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ON THE BEST CONSTANT FOR Lp SOBOLEV INEQUALITIES

Yorimasa Oshime ∗

Received September 7, 2007; revised August 8, 2008

Abstract. A canonical form of the reproducing kernel for X ⊂ W m,p(Ω) is given.
(See Theorem 2 as well as Theorem 5.) By its virtue, the best constants for embedding
W m,p → B0 are given for some concrete Sobolev spaces. (See Theorem 8,10 and 14.)

Introduction It was Kametaka et al.[1][2] who clearly pointed out that there exists a
close relationship between the Green functions and the reproducing kernels. Using this
relationship, they determined the best constants for various Sobolev inequalities, especially
in the L2 framework. In the Lp framework (p �= 2), however, the usual Green functions in
themselves are sometimes inappropriate to determine the best constants[3][4]. To deal with
the case p �= 2, we modify the notion of the Green functions in the sequel.

1 Notation. We use multi-indices. For

α = (α1, α2, · · · , αN )

with nonnegative integers α1 ≥ 0, α2 ≥ 0, · · · , αN ≥ 0, we denote

|α| = α1 + α2 + · · · + αN , ∂α =
∂|α|

∂xα1
1 ∂xα2

2 · · ·∂xαN

N

=
∂α1+α2+···+αN

∂xα1
1 ∂xα2

2 · · · ∂xαN

N

.

In the sequel, p is always a positive constant satisfying 1 < p < ∞ while q > 1 is the
conjugate of p which is determined by 1/p + 1/q = 1. Let Ω ⊂ RN be an open domain.
The norm of u ∈ Lp = Lp(Ω) is denoted as

‖u‖p =
(∫

Ω

|u(x)|pdx
)1/p

and the notation
‖u‖∞ = sup

x∈Ω
|u(x)|

is also used. For each nonnegative integer m ≥ 0 and the above p ∈ (1,∞), the Sobolev
space Wm,p(Ω) is defined as

Wm,p(Ω) = {u ∈ Lp(Ω); ∂αu ∈ Lp(Ω), |α| ≤ m}

and we use one of its standard norms

‖u‖m,p ≡

 ∑

|α|≤m

‖∂αu‖p
p




1/p
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in the sequel.
In addition, we use also the notation

sgnz =

{
z/|z| (z �= 0)
0 (z = 0)

for complex z ∈ C.

2 Results.

Proposition 1. Let Ω ⊂ RN be open and X be a closed subspace of Wm,p(Ω)(1 < p <∞)
with the standard norm

‖u‖m,p ≡

 ∑

|α|≤m

‖∂αu‖p
p




1/p

.

Suppose that

‖u‖X ≡

 ∑

|α|≤m

Cα‖∂αu‖p
p




1/p

, u ∈ X

with nonnegative constants Cα ≥ 0(|α| ≤ m) (Cα > 0 for some α )determines a norm
(possibly ‖u‖X ≡ ‖u‖m,p) equivalent to ‖u‖m,p, i.e.,

(1/k)‖u‖m,p ≤ ‖u‖X ≤ k‖u‖m,p, u ∈ X

for some constant k > 1. (Notice that the equivalence may fail for the whole Wm,p(Ω).)
Then, for an arbitrarily fixed v ∈ X,

F (u) =
∑

|α|≤m

∫
Ω

Cα∂
αu(x)|∂αv(x)|p−1sgn∂αv(x)dx

is a bounded linear functional for u ∈ X and

|F (u)| ≤ ‖v‖p−1
X ‖u‖X, u ∈ X.

Here the equality holds if and only if

u(x) ≡ v(x) (x ∈ Ω)

up to the constant multiplication.

Proof . By the integral version of the Hölder inequality, we have

|F (u)| ≤
∑

|α|≤m

Cα‖∂αu‖p‖∂αv‖p−1
p

noticing
‖|∂αv(x)|p−1sgn∂αv(x)‖q = ‖∂αv(x)‖p−1

p
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for each α. Hence, by the finite series version of the Hölder inequality,

|F (u)| ≤
∑

|α|≤m

C1/p
α ‖∂αu‖pC

1/q
α ‖∂αv‖p−1

p

≤

 ∑

|α|≤m

Cα‖∂αu‖p
p




1/p 
 ∑

|α|≤m

Cα‖∂αv‖p
p




1/q

= ‖v‖p−1
X ‖u‖X .

