ON THE BEST CONSTANT FOR L^{p} SOBOLEV INEQUALITIES

Yorimasa Oshime *

Received September 7, 2007; revised August 8, 2008

Abstract

A canonical form of the reproducing kernel for $X \subset W^{m, p}(\Omega)$ is given. (See Theorem 2 as well as Theorem 5.) By its virtue, the best constants for embedding $W^{m, p} \rightarrow B^{0}$ are given for some concrete Sobolev spaces. (See Theorem 8,10 and 14.)

Introduction It was Kametaka et al.[1][2] who clearly pointed out that there exists a close relationship between the Green functions and the reproducing kernels. Using this relationship, they determined the best constants for various Sobolev inequalities, especially in the L^{2} framework. In the L^{p} framework $(p \neq 2)$, however, the usual Green functions in themselves are sometimes inappropriate to determine the best constants[3][4]. To deal with the case $p \neq 2$, we modify the notion of the Green functions in the sequel.

1 Notation. We use multi-indices. For

$$
\alpha=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{N}\right)
$$

with nonnegative integers $\alpha_{1} \geq 0, \alpha_{2} \geq 0, \cdots, \alpha_{N} \geq 0$, we denote

$$
|\alpha|=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{N}, \quad \partial^{\alpha}=\frac{\partial^{|\alpha|}}{\partial x_{1}^{\alpha_{1}} \partial x_{2}^{\alpha_{2}} \cdots \partial x_{N}^{\alpha_{N}}}=\frac{\partial^{\alpha_{1}+\alpha_{2}+\cdots+\alpha_{N}}}{\partial x_{1}^{\alpha_{1}} \partial x_{2}^{\alpha_{2}} \cdots \partial x_{N}^{\alpha_{N}}}
$$

In the sequel, p is always a positive constant satisfying $1<p<\infty$ while $q>1$ is the conjugate of p which is determined by $1 / p+1 / q=1$. Let $\Omega \subset \mathbf{R}^{N}$ be an open domain. The norm of $u \in L^{p}=L^{p}(\Omega)$ is denoted as

$$
\|u\|_{p}=\left(\int_{\Omega}|u(x)|^{p} d x\right)^{1 / p}
$$

and the notation

$$
\|u\|_{\infty}=\sup _{x \in \Omega}|u(x)|
$$

is also used. For each nonnegative integer $m \geq 0$ and the above $p \in(1, \infty)$, the Sobolev space $W^{m, p}(\Omega)$ is defined as

$$
W^{m, p}(\Omega)=\left\{u \in L^{p}(\Omega) ; \partial^{\alpha} u \in L^{p}(\Omega),|\alpha| \leq m\right\}
$$

and we use one of its standard norms

$$
\|u\|_{m, p} \equiv\left(\sum_{|\alpha| \leq m}\left\|\partial^{\alpha} u\right\|_{p}^{p}\right)^{1 / p}
$$

[^0]in the sequel.
In addition, we use also the notation
\[

\operatorname{sgn} z= $$
\begin{cases}z /|z| & (z \neq 0) \\ 0 & (z=0)\end{cases}
$$
\]

for complex $z \in \mathbf{C}$.

2 Results.

Proposition 1. Let $\Omega \subset \mathbf{R}^{N}$ be open and X be a closed subspace of $W^{m, p}(\Omega)(1<p<\infty)$ with the standard norm

$$
\|u\|_{m, p} \equiv\left(\sum_{|\alpha| \leq m}\left\|\partial^{\alpha} u\right\|_{p}^{p}\right)^{1 / p}
$$

Suppose that

$$
\|u\|_{X} \equiv\left(\sum_{|\alpha| \leq m} C_{\alpha}\left\|\partial^{\alpha} u\right\|_{p}^{p}\right)^{1 / p}, u \in X
$$

with nonnegative constants $C_{\alpha} \geq 0(|\alpha| \leq m)\left(C_{\alpha}>0\right.$ for some α) determines a norm (possibly $\|u\|_{X} \equiv\|u\|_{m, p}$) equivalent to $\|u\|_{m, p}$, i.e.,

