}, F\left(x_{1}\right)\right)+k_{\beta}, \text { for every } \beta \in B
$$

Hence

$$
q_{\beta}\left(x_{1}, x_{2}\right) \leq H_{\beta}\left(F\left(x_{0}\right), F\left(x_{1}\right)\right)+k_{\beta} \leq a_{\beta} q_{\beta}\left(x_{0}, x_{1}\right)+k_{\beta}=a_{\beta}\left(1-a_{\beta}\right) r_{\beta} \text { for every } \beta \in B
$$

Moreover we have

$$
\begin{aligned}
q_{\beta}\left(x_{0}, x_{2}\right) & \leq q_{\beta}\left(x_{0}, x_{1}\right)+q_{\beta}\left(x_{1}, x_{2}\right) \\
& <\left(1-a_{\beta}\right) r_{\beta}+a_{\beta}\left(1-a_{\beta}\right) r_{\beta} \\
& =\left(1-a_{\beta}^{2}\right) r_{\beta}<r_{\beta}
\end{aligned}
$$

Therefore $x_{2} \in \bar{B}_{q}^{p}\left(x_{0}, r\right)$.
By the same procedure, we obtain the elements $x_{n+1} \in F\left(x_{n}\right)$ for $n \in\{1,2,3, \ldots\}$ having the following properties:
(a) $q_{\beta}\left(x_{n-1}, x_{n}\right) \leq a_{\beta}^{n-1} q_{\beta}\left(x_{0}, x_{1}\right) \leq a_{\beta}^{n-1}\left(1-a_{\beta}\right) r_{\beta}$, for every $n \in \mathbb{N}^{*}$ and $\beta \in B$;
(b) $q_{\beta}\left(x_{0}, x_{n}\right)<\left(1-a_{\beta}^{n}\right) r_{\beta}$, for every $n \in \mathbb{N}^{*}$ and $\beta \in B$.

From (a) it is immediate that $\left\{x_{n}\right\}$ is \mathcal{Q}-Cauchy. Now (ii) implies that the sequence $\left\{x_{n}\right\}$ is \mathcal{P}-Cauchy too, hence it is \mathcal{P}-convergent to some $x \in \bar{B}_{q}^{p}\left(x_{0}, r\right)$, from (i). It now remains to show that $x \in F(x)$. This follows since $F:\left(\bar{B}_{q}^{p}\left(x_{0}, r\right), \mathcal{P}\right) \rightarrow P((X, \mathcal{P})$ has closed graph.

Let $x \in S F i x(F)$. We now show that the fixed point problem is well-posed. Let $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset \bar{B}_{q}^{p}\left(x_{0}, r\right)$ be such that $D_{\beta}\left(x_{n}, F\left(x_{n}\right)\right) \rightarrow 0$ as $n \rightarrow \infty$ for every $\beta \in B$. Since x is a strict fixed point for F, we have $q_{\beta}\left(x_{n}, x\right) \leq D_{\beta}\left(x_{n}, F\left(x_{n}\right)\right)+H_{\beta}\left(F\left(x_{n}\right), F(x)\right)$. Then:

$$
\begin{aligned}
q_{\beta}\left(x_{n}, x\right) \leq & D_{\beta}\left(x_{n}, F\left(x_{n}\right)\right)+a_{\beta} M_{\beta}^{F}\left(x_{n}, x\right) \\
& =D_{\beta}\left(x_{n}, F\left(x_{n}\right)\right)+a_{\beta} \max \left\{q_{\beta}\left(x_{n}, x\right), D_{\beta}\left(x_{n}, F\left(x_{n}\right)\right)\right. \\
& \left.\frac{1}{2}\left[D_{\beta}\left(x_{n}, F(x)\right)+D_{\beta}\left(x, F\left(x_{n}\right)\right)\right]\right\} \\
\leq & D_{\beta}\left(x_{n}, F\left(x_{n}\right)\right)+a_{\beta} \max \left\{q_{\beta}\left(x_{n}, x\right), D_{\beta}\left(x_{n}, F\left(x_{n}\right)\right)\right. \\
& \left.\frac{1}{2}\left[q_{\beta}\left(x_{n}, x\right)+q_{\beta}\left(x, x_{n}\right)+D_{\beta}\left(x_{n}, F\left(x_{n}\right)\right)\right]\right\} \\
\leq & D_{\beta}\left(x_{n}, F\left(x_{n}\right)\right)+a_{\beta} \max \left\{D_{\beta}\left(x_{n}, F\left(x_{n}\right)\right), q_{\beta}\left(x_{n}, x\right)+\frac{1}{2} D_{\beta}\left(x_{n}, F\left(x_{n}\right)\right)\right\} .
\end{aligned}
$$