Here the equalities in two ”≤” hold at the same time if and only if

u(x) ≡ v(x)

up to the constant multiplication. Q.E.D.

Theorem 2. Let the assumption on Ω, X and ‖ · ‖X be the same as in Proposition 1.
Let also m > N/p. Suppose there exist y ∈ Ω and vy ∈ X such that

u(y) =
∑

|α|≤m

∫
Ω

Cα∂
αu(x)|∂αvy(x)|p−1sgn∂αvy(x)dx

for all u ∈ X. Then
vy(y) = ‖vy‖p

X

and
|u(y)| ≤ ‖vy‖p−1

X ‖u‖X = vy(y)(p−1)/p‖u‖X for all u ∈ X.

Here the equality in ≤ holds if and only if

u(x) ≡ vy(x) (x ∈ Ω)

up to the constant multiplication.

Proof . Substituting u(x) ≡ vy(x) to the integral, we have

vy(y) =
∑

|α|≤m

∫
Ω

Cα∂
αvy(x)|∂αvy(x)|p−1sgn∂αvy(x)dx =

∑
|α|≤m

∫
Ω

Cα|∂αvy(x)|pdx = ‖vy‖p
X .

Regarding F (u) = u(y) as a functional in u ∈ X , we have only to apply Proposition 1 to
obatin the rest of the assertions. Q.E.D.

Corollary 3. Let Ω, X and ‖ · ‖X be the same as in Theorem 2, except for vy . Suppose
there exist y ∈ Ω and wα ∈ Lq(Ω) (α ∈ S = {α;Cα > 0}) such that

u(y) =
∑
α∈S

∫
Ω

Cα(∂αu)wα(x)dx

for all u ∈ X. Suppose also there exist v ∈ X such that

∂αv = |wα(x)|q−1sgnwα(x) (α ∈ S)

Then
|u(y)| ≤ ‖v‖p−1

X ‖u‖X = v(y)(p−1)/p‖u‖X.

Here the equality in ≤ holds if and only if

u(x) ≡ v(x)(x ∈ Ω)

up to the constant multiplication.
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Proof . Notice (p − 1)(q − 1) = 1. Therefore, the condition in the present Corollary is
equivalent to

wα(x) = |∂αv|p−1sgn∂αv(x) (α ∈ S).

The rest is clear. Q.E.D.
To prove the converse of Theorem 2, we start with a proposition which is itself the

converse of Proposition 1.

Proposition 4. Let the assumption on Ω, X and ‖ · ‖X be the same as in Proposition 1.
Suppose that F (u) is a bounded linear functional on X. Then, there exists a unique v ∈ X
such that

F (u) =
∑

|α|≤m

∫
Ω

Cα∂
αu(x)|∂αv(x)|p−1sgn∂αv(x)dx

for all u ∈ X.

Proof . Let
ν = �{α; |α| ≤ m}.

Now
Y =

{
{C1/p

α ∂αu}|α|≤m ; u ∈ X
}

is a closed subspace of (Lp(Ω))ν with norm


 ∑

|α|≤m

‖uα‖p
p




1/p

.

Then F (u) can be regarded as a bounded linear functional G(w) for w ∈ Y . By the
Hahn Banach theorem, G(w) is extended to G̃(w) for all w ∈ (Lp(Ω))ν . We note that
the norm of G̃(w) remains the same as G(w). We also know there exist {vα} ∈ (Lq(Ω))ν

(q = p/(p− 1))such that

G̃(w) =
∑

|α|≤m

∫
Ω

wα(x)vα(x)dx, for all w ∈ (Lp(Ω))ν

hence

G(w) = G̃(w) =
∑

|α|≤m

∫
Ω

wα(x)vα(x)dx, for all w ∈ Y.

Therefore

F (u) = G̃({C1/p
α ∂αu}) =

∑
|α|≤m

∫
Ω

C1/p
α ∂αu(x)vα(x)dx, for all u ∈ X.

Let us now specify the forms of {vα}. For this purpose, we consider the norms of the
functional G, G̃, F . By the Hölder inequality,

‖G̃‖ =


 ∑

|α|≤m

‖vα‖q
q




1/q

.