$$
(1 / k)\|u\|_{m, p} \leq\|u\|_{X} \leq k\|u\|_{m, p}, u \in X
$$

for some constant $k>1$. (Notice that the equivalence may fail for the whole $W^{m, p}(\Omega)$.) Then, for an arbitrarily fixed $v \in X$,

$$
F(u)=\sum_{|\alpha| \leq m} \int_{\Omega} C_{\alpha} \partial^{\alpha} u(x)\left|\partial^{\alpha} v(x)\right|^{p-1} \overline{\operatorname{sgn} \partial^{\alpha} v(x)} d x
$$

is a bounded linear functional for $u \in X$ and

$$
|F(u)| \leq\|v\|_{X}^{p-1}\|u\|_{X}, u \in X
$$

Here the equality holds if and only if

$$
u(x) \equiv v(x) \quad(x \in \Omega)
$$

up to the constant multiplication.
Proof. By the integral version of the Hölder inequality, we have

$$
|F(u)| \leq \sum_{|\alpha| \leq m} C_{\alpha}\left\|\partial^{\alpha} u\right\|_{p}\left\|\partial^{\alpha} v\right\|_{p}^{p-1}
$$

noticing

$$
\left\|\left|\partial^{\alpha} v(x)\right|^{p-1} \overline{\operatorname{sgn} \partial^{\alpha} v(x)}\right\|_{q}=\left\|\partial^{\alpha} v(x)\right\|_{p}^{p-1}
$$

for each α. Hence, by the finite series version of the Hölder inequality,

$$
\begin{aligned}
|F(u)| & \leq \sum_{|\alpha| \leq m} C_{\alpha}^{1 / p}\left\|\partial^{\alpha} u\right\|_{p} C_{\alpha}^{1 / q}\left\|\partial^{\alpha} v\right\|_{p}^{p-1} \\
& \leq\left(\sum_{|\alpha| \leq m} C_{\alpha}\left\|\partial^{\alpha} u\right\|_{p}^{p}\right)^{1 / p}\left(\sum_{|\alpha| \leq m} C_{\alpha}\left\|\partial^{\alpha} v\right\|_{p}^{p}\right)^{1 / q} \\
& =\|v\|_{X}^{p-1}\|u\|_{X} .
\end{aligned}
$$

Here the equalities in two " \leq " hold at the same time if and only if

$$
u(x) \equiv v(x)
$$

up to the constant multiplication. Q.E.D.
Theorem 2. Let the assumption on Ω, X and $\|\cdot\|_{X}$ be the same as in Proposition 1. Let also $m>N / p$. Suppose there exist $y \in \bar{\Omega}$ and $v_{y} \in X$ such that

$$
u(y)=\sum_{|\alpha| \leq m} \int_{\Omega} C_{\alpha} \partial^{\alpha} u(x)\left|\partial^{\alpha} v_{y}(x)\right|^{p-1} \overline{\operatorname{sgn} \partial^{\alpha} v_{y}(x)} d x
$$

for all $u \in X$. Then

$$
v_{y}(y)=\left\|v_{y}\right\|_{X}^{p}
$$

and

$$
|u(y)| \leq\left\|v_{y}\right\|_{X}^{p-1}\|u\|_{X}=v_{y}(y)^{(p-1) / p}\|u\|_{X} \text { for all } u \in X
$$

Here the equality in \leq holds if and only if

$$
u(x) \equiv v_{y}(x) \quad(x \in \Omega)
$$

up to the constant multiplication.
Proof. Substituting $u(x) \equiv v_{y}(x)$ to the integral, we have
$v_{y}(y)=\sum_{|\alpha| \leq m} \int_{\Omega} C_{\alpha} \partial^{\alpha} v_{y}(x)\left|\partial^{\alpha} v_{y}(x)\right|^{p-1} \overline{\operatorname{sgn} \partial^{\alpha} v_{y}(x)} d x=\sum_{|\alpha| \leq m} \int_{\Omega} C_{\alpha}\left|\partial^{\alpha} v_{y}(x)\right|^{p} d x=\left\|v_{y}\right\|_{X}^{p}$.
Regarding $F(u)=u(y)$ as a functional in $u \in X$, we have only to apply Proposition 1 to obatin the rest of the assertions. Q.E.D.
Corollary 3. Let Ω, X and $\|\cdot\|_{X}$ be the same as in Theorem 2, except for v_{y}. Suppose there exist $y \in \bar{\Omega}$ and $w_{\alpha} \in L^{q}(\Omega)\left(\alpha \in S=\left\{\alpha ; C_{\alpha}>0\right\}\right)$ such that