If $\max \left\{D_{\beta}\left(x_{n}, F\left(x_{n}\right)\right), q_{\beta}\left(x_{n}, x\right)+\frac{1}{2} D_{\beta}\left(x_{n}, F\left(x_{n}\right)\right)\right\}=D_{\beta}\left(x_{n}, F\left(x_{n}\right)\right)$, then

$$
q_{\beta}\left(x_{n}, x\right) \leq\left(1+a_{\beta}\right) D_{\beta}\left(x_{n}, F\left(x_{n}\right)\right)
$$

If $\max \left\{D_{\beta}\left(x_{n}, F\left(x_{n}\right)\right), q_{\beta}\left(x_{n}, x\right)+\frac{1}{2} D_{\beta}\left(x_{n}, F\left(x_{n}\right)\right)\right\}=q_{\beta}\left(x_{n}, x\right)+\frac{1}{2} D_{\beta}\left(x_{n}, F\left(x_{n}\right)\right)$ then

$$
q_{\beta}\left(x_{n}, x\right) \leq D_{\beta}\left(x_{n}, F\left(x_{n}\right)\right)+a_{\beta} q_{\beta}\left(x_{n}, x\right)+\frac{a_{\beta}}{2} D_{\beta}\left(x_{n}, F\left(x_{n}\right)\right)
$$

and we have

$$
q_{\beta}\left(x_{n}, x\right) \leq \frac{2+a_{\beta}}{2\left(1-a_{\beta}\right)} D_{\beta}\left(x_{n}, F\left(x_{n}\right)\right)
$$

From (ii), we also obtain that $p_{\alpha}\left(x_{n}, x\right) \rightarrow 0$ as $n \rightarrow+\infty$, for every $\alpha \in A$. Thus the proof is complete.

We will obtain now a global version of the theorem above.
Theorem 2.2 Let X be a nonempty set endowed with two separating gauge structures $\mathcal{P}=$ $\left\{p_{\alpha}\right\}_{\alpha \in A}, \mathcal{Q}=\left\{q_{\beta}\right\}_{\beta \in B}$ and $F:(X, \mathcal{P}) \rightarrow P((X, \mathcal{P})$ be a multivalued operator with closed graph. We suppose that:
(i) (X, \mathcal{P}) is a sequentially complete gauge space;
(ii) there exists a function $\psi: A \rightarrow B$ and $c=\left\{c_{\alpha}\right\}_{\alpha \in A} \in(0, \infty)^{A}$ such that

$$
p_{\alpha}(x, y) \leq c_{\alpha} \cdot q_{\psi(\alpha)}(x, y), \text { for every } \alpha \in A \text { and } x, y \in X
$$

(iii) there exists $\left\{a_{\beta}\right\}_{\beta \in B} \in(0,1)^{B}$ such that, for each $x, y \in X$, we have:

$$
H_{\beta}(F(x), F(y)) \leq a_{\beta} \cdot M_{\beta}(x, y), \text { for every } \beta \in B
$$

In addition, assume that
for every $x \in X$ and every $k=\left\{k_{\beta}\right\}_{\beta \in B} \in(0, \infty)^{B}$ there exists $y \in F(x)$ such that $q_{\beta}(x, y) \leq D_{\beta}(x, F(x))+k_{\beta}$, for every $\beta \in B$.

Then F has a fixed point. Furthermore, if $\operatorname{SFix}(F) \neq \emptyset$ and $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset X$ is such that $D_{\beta}\left(x_{n}, F\left(x_{n}\right)\right) \rightarrow 0$ as $n \rightarrow \infty$ for every $\beta \in B$, then $q_{\beta}\left(x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$, where $x \in S F i x(F)$ (i.e. the fixed point problem is well-posed in the generalized sense for F with respect to D_{β}, for every $\beta \in B$).

Proof. Let $x_{0} \in X$ be arbitrary and choose $r=\left\{r_{\beta}\right\}_{\beta \in B} \in(0, \infty)^{B}$ such that $D_{\beta}\left(x_{0}, F\left(x_{0}\right)\right)<\left(1-a_{\beta}\right) r_{\beta}$, for each $\beta \in B$. Next, the proof follows from Theorem 2.1.