BEST CONSTANTS FOR Lp SOBOLEV INEQUALITIES 495

From the non-increase of the norm, it follows that

‖G‖ =


 ∑

|α|≤m

‖vα‖q
q




1/q

for G = G̃|Y . By the definition of the norm of the functional G, there exists a sequence
{wj}j≥0 ⊂ Y such that

‖wj‖ = 1 (j = 0, 1, · · · ) lim
j→∞

G(wj) = ‖G‖.

Since {wj}j≥0 ⊂ Y ⊂ (Lp)ν is a bounded sequence, there exists a subsequence with a weak
limit w ∈ Y (recall Y ⊂ (Lp)ν is a closed subspace) and

‖w‖ ≤ 1, G(w) = lim
j→∞

G(wj) = ‖G‖ > 0.

hence
‖G‖ = G(w) ≤ ‖G‖‖w‖ ≤ ‖G‖.

This means ‖w‖ = 1 and
G(w) = ‖G‖ = sup

‖w̃‖p≤1

|G(w̃)|

Since the supremum ‖G‖ is attained by w, the Hölder inequality in (Lp(Ω))ν implies

{wα} = k{|vα|q−1sgn(vα)} (|α| ≤ m)

with some positive constant k > 0. On the other hand, the definition of Y implies there
exists v ∈ X such that

{wα} = {C1/p
α ∂αv} (|α| ≤ m).

Therefore,
{vα} = k−(p−1){C(p−1)/p

α |∂αv|p−1sgn(∂αv)}.
Redefining k−1v as v, we know

{vα} = {C(p−1)/p
α |∂αv|p−1sgn(∂αv)}, v ∈ X

We have specified the form of {vα}. With this v ∈ X , we have

F (u) =
∑

|α|≤m

∫
Ω

C1/p
α ∂αu(x)C(p−1)/p

α |∂αv|p−1sgn(∂αv)dx

=
∑

|α|≤m

∫
Ω

Cα∂
αu(x)|∂αv|p−1sgn(∂αv)dx

for all u ∈ X . In addition, the Hölder inequality implies that

sup
u∈X

|F (u)|/‖u‖X

is attained only by the scalar multiples of the above v ∈ X . This, in turn, implies the
uniqueness of v ∈ X in the expresseion of F (u). Q.E.D.
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Theorem 5. Let Ω, X, ‖ · ‖X ,m, p be the same as in Theorem 2. Suppose that for a
prefixed y ∈ Ω̄, the value u(y) ∈ C for each u ∈ X determines a bounded linear functional
on X. Then there exists a unique vy ∈ X such that

u(y) =
∑

|α|≤m

∫
Ω

Cα∂
αu(x)|∂αvy(x)|p−1sgn∂αvy(x)dx

for all u ∈ X. If y is further an interior point of Ω then vy ∈ X satisfies

∑
|α|≤m

(−1)|α|Cα∂
α

(
|∂αvy(x)|p−1sgn∂αvy(x)

)
= δ(x− y), x ∈ Ω

in the distribution sense.

Remark 6. We may say the above vy(x) is a kind of Green functions in the Lp case.

Proof . The assumption ensures that for the fixed y ,

u 	→ u(y)

is a bounded linear functional on X . Therefore the previous Proposition 4 implies that
there exists vy ∈ X such that

u(y) =
∑

|α|≤m

∫
Ω

Cα∂
αu(x)|∂αvy(x)|p−1sgn∂αvy(x)dx

which is the first claim of the present theorem.
Let y ∈ Ω. Considering only the case of u ∈ C∞

0 (Ω), we have

∑
|α|≤m

(−1)|α|Cα∂
α

(
|∂αvy(x)|p−1sgn∂αvy(x)

)
= δ(x− y), x ∈ Ω

in the distribution sense. Q.E.D.

3 Examples. In this section, we give three examples.

Proposition 7. Let u ∈ X = W 1,p(−∞,∞) and y ∈ (−∞,∞) be arbitrarily fixed. Then

|u(y)| ≤ 2−1/p(p− 1)(p−1)/p2‖u‖1,p.

The equality is attained if and only if u equals

φy(x) ≡ e−(p−1)−1/p|x−y|

up to the constant multiplication.