$$
u(y)=\sum_{\alpha \in S} \int_{\Omega} C_{\alpha}\left(\partial^{\alpha} u\right) \overline{w_{\alpha}(x)} d x
$$

for all $u \in X$. Suppose also there exist $v \in X$ such that

$$
\partial^{\alpha} v=\left|w_{\alpha}(x)\right|^{q-1} \operatorname{sgn} w_{\alpha}(x) \quad(\alpha \in S)
$$

Then

$$
|u(y)| \leq\|v\|_{X}^{p-1}\|u\|_{X}=v(y)^{(p-1) / p}\|u\|_{X}
$$

Here the equality in \leq holds if and only if

$$
u(x) \equiv v(x)(x \in \Omega)
$$

up to the constant multiplication.

Proof . Notice $(p-1)(q-1)=1$. Therefore, the condition in the present Corollary is equivalent to

$$
w_{\alpha}(x)=\left|\partial^{\alpha} v\right|^{p-1} \operatorname{sgn} \partial^{\alpha} v(x) \quad(\alpha \in S)
$$

The rest is clear. Q.E.D.
To prove the converse of Theorem 2, we start with a proposition which is itself the converse of Proposition 1.

Proposition 4. Let the assumption on Ω, X and $\|\cdot\|_{X}$ be the same as in Proposition 1. Suppose that $F(u)$ is a bounded linear functional on X. Then, there exists a unique $v \in X$ such that

$$
F(u)=\sum_{|\alpha| \leq m} \int_{\Omega} C_{\alpha} \partial^{\alpha} u(x)\left|\partial^{\alpha} v(x)\right|_{p-1} \overline{\operatorname{sgn} \partial^{\alpha} v(x)} d x
$$

for all $u \in X$.
Proof . Let

$$
\nu=\sharp\{\alpha ;|\alpha| \leq m\} .
$$

Now

$$
Y=\left\{\left\{C_{\alpha}^{1 / p} \partial^{\alpha} u\right\}_{|\alpha| \leq m} \quad ; \quad u \in X\right\}
$$

is a closed subspace of $\left(L^{p}(\Omega)\right)^{\nu}$ with norm

$$
\left(\sum_{|\alpha| \leq m}\left\|u_{\alpha}\right\|_{p}^{p}\right)^{1 / p}
$$

Then $F(u)$ can be regarded as a bounded linear functional $G(w)$ for $w \in Y$. By the Hahn Banach theorem, $G(w)$ is extended to $\tilde{G}(w)$ for all $w \in\left(L^{p}(\Omega)\right)^{\nu}$. We note that the norm of $\tilde{G}(w)$ remains the same as $G(w)$. We also know there exist $\left\{v_{\alpha}\right\} \in\left(L^{q}(\Omega)\right)^{\nu}$ ($q=p /(p-1))$ such that

$$
\tilde{G}(w)=\sum_{|\alpha| \leq m} \int_{\Omega} w_{\alpha}(x) \overline{v_{\alpha}(x)} d x, \quad \text { for all } w \in\left(L^{p}(\Omega)\right)^{\nu}
$$

hence

$$
G(w)=\tilde{G}(w)=\sum_{|\alpha| \leq m} \int_{\Omega} w_{\alpha}(x) \overline{v_{\alpha}(x)} d x, \quad \text { for all } w \in Y
$$

Therefore

$$
F(u)=\tilde{G}\left(\left\{C_{\alpha}^{1 / p} \partial^{\alpha} u\right\}\right)=\sum_{|\alpha| \leq m} \int_{\Omega} C_{\alpha}^{1 / p} \partial^{\alpha} u(x) \overline{v_{\alpha}(x)} d x, \quad \text { for all } u \in X
$$

Let us now specify the forms of $\left\{v_{\alpha}\right\}$. For this purpose, we consider the norms of the functional G, \tilde{G}, F. By the Hölder inequality,

$$
\|\tilde{G}\|=\left(\sum_{|\alpha| \leq m}\left\|v_{\alpha}\right\|_{q}^{q}\right)^{1 / q}
$$