Another global result is based on the concept of multivalued admissible contraction (in the sense of Espinola and Petruşel, see [5]) of Cirić type.

Theorem 2.3 Let X be a nonempty set endowed with two separating gauge structures $\mathcal{P}=$ $\left\{p_{\alpha}\right\}_{\alpha \in A}, \mathcal{Q}=\left\{q_{\beta}\right\}_{\beta \in B}(A, B$ are directed sets) and let $F:(X, \mathcal{P}) \rightarrow P((X, \mathcal{P})$ be a multivalued operator with closed graph. We suppose that:
(i) (X, \mathcal{P}) is a sequentially complete gauge space;
(ii) there exists a function $\psi: A \rightarrow B$ and $c=\left\{c_{\alpha}\right\}_{\alpha \in A} \in(0, \infty)^{A}$ such that

$$
p_{\alpha}(x, y) \leq c_{\alpha} \cdot q_{\psi(\alpha)}(x, y), \text { for every } \alpha \in A \text { and } x, y \in X
$$

(iii) there exists $\left\{a_{\beta}\right\}_{\beta \in B} \in(0,1)^{B}$ such that for every $\beta \in B$ we have:

$$
H_{\beta}(F(x), F(y)) \leq a_{\beta} \cdot M_{\beta}(x, y), \text { for each } x, y \in X
$$

(iv) for every $x, y \in X$, every $u \in F(x)$ and every $k=\left\{k_{\beta}\right\}_{\beta \in B} \in(1, \infty)^{B}$ there exists $v \in F(y)$ such that $q_{\beta}(u, v) \leq k_{\beta} \cdot H_{\beta}(F(x), F(y))$, for every $\beta \in B$;
Then $\operatorname{Fix}(F) \neq \emptyset$. Furthermore, if $\operatorname{SFix}(F) \neq \emptyset$ and $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset X$ is such that $D_{\beta}\left(x_{n}, F\left(x_{n}\right)\right) \rightarrow 0$ as $n \rightarrow \infty$ for every $\beta \in B$, then $q_{\beta}\left(x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$, where $x \in \operatorname{SFix}(F)$ (i.e. the fixed point problem is well-posed in the generalized sense for F with respect to D_{β}, for every $\beta \in B$).

Proof. Let $x_{0} \in X$ and $x_{1} \in F\left(x_{0}\right)$ be arbitrary. For every $k=\left\{k_{\beta}\right\}_{\beta \in B} \in(1, \infty)^{B}$, by (iv), there exists $x_{2} \in F\left(x_{1}\right)$ such that

$$
q_{\beta}\left(x_{1}, x_{2}\right) \leq k_{\beta} H_{\beta}\left(F\left(x_{0}\right), F\left(x_{1}\right)\right), \text { for each } \beta \in B
$$

Then:

$$
\begin{aligned}
q_{\beta}\left(x_{1}, x_{2}\right) \leq & k_{\beta} H_{\beta}\left(F\left(x_{0}\right), F\left(x_{1}\right)\right) \\
& \leq k_{\beta} a_{\beta} M_{\beta}^{F}\left(x_{0}, x_{1}\right) \\
& =k_{\beta} a_{\beta} \max \left\{q_{\beta}\left(x_{0}, x_{1}\right), D_{\beta}\left(x_{0}, F\left(x_{0}\right)\right), D_{\beta}\left(x_{1}, F\left(x_{1}\right)\right), \frac{1}{2} D_{\beta}\left(x_{0}, F\left(x_{1}\right)\right)\right\}
\end{aligned}
$$

We introduce the following notation:

$$
\Gamma:=\max \left\{q_{\beta}\left(x_{0}, x_{1}\right), D_{\beta}\left(x_{0}, F\left(x_{0}\right)\right), D_{\beta}\left(x_{1}, F\left(x_{1}\right)\right), \frac{1}{2} D_{\beta}\left(x_{0}, F\left(x_{1}\right)\right)\right\}
$$

and we choose $k=\left\{k_{\beta}\right\}_{\beta \in B} \in(1, \infty)^{B}$ such that $1<k_{\beta}<\frac{1}{a_{\beta}}$, for each $\beta \in B$.
If $\Gamma=q_{\beta}\left(x_{0}, x_{1}\right)$ then $q_{\beta}\left(x_{1}, x_{2}\right) \leq k_{\beta} a_{\beta} q_{\beta}\left(x_{0}, x_{1}\right)$.
If $\Gamma=D_{\beta}\left(x_{0}, F\left(x_{0}\right)\right)$ then since $D_{\beta}\left(x_{0}, F\left(x_{0}\right)\right) \leq q_{\beta}\left(x_{0}, x_{1}\right)$ we have $q_{\beta}\left(x_{1}, x_{2}\right) \leq$ $k_{\beta} a_{\beta} q_{\beta}\left(x_{0}, x_{1}\right)$.