Proof . Note that

‖u‖X = ‖u‖1,p = {(‖u‖p)p + (‖u′‖p)p}1/p

is the standard norm for W 1,p(−∞,∞). Thus Theorem 5 is applicable. The equation

−{|vy(x)′|p−1sgn(v′y(x))}′ + |vy(x)|p−1sgn(vy(x)) = δ(x− y)
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has a solution

vy(x) = 2−1/(p−1)(p− 1)1/pe−(p−1)−1/p|x−y| ∈W 1,p(−∞,∞).

Hence we have

u(y) =
∫ ∞

−∞

du

dx

{∣∣∣∣dvy

dx

∣∣∣∣
p−1

sgn
(
dvy

dx

)}
+ u(x)(vy(x))p−1dx

for any u ∈ W 1,p(−∞,∞). Therefore this vy is the very one mentioned in Theorem 2 as
well as Theorem 5. Recalling ‖u‖X = ‖u‖1,p,

|u(y)| ≤ ‖vy‖p−1
1,p ‖u‖1,p.

Here
‖vy‖p−1

1,p = (vy(y))(p−1)/p = 2−1/p(p− 1)(p−1)/p2

hence
|u(y)| ≤ 2−1/p(p− 1)(p−1)/p2‖u‖1,p.

Here the equality holds if and only if u(x) is a constant multiple of vy(x), i.e., that of

φy(x) ≡ e−(p−1)−1/p|x−y|.

Q.E.D.

Theorem 8. For any u ∈ X = W 1,p(−∞,∞),

‖u‖∞ ≤ 2−1/p(p− 1)(p−1)/p2‖u‖1,p.

The equality is attained if and only if

u(x) = φy(x) ≡ e−(p−1)−1/p|x−y| (−∞ < x <∞)

with some y ∈ (−∞,∞) up to the constant multiplication.

Proof . Immediate from the previous Proposition 6.

Let us go on to the second example.

Proposition 9. Let u ∈ X = W 1,p
0 (−1, 1) and y ∈ (−1, 1) be arbitrary.

|u(y)| ≤ {(1 + y)(1 − y)}(p−1)/p{(1 + y)p−1 + (1 − y)p−1}−1/p‖u′‖p

The equality is attained only by

φy(x) =

{
(1 − y)(x+ 1) (−1 ≤ x ≤ y ≤ 1)
(1 + y)(1 − x) (−1 ≤ y ≤ x ≤ 1)

or its scalar multiples.
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Proof . By the Poincaré inequality,

‖u‖X = ‖u′‖p

is equivalent to the standard norm

‖u‖1,p = {(‖u‖p)p + (‖u′‖p)p}1/p

for X = W 1,p
0 (−1, 1). The equation we consider is

−{|vy(x)′|p−1sgn(v′y(x))}′ = δ(x− y), vy ∈ X = W 1,p
0 (−1, 1).

Its solution

vy(x) =

{
(1 − y){(1 + y)p−1 + (1 − y)p−1}−1/(p−1)(x+ 1) (−1 ≤ x ≤ y ≤ 1)
(1 + y){(1 + y)p−1 + (1 − y)p−1}−1/(p−1)(1 − x) (−1 ≤ y ≤ x ≤ 1)

satisfies

∣∣v′y(x)
∣∣p−1 sgn(v′y(x)) =

{
(1−y)p−1

(1+y)p−1+(1−y)p−1 (−1 ≤ x ≤ y ≤ 1)

− (1+y)p−1

(1+y)p−1+(1−y)p−1 (−1 ≤ y ≤ x ≤ 1).

Hence we have

u(y) =
∫ 1

−1

u′(x)
{∣∣v′y(x)

∣∣p−1 sgn(v′y(x))
}
dx

for any u ∈W 1,p
0 (−1, 1). Therefore this vy is the very one mentioned in Theorem 2 as well

as Theorem 5. Recalling ‖u‖X = ‖u′‖p,

|u(y)| ≤ ‖v′y‖p−1
p ‖u′‖p = (vy(y))(p−1)/p‖u′‖p.

Here
(vy(y))(p−1)/p = {(1 − y)(1 + y)}(p−1)/p{(1 + y)p−1 + (1 − y)p−1}−1/p.

Hence
|u(y)| ≤ {(1 − y)(1 + y)}(p−1)/p{(1 + y)p−1 + (1 − y)p−1}−1/p‖u′‖p.

Here the equality holds if and only if

u(x) ≡ vy(x)

up to the constant multiplication. Q.E.D.