From the non-increase of the norm, it follows that

$$
\|G\|=\left(\sum_{|\alpha| \leq m}\left\|v_{\alpha}\right\|_{q}^{q}\right)^{1 / q}
$$

for $G=\left.\tilde{G}\right|_{Y}$. By the definition of the norm of the functional G, there exists a sequence $\left\{w^{j}\right\}_{j \geq 0} \subset Y$ such that

$$
\left\|w^{j}\right\|=1 \quad(j=0,1, \cdots) \quad \lim _{j \rightarrow \infty} G\left(w^{j}\right)=\|G\|
$$

Since $\left\{w^{j}\right\}_{j \geq 0} \subset Y \subset\left(L^{p}\right)^{\nu}$ is a bounded sequence, there exists a subsequence with a weak limit $w \in Y$ (recall $Y \subset\left(L^{p}\right)^{\nu}$ is a closed subspace) and

$$
\|w\| \leq 1, \quad G(w)=\lim _{j \rightarrow \infty} G\left(w_{j}\right)=\|G\|>0
$$

hence

$$
\|G\|=G(w) \leq\|G\|\|w\| \leq\|G\|
$$

This means $\|w\|=1$ and

$$
G(w)=\|G\|=\sup _{\|\tilde{w}\|_{p} \leq 1}|G(\tilde{w})|
$$

Since the supremum $\|G\|$ is attained by w, the Hölder inequality in $\left(L^{p}(\Omega)\right)^{\nu}$ implies

$$
\left\{w_{\alpha}\right\}=k\left\{\left|v_{\alpha}\right|^{q-1} \operatorname{sgn}\left(v_{\alpha}\right)\right\} \quad(|\alpha| \leq m)
$$

with some positive constant $k>0$. On the other hand, the definition of Y implies there exists $v \in X$ such that

$$
\left\{w_{\alpha}\right\}=\left\{C_{\alpha}^{1 / p} \partial^{\alpha} v\right\} \quad(|\alpha| \leq m)
$$

Therefore,

$$
\left\{v_{\alpha}\right\}=k^{-(p-1)}\left\{C_{\alpha}^{(p-1) / p}\left|\partial^{\alpha} v\right|^{p-1} \operatorname{sgn}\left(\partial^{\alpha} v\right)\right\}
$$

Redefining $k^{-1} v$ as v, we know

$$
\left\{v_{\alpha}\right\}=\left\{C_{\alpha}^{(p-1) / p}\left|\partial^{\alpha} v\right|^{p-1} \operatorname{sgn}\left(\partial^{\alpha} v\right)\right\}, \quad v \in X
$$

We have specified the form of $\left\{v_{\alpha}\right\}$. With this $v \in X$, we have

$$
\begin{aligned}
F(u) & =\sum_{|\alpha| \leq m} \int_{\Omega} C_{\alpha}^{1 / p} \partial^{\alpha} u(x) \overline{C_{\alpha}^{(p-1) / p}\left|\partial^{\alpha} v\right|^{p-1} \operatorname{sgn}\left(\partial^{\alpha} v\right)} d x \\
& =\sum_{|\alpha| \leq m} \int_{\Omega} C_{\alpha} \partial^{\alpha} u(x) \overline{\left|\partial^{\alpha} v\right|^{p-1} \operatorname{sgn}\left(\partial^{\alpha} v\right)} d x
\end{aligned}
$$

for all $u \in X$. In addition, the Hölder inequality implies that

$$
\sup _{u \in X}|F(u)| /\|u\|_{X}
$$

is attained only by the scalar multiples of the above $v \in X$. This, in turn, implies the uniqueness of $v \in X$ in the expresseion of $F(u)$. Q.E.D.