If $\Gamma=D_{\beta}\left(x_{1}, F\left(x_{1}\right)\right)$ then $q_{\beta}\left(x_{1}, x_{2}\right) \leq k_{\beta} a_{\beta} D_{\beta}\left(x_{1}, F\left(x_{1}\right)\right) \leq k_{\beta} a_{\beta} q_{\beta}\left(x_{1}, x_{2}\right)$, which is a contradiction since $1<k_{\beta}<\frac{1}{a_{\beta}}$, for each $\beta \in B$.

If $\Gamma=\frac{1}{2} D_{\beta}\left(x_{0}, F\left(x_{1}\right)\right)$ then

$$
\begin{aligned}
q_{\beta}\left(x_{1}, x_{2}\right) & \leq k_{\beta} a_{\beta} \frac{1}{2} D_{\beta}\left(x_{0}, F\left(x_{1}\right)\right) \leq \frac{k_{\beta} a_{\beta}}{2} q_{\beta}\left(x_{0}, x_{2}\right) \\
& \leq \frac{k_{\beta} a_{\beta}}{2}\left[q_{\beta}\left(x_{0}, x_{1}\right)+q_{\beta}\left(x_{1}, x_{2}\right)\right]
\end{aligned}
$$

Hence, we obtain that

$$
q_{\beta}\left(x_{1}, x_{2}\right) \leq \frac{k_{\beta} a_{\beta}}{2-k_{\beta} a_{\beta}} q_{\beta}\left(x_{0}, x_{1}\right)
$$

Then

$$
\begin{aligned}
\Gamma & =\frac{1}{2} D_{\beta}\left(x_{0}, F\left(x_{1}\right)\right) \leq \frac{1}{2} q_{\beta}\left(x_{0}, x_{2}\right) \leq \frac{1}{2}\left[q_{\beta}\left(x_{0}, x_{1}\right)+q_{\beta}\left(x_{1}, x_{2}\right)\right] \\
& \leq \frac{1}{2}\left[1+\frac{k_{\beta} a_{\beta}}{2-k_{\beta} a_{\beta}}\right] q_{\beta}\left(x_{0}, x_{1}\right)=\frac{1}{2-k_{\beta} a_{\beta}} q_{\beta}\left(x_{0}, x_{1}\right)<q_{\beta}\left(x_{0}, x_{1}\right)
\end{aligned}
$$

which is a contradiction with the definition of Γ.
Thus in all cases we have that

$$
q_{\beta}\left(x_{1}, x_{2}\right) \leq k_{\beta} a_{\beta} q_{\beta}\left(x_{0}, x_{1}\right)
$$

By induction, we will obtain a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ of succesive approximations for F starting from x_{0}, satisfying the following assertion:

$$
q_{\beta}\left(x_{n}, x_{n+1}\right) \leq\left(k_{\beta} a_{\beta}\right)^{n} q_{\beta}\left(x_{0}, x_{1}\right), \text { for every } n \in \mathbb{N}^{*} \text { and } \beta \in B
$$

For each $n, p \in \mathbb{N}^{*}$ and for every $\beta \in B$ we have

$$
\begin{aligned}
q_{\beta}\left(x_{n}, x_{n+p}\right) & \leq q_{\beta}\left(x_{n}, x_{n+1}\right)+\ldots+q_{\beta}\left(x_{n+p-1}, x_{n+p}\right) \\
& \leq\left[1+\ldots+\left(k_{\beta} a_{\beta}\right)^{p-1}\right] \cdot\left(k_{\beta} a_{\beta}\right)^{n} q_{\beta}\left(x_{0}, x_{1}\right) \\
& =\frac{1-\left(k_{\beta} a_{\beta}\right)^{p}}{1-k_{\beta} a_{\beta}} \cdot\left(k_{\beta} a_{\beta}\right)^{n} q_{\beta}\left(x_{0}, x_{1}\right) \leq \frac{\left(k_{\beta} a_{\beta}\right)^{n}}{1-k_{\beta} a_{\beta}} q_{\beta}\left(x_{0}, x_{1}\right)
\end{aligned}
$$

Letting $n \rightarrow+\infty$ and taking into account (i), we obtain that the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ is \mathcal{Q}-Cauchy. Thus, by (ii), the sequence is convergent in (X, \mathcal{P}). Denote by u its limit. Notice that $u \in F i x(F)$ since the operator $F:(X, \mathcal{P}) \rightarrow P((X, \mathcal{P})$ has closed graph. The second part follows in a similar way as in Theorem 2.1. The proof is complete.