Theorem 10. For any u ∈ W 1,p
0 (−1, 1),

‖u‖∞ ≤ 2−1/p‖u′‖p.

Here,the equality is attained if and only if

u(x) = φ(x) = 1 − |x| (−1 ≤ x ≤ 1)

up to the constant multiplication.
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Proof . Almost everything is proved in the previous Proposition 8. We have only to
notice that

‖v′y‖p−1
p = (vy(y))(p−1)/p = {(1 − y)(1 + y)}(p−1)/p{(1 + y)p−1 + (1 − y)p−1}−1/p

= {(1 + y)−p+1 + (1 − y)−p+1}−1/p

attains its maximum 2−1/p at y = 0. And v0(x) is a constant multiple of

φ(x) = 1 − |x|.

Q.E.D.

Let us now work on H(0, 1, 0, 1). Different from the above examples, the exact integral
expression of u(y) is difficult to obtain except for y = 0. So |u(y)| (y �= 0) will be estimated
only from above.

Definition.

H(0, 1, 0, 1) = {u ∈W 2,p(−1, 1);u(±1) = u′(±1) = 0}.

Remark 11. The norm ‖u‖X = ‖u′′‖p is equivalent to the standard norm ‖u‖2,p by the
Poincaré inequality.

To calculate the best constant, let us introduce the Green function G(x, y) for u′′(x) =
−f (x)(−1 < x < 1) with Dirichlet boundary condition u(±1) = 0 as follows. !!

Definition

G(x, y) =

{
(1/2)(1 + x)(1 − y) (−1 ≤ x ≤ y ≤ 1)
(1/2)(1 − x)(1 + y) (−1 ≤ y ≤ x ≤ 1).

The next Lemma gives the characterization of Ran(d2/dx2), i.e., the domain of the
Green (resolvent)operator.

Lemma 12. !!For φ ∈ Lp(−1, 1), the following are equivalent.

i) u′′(x) = −φ(x) for some u ∈ H(0, 1, 0, 1).

ii)
∫ 1

−1
φ(x)dx =

∫ 1

−1
xφ(x)dx = 0.

In this case, u(y) (−1 ≤ y ≤ 1) is expressed as

u(y) =
∫ 1

−1

G(x, y)φ(x)dx.

Proof of i) → ii). Since u(−1) = u′(−1) = 0, we find

u(y) = −
∫ y

−1

(y − x)φ(x)dx (−1 ≤ y ≤ 1)

hence
u′(y) = −

∫ y

−1

φ(x)dx (−1 ≤ y ≤ 1).
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Therefore, u(1) = u′(1) = 0 leads

∫ 1

−1

(1 − x)φ(x)dx =
∫ 1

−1

φ(x)dx = 0,

i.e., the condition ii).
Proof of ii) → i). Set

u(y) =
∫ 1

−1

G(x, y)φ(x)dx.

The property of the Green function implies

u′′(y) = −φ(y) (−1 ≤ y ≤ 1)

and
u(±1) = 0.

In addtion, we have

u′(y) =
∫ 1

−1

(∂G/∂y)(x, y)φ(x)dx

= (−1/2)
∫ y

−1

(x+ 1)φ(x)dx+ (1/2)
∫ 1

y

(1 − x)φ(x)dx

especially

u′(1) = (−1/2)
∫ 1

−1

(x+ 1)φ(x)dx

u′(−1) = (1/2)
∫ 1

−1

(1 − x)φ(x)dx.

From the assumption, we obtain

u′(−1) = u′(1) = 0.

Q.E.D.

Now we can introduce the reproducing kernel for H(0, 1, 0, 1) which we will use.

Proposition 13. Let

Hy(x) = −G(x, y) + (1/4)(1 − y2) =

{
−(1/4)(1 − y)(2x− y + 1) (−1 ≤ x ≤ y ≤ 1)
−(1/4)(1 + y)(−2x+ y + 1) (−1 ≤ y ≤ x ≤ 1).