For the particular case of a unique gauge structure, we get the following data dependence result.

Theorem 2.4 Let X be a nonempty set endowed with a separating gauge structure $\mathcal{P}=$ $\left\{p_{\alpha}\right\}_{\alpha \in A}$, and let $F_{1}, F_{2}: X \rightarrow P(X)$ be two multivalued operators with closed graph. We suppose that:
(i) (X, \mathcal{P}) is a sequentially complete gauge space;
(ii) there exists $\left\{a_{\alpha}^{(i)}\right\}_{\alpha \in A} \in(0,1)^{A}$ such that, for each $x, y \in X$, we have:

$$
H_{\alpha}\left(F_{i}(x), F_{i}(y)\right) \leq a_{\alpha}^{(i)} \cdot M_{\alpha}^{F_{i}}(x, y), \text { for every } \alpha \in A, \text { for } i \in\{1,2\}
$$

In addition, assume that:
(a) for every $x, y \in X$ every $u \in F_{i}(x)$ and every $k:=\left\{k_{\alpha}\right\}_{\alpha \in B} \in(1, \infty)^{A}$
there exists $v \in F_{i}(x)$ such that $q_{\alpha}(u, v) \leq k_{\alpha} H_{\alpha}\left(F_{i}(x), F_{i}(y)\right)$, for every $\alpha \in A$, for $i \in\{1,2\}$;
(b) for every $x \in X$ every $u \in F_{1}(x)$ and every $k:=\left\{k_{\alpha}\right\}_{\alpha \in B} \in(1, \infty)^{A}$
there exists $v \in F_{2}(x)$ such that $q_{\alpha}(u, v) \leq k_{\alpha} H_{\alpha}\left(F_{1}(x), F_{2}(x)\right)$, for every $\alpha \in A$;

Then:
1)

$$
F i x\left(F_{i}\right) \in P_{c l}(X), \text { for } i \in\{1,2\} ;
$$

2) If there exists $\eta:=\left\{\eta_{\alpha}\right\}_{\alpha \in A} \in(0, \infty)^{A}$ such that $H_{\alpha}\left(F_{1}(x), F_{2}(x)\right) \leq \eta_{\alpha}$ for each $\alpha \in A$, then

$$
H_{\alpha}\left(F i x\left(F_{1}\right), F i x\left(F_{2}\right)\right) \leq \frac{\eta_{\alpha}}{1-\max \left\{a_{\alpha}^{(1)}, a_{\alpha}^{(2)}\right\}}, \text { for each } \alpha \in A
$$

Proof. 1) The existence of the fixed point follows from Theorem 2.3. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in $F i x(F)$ (where F is F_{1} or F_{2}), such that x_{n} converges to x^{*}. Denote $a_{\alpha}:=a_{\alpha}^{(1)}$ if $F:=F_{1}$ and $a_{\alpha}:=a_{\alpha}^{(2)}$ if $F:=F_{2}$. Then, we have:
$D_{\alpha}\left(x^{*}, F\left(x^{*}\right)\right) \leq d_{\alpha}\left(x^{*}, x_{n}\right)+H_{\alpha}\left(F\left(x_{n}\right), F\left(x^{*}\right)\right) \leq d_{\alpha}\left(x^{*}, x_{n}\right)+$ $a_{\alpha} \max \left\{d_{\alpha}\left(x^{*}, x_{n}\right), D_{\alpha}\left(x^{*}, F\left(x^{*}\right)\right), \frac{1}{2}\left[D_{\alpha}\left(x^{*}, F\left(x_{n}\right)\right)+D_{\alpha}\left(x_{n}, F\left(x^{*}\right)\right)\right]\right\} \leq d_{\alpha}\left(x^{*}, x_{n}\right)+$ $a_{\alpha} \max \left\{d_{\alpha}\left(x^{*}, x_{n}\right)+\frac{1}{2} D_{\alpha}\left(x^{*}, F\left(x^{*}\right)\right), D_{\alpha}\left(x^{*}, F\left(x^{*}\right)\right)\right\}$, for each $\alpha \in A$. Then, we immediately get that $D_{\alpha}\left(x^{*}, F\left(x^{*}\right)\right)=0$, for each $\alpha \in A$ and hence $x^{*} \in F i x(F)$.
2) For the second conclusion, let $x_{0} \in F i x\left(F_{1}\right)$ and $k_{\alpha} \in\left(1, \min \left\{\frac{1}{a_{\alpha}^{(1)}}, \frac{1}{a_{\alpha}^{(2)}}\right\}\right)$ be arbitrary chosen. Then, as in the proof of Theorem 2.3, there exists a convergent sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ of successive approximations for F_{2} (i.e., $x_{n+1} \in F_{2}\left(x_{n}\right), n \in \mathbb{N}$) starting from x_{0} and $x_{1} \in F_{2}\left(x_{0}\right)$ with the following property:

$$
q_{\alpha}\left(x_{n}, x_{n+p}\right) \leq \frac{\left(k_{\alpha} a_{\alpha}^{(2)}\right)^{n}}{1-k_{\alpha} a_{\alpha}^{(2)}} q_{\alpha}\left(x_{0}, x_{1}\right), \text { for } n \in \mathbb{N} \text { and } p \in \mathbb{N}^{*}
$$

Letting $p \rightarrow+\infty$ we get that

$$
q_{\alpha}\left(x_{n}, x_{2}^{*}\right) \leq \frac{\left(k_{\alpha} a_{\alpha}^{(2)}\right)^{n}}{1-k_{\alpha} a_{\alpha}^{(2)}} q_{\alpha}\left(x_{0}, x_{1}\right), \text { for } n \in \mathbb{N} .
$$

As before, $x_{2}^{*} \in \operatorname{Fix}\left(F_{2}\right)$. For $n:=0$ in the above relation, we get that

$$
q_{\alpha}\left(x_{0}, x_{2}^{*}\right) \leq \frac{1}{1-k_{\alpha} a_{\alpha}^{(2)}} q_{\alpha}\left(x_{0}, x_{1}\right)
$$

Since $x_{0} \in F_{1}\left(x_{0}\right)$, by (b), there exists $x_{1} \in F_{2}\left(x_{0}\right)$ such that $q_{\alpha}\left(x_{0}, x_{1}\right) \leq k_{\alpha} \eta_{\alpha}$, for each $\alpha \in A$. Thus,

$$
q_{\alpha}\left(x_{0}, x_{2}^{*}\right) \leq \frac{k_{\alpha} \eta_{\alpha}}{1-k_{\alpha} a_{\alpha}^{(2)}}, \text { for each } \alpha \in A
$$

Thus

$$
D_{\alpha}\left(x_{0}, \operatorname{Fix}\left(F_{2}\right)\right) \leq \frac{k_{\alpha} \eta_{\alpha}}{1-k_{\alpha} a_{\alpha}^{(2)}}, \text { for each } \alpha \in A
$$

and since $x_{0} \in F i x F_{1}$ is arbitrary we have

$$
\sup _{y \in \operatorname{Fix}\left(F_{1}\right)} D_{\alpha}\left(y, F i x\left(F_{2}\right)\right) \leq \frac{k_{\alpha} \eta_{\alpha}}{1-k_{\alpha} a_{\alpha}^{(2)}}, \text { for each } \alpha \in A .
$$

By the above relation and by a similar approach, with the roles of F_{1} and F_{2} reversed, we obtain that

$$
H_{\alpha}\left(\operatorname{Fix}\left(F_{1}\right), F i x\left(F_{2}\right)\right) \leq \frac{k_{\alpha} \eta_{\alpha}}{1-k_{\alpha} \max \left\{a_{\alpha}^{(1)}, a_{\alpha}^{(2)}\right\}}, \text { for each } \alpha \in A
$$

Letting, for each $\alpha \in A, k_{\alpha} \searrow 1$ we get the conclusion.
In what follows we will present a homotopy result for Ćirić type contractions on a set with two separating gauge structures.