Then,for any u ∈ H(0, 1, 0, 1) and −1 ≤ y ≤ 1, the following hold:

u(y) =
∫ 1

−1

Hy(x)u′′(x)dx (−1 ≤ y ≤ 1)

|u(y)| ≤ ‖Hy‖q‖u′′‖p = 2−(2q−1)/q(q + 1)−1/q(1 − y2)‖u′′‖p (−1 ≤ y ≤ 1)
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Proof . For any ∈W 2,p(−1, 1),

∫ 1

−1

Hy(x)u′′(x)dx = −
∫ 1

−1

G(x, y)u′′(x)dx+ (1/4)(1 − y2)
∫ 1

−1

u′′(x)dx

= −
∫ 1

−1

G(x, y)u′′(x)dx+ (1/4)(1 − y2)(u′(1) − u′(−1)).

If u ∈ H(0, 1, 0, 1), then the previous Lemma 10 is applicable (recall together with u′(±1) =
0) , ∫ 1

−1

Hy(x)u′′(x)dx = −
∫ 1

−1

G(x, y)u′′(x)dx = u(y)

Hence by the Hölder inequality,

|u(y)| ≤
∫ 1

−1

|Hy(x)||u′′(x)|dx ≤ ‖Hy‖q‖u′′‖p(1)

Now we evaluate ‖Hy‖q

‖Hy‖q
q =

∫ 1

−1

|Hy(x)|qdx

= 4−q(1 − y)q

∫ y

−1

|2x− y + 1|qdx+ 4−q(1 + y)q

∫ 1

y

| − 2x+ y + 1|qdx

= 4−q(1 − y)q

∫ (1+y)/2

−(1+y)/2

|2x|qdx+ 4−q(1 + y)q

∫ (1−y)/2

−(1−y)/2

|2x|qdx

= 2 · 4−q(1 − y)q · 2−1(q + 1)−1(1 + y)q+1 + 2 · 4−q(1 − y)q · 2−1(q + 1)−1(1 + y)q+1

= 2−2q+1(q + 1)−1(1 − y)q(1 + y)q.

Thus
|u(y)| ≤ 2−(2q−1)/q)(q + 1)−1/q(1 − y2)‖u′′‖p (−1 < y < 1)

for all u ∈ H(0, 1, 0, 1). Q.E.D.

Theorem 14.
‖u‖∞ ≤ 2−(2q−1)/q(q + 1)−1/q‖u′′‖p

for all u ∈ H(0, 1, 0, 1). Here the equality is attained if and only if

u(x) =
∫ 1

−1

G(x, y)ψ(y)dy (−1 ≤ x ≤ 1)

up to the constant multiplication where

ψ(x) = 4q−1|H(x, 0)|q−1sgn(H(x, 0))

=



−(−2x− 1)q−1 (−1 ≤ x < −1/2)
(2x+ 1)q−1 (−1/2 ≤ x < 0)
(−2x+ 1)q−1 (0 ≤ x < 1/2)
−(2x− 1)q−1 (1/2 ≤ x ≤ 1).
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Proof . From the previous Proposition 11, we have

|u(y)| ≤ 2−(2q−1)/q(q + 1)−1/q(1 − y2)‖u′′‖p ≤ ‖H0‖q‖u′′‖p = 2−(2q−1)/q(q + 1)−1/q‖u′′‖p

for all y and all u ∈ H(0, 1, 0, 1) \ {0}. Thus the first assertion is clear. And we have only
to work on the case y = 0 for the second assertion. Putting y = 0,

u(0) =
∫ 1

−1

H0(x)u′′(x)dx.

Therefore, the equality in ≤ of

|u(0)| ≤ ‖H0‖q‖u′′‖p = 2−(2q−1)/q(q + 1)−1/q‖u′′‖p

holds if u′′(x) (u ∈ H(0, 1, 0, 1))happens to be

ψ(x) = 4q−1|H0(x)|q−1sgn(H0(x))

or its scalar multiples (see Corollary 3). This can actually occur since

∫ 1

−1

ψ(x)dx = 0,
∫ 1

−1

xψ(x)dx = 0.

The first equality follows from the fact

ψ(−(1/2) − t) ≡ −ψ(−(1/2) + t) (−1/2 ≤ t ≤ 1/2),
ψ((1/2) − t) ≡ −ψ((1/2) + t) (−1/2 ≤ t ≤ 1/2)

while the second equality follows from the fact that ψ(x) is an even function hence that
xψ(x) is an odd function. Therefore Lemma 10 is applicable and u′′(x) = −ψ(x) has a
solution u ∈ H(0, 1, 0, 1) which is expressed as

u(x) =
∫ 1

−1

G(x, y)ψ(y)dy.

Q.E.D.
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