Theorem 2.5 Let X be a nonempty set endowed with two separating gauge structures $\mathcal{P}=\left\{p_{\alpha}\right\}_{\alpha \in A}$ and $\mathcal{Q}=\left\{q_{\beta}\right\}_{\beta \in B}$, such that (X, \mathcal{P}) is a sequentially complete gauge space. Suppose there exists a function $\psi: A \rightarrow B$ and $c=\left\{c_{\alpha}\right\}_{\alpha \in A} \in(0, \infty)^{A}$ such that $p_{\alpha}(x, y) \leq$ $c_{\alpha} \cdot q_{\psi(\alpha)}(x, y)$ for every $\alpha \in A$ and $x, y \in X$. Let U be an open subset of (X, \mathcal{Q}). Let $G: \bar{U}^{p} \times[0,1] \rightarrow P(X, \mathcal{P})$ be a multivalued operator such that the following assumptions are satisfied:
(i) $x \notin G(x, t)$, for each $x \in \partial U$ and each $t \in[0,1]$;
(ii) there exists $\left\{a_{\beta}\right\}_{\beta \in B} \in(0,1)^{B}$ for every $\beta \in B$ such that for each $x, y \in \bar{U}$ we have

$$
H_{\beta}(G(x, t), G(y, t)) \leq a_{\beta} \cdot M_{\beta}^{G(\cdot, t)}(x, y)
$$

where

$$
\begin{aligned}
M_{\beta}^{G(\cdot, t)}(x, y)= & \max \left\{q_{\beta}(x, y), D_{\beta}(x, G(x, t)), D_{\beta}(y, G(y, t))\right. \\
& \left.\frac{1}{2}\left[D_{\beta}(x, G(y, t))+D_{\beta}(y, G(x, t))\right]\right\}
\end{aligned}
$$

(iii) there exists a continuous function $\phi:[0,1] \rightarrow \mathbb{R}$ such that

$$
H_{\beta}(G(x, t), G(x, s)) \leq|\phi(t)-\phi(s)|, \text { for all } t, s \in[0,1] \text { and each } x \in \bar{U}^{p}
$$

(iv) $G:\left(\bar{U}^{p}, \mathcal{P}\right) \times[0,1] \rightarrow P(X, \mathcal{P})$ is closed.
(v) for each $t \in[0,1]$, for every $x \in \bar{U}^{p}$ and every $k=\left\{k_{\beta}\right\}_{\beta \in B} \in(0, \infty)^{B}$ there exists $y \in G(x, t)$ such that

$$
q_{\beta}(x, y) \leq D_{\beta}(x, G(x, t))+k_{\beta}, \text { for every } \beta \in B
$$

Then $G(\cdot, 0)$ has a fixed point if and only if $G(\cdot, 1)$ has a fixed point.
Proof. Suppose that $z \in \operatorname{Fix}(G(\cdot, 0))$. From (i) we have that $z \in U$. Consider the set:

$$
E:=\{(t, x) \in[0,1] \times U: x \in G(x, t)\}
$$

Since $(0, z) \in E$, we have that $E \neq \emptyset$. We introduce a partial order defined on E

$$
(t, x) \leq(s, y) \text { if and only if } t \leq s \text { and } q_{\beta}(x, y) \leq \frac{2}{1-a_{\beta}}[\phi(s)-\phi(t)]
$$

Let M be a totally ordered subset of $E, t^{*}:=\sup \{t:(t, x) \in M\}$ and $\left(t_{n}, x_{n}\right)_{n \in \mathbb{N}^{*}} \subset M$ be a sequence such that $\left(t_{n}, x_{n}\right) \leq\left(t_{n+1}, x_{n+1}\right)$ and $t_{n} \rightarrow t^{*}$ as $n \rightarrow \infty$. Then

$$
q_{\beta}\left(x_{m}, x_{n}\right) \leq \frac{2}{1-a_{\beta}}\left[\phi\left(t_{m}\right)-\phi\left(t_{n}\right)\right], \text { for each } m, n \in \mathbb{N}^{*}, m>n
$$

Letting $m, n \rightarrow+\infty$ we obtain that $q_{\beta}\left(x_{m}, x_{n}\right) \rightarrow 0$, thus $\left(x_{n}\right)_{n \in \mathbb{N}^{*}}$ is \mathcal{Q}-Cauchy, so it is \mathcal{P}-Cauchy too. Denote by $x^{*} \in(X, \mathcal{P})$ its limit. We know that $x_{n} \in G\left(x_{n}, t_{n}\right), n \in \mathbb{N}^{*}$ and G is \mathcal{P}-closed. Therefore we have that $x^{*} \in G\left(x^{*}, t^{*}\right)$. From (i) we note that $x^{*} \in U$. Thus $\left(t^{*}, x^{*}\right) \in E$.

From the fact that M is totally ordered we have that $(t, x) \leq\left(t^{*}, x^{*}\right)$, for each $(t, x) \in M$. Thus $\left(t^{*}, x^{*}\right)$ is an upper bound of M. We can apply Zorn's Lemma, so E admits a maximal element $\left(t_{0}, x_{0}\right) \in E$. We now prove that $t_{0}=1$.

Suppose that $t_{0}<1$. Let $r=\left\{r_{\beta}\right\}_{\beta \in B} \in(0, \infty)^{B}$ and $\left.\left.t \in\right] t_{0}, 1\right]$ be such that $B_{q}\left(x_{0}, r_{\beta}\right) \subset$ U and $r_{\beta}:=\frac{2}{1-a_{\beta}}\left[\phi(t)-\phi\left(t_{0}\right)\right]$ for every $\beta \in B$. Then for each $\beta \in B$ we have

$$
\begin{aligned}
D_{\beta}\left(x_{0}, G\left(x_{0}, t\right)\right) & \leq D_{\beta}\left(x_{0}, G\left(x_{0}, t_{0}\right)\right)+H_{\beta}\left(G\left(x_{0}, t_{0}\right), G\left(x_{0}, t\right)\right) \\
& \leq \phi(t)-\phi\left(t_{0}\right)=\frac{r_{\beta}\left(1-a_{\beta}\right)}{2}<\left(1-a_{\beta}\right) r_{\beta}
\end{aligned}
$$

Since $\bar{B}_{q}^{p}\left(x_{0}, r_{\beta}\right) \subset \bar{U}^{p}$, the closed multivalued operator $G(\cdot, t): \bar{B}_{q}^{p}\left(x_{0}, r\right) \rightarrow P(X, \mathcal{P})$ satisfies the assumptions of Theorem 2.1, for all $t \in[0,1]$. Hence there exists $x \in \bar{B}_{q}^{p}\left(x_{0}, r_{\beta}\right)$ such that $x \in G(x, t)$. Thus $(t, x) \in E$. However we know that

$$
q_{\beta}\left(x_{0}, x\right) \leq r_{\beta}=\frac{2}{1-a_{\beta}}\left[\phi(t)-\phi\left(t_{0}\right)\right]
$$

so we have that

$$
\left(t_{0}, x_{0}\right)<(t, x)
$$

which contradicts the maximality of $\left(t_{0}, x_{0}\right)$. Thus $t_{0}=1$ and the proof is complete.

References

[1] R.P. Agarwal, J. Dshalalow, D. O'Regan: Fixed point and homotopy results for generalized contractive maps of Reich-type, Appl. Anal., 82 (2003), 329-350.
[2] A. Chiş, R. Precup: Continuation theory for general contractions in gauge spaces, Fixed Point Theory and Applications, 2004:3 (2004), 173-185.
[3] L.B. Ćirić: Fixed points for generalized multi-valued contractions, Math. Vesnik, 9(24)(1972), 265-272.
[4] J. Dugundji: Topology, Allyn \& Bacon, Boston, 1966.
[5] R. Espínola, A. Petruşel: Existence and data dependence of fixed points for multivalued operators on gauge spaces, J. Math. Anal. Appl., 309 (2005), 420-432.
[6] M. Frigon: Fixed point results for multivalued contractions in gauge spaces and applications, Set Valued Mappings with Applications in Nonlinear Analysis, Ser. Math. Anal. Appl., Vol. 4, Taylor \& Francis, London, 2002, 175-181.
[7] M. Frigon: Fixed point and continuation results for contractions in metric and gauge spaces, Banach Center Publ., 77 (2007), 89-114.
[8] T. Lazăr, D. O'Regan, A. Petruşel: Fixed points and homotopy results for Ćirić -type multivalued operators on a set with two metrics, Bull. Korean Math. Soc., 45 (2008), 67-73.
[9] D. O'Regan, R.P. Agarwal, D. Jiang: Fixed point and homotopy results in uniform spaces, Bull. Belg. Math. Soc., 10 (2003), 289-296.
D. O'Regan

Department of Mathematics
National University ofIreland, Galway, Ireland.
A. Petruşel
T.P. Petru

Department of Applied Mathematics
Babeş-Bolyai University
Kogălniceanu 1
400084, Cluj-Napoca, Romania.