Theorem 5. Let $\Omega, X,\|\cdot\|_{X}, m, p$ be the same as in Theorem 2. Suppose that for a prefixed $y \in \bar{\Omega}$, the value $u(y) \in \mathbf{C}$ for each $u \in X$ determines a bounded linear functional on X. Then there exists a unique $v_{y} \in X$ such that

$$
u(y)=\sum_{|\alpha| \leq m} \int_{\Omega} C_{\alpha} \partial^{\alpha} u(x)\left|\partial^{\alpha} v_{y}(x)\right|^{p-1} \overline{\operatorname{sgn} \partial^{\alpha} v_{y}(x)} d x
$$

for all $u \in X$. If y is further an interior point of Ω then $v_{y} \in X$ satisfies

$$
\sum_{|\alpha| \leq m}(-1)^{|\alpha|} C_{\alpha} \partial^{\alpha}\left(\left|\partial^{\alpha} v_{y}(x)\right|^{p-1} \overline{\operatorname{sgn} \partial^{\alpha} v_{y}(x)}\right)=\delta(x-y), \quad x \in \Omega
$$

in the distribution sense.
Remark 6. We may say the above $v_{y}(x)$ is a kind of Green functions in the L^{p} case.
Proof. The assumption ensures that for the fixed y,

$$
u \mapsto u(y)
$$

is a bounded linear functional on X. Therefore the previous Proposition 4 implies that there exists $v_{y} \in X$ such that

$$
u(y)=\sum_{|\alpha| \leq m} \int_{\Omega} C_{\alpha} \partial^{\alpha} u(x)\left|\partial^{\alpha} v_{y}(x)\right|^{p-1} \overline{\operatorname{sgn} \partial^{\alpha} v_{y}(x)} d x
$$

which is the first claim of the present theorem.
Let $y \in \Omega$. Considering only the case of $u \in C_{0}^{\infty}(\Omega)$, we have

$$
\sum_{|\alpha| \leq m}(-1)^{|\alpha|} C_{\alpha} \partial^{\alpha}\left(\left|\partial^{\alpha} v_{y}(x)\right|^{p-1} \overline{\operatorname{sgn} \partial^{\alpha} v_{y}(x)}\right)=\delta(x-y), \quad x \in \Omega
$$

in the distribution sense. Q.E.D.
3 Examples. In this section, we give three examples.
Proposition 7. Let $u \in X=W^{1, p}(-\infty, \infty)$ and $y \in(-\infty, \infty)$ be arbitrarily fixed. Then

$$
|u(y)| \leq 2^{-1 / p}(p-1)^{(p-1) / p^{2}}\|u\|_{1, p}
$$

The equality is attained if and only if u equals

$$
\phi_{y}(x) \equiv e^{-(p-1)^{-1 / p}|x-y|}
$$

up to the constant multiplication.
Proof. Note that

$$
\|u\|_{X}=\|u\|_{1, p}=\left\{\left(\|u\|_{p}\right)^{p}+\left(\left\|u^{\prime}\right\|_{p}\right)^{p}\right\}^{1 / p}
$$

is the standard norm for $W^{1, p}(-\infty, \infty)$. Thus Theorem 5 is applicable. The equation

$$
-\left\{\left|v_{y}(x)^{\prime}\right|^{p-1} \operatorname{sgn}\left(v_{y}^{\prime}(x)\right)\right\}^{\prime}+\left|v_{y}(x)\right|^{p-1} \operatorname{sgn}\left(v_{y}(x)\right)=\delta(x-y)
$$

has a solution

$$
v_{y}(x)=2^{-1 /(p-1)}(p-1)^{1 / p} e^{-(p-1)^{-1 / p}|x-y|} \in W^{1, p}(-\infty, \infty)
$$

Hence we have

$$
u(y)=\int_{-\infty}^{\infty} \frac{d u}{d x}\left\{\left|\frac{d v_{y}}{d x}\right|^{p-1} \operatorname{sgn}\left(\frac{d v_{y}}{d x}\right)\right\}+u(x)\left(v_{y}(x)\right)^{p-1} d x
$$

for any $u \in W^{1, p}(-\infty, \infty)$. Therefore this v_{y} is the very one mentioned in Theorem 2 as well as Theorem 5. Recalling $\|u\|_{X}=\|u\|_{1, p}$,

$$
|u(y)| \leq\left\|v_{y}\right\|_{1, p}^{p-1}\|u\|_{1, p}
$$

Here

$$
\left\|v_{y}\right\|_{1, p}^{p-1}=\left(v_{y}(y)\right)^{(p-1) / p}=2^{-1 / p}(p-1)^{(p-1) / p^{2}}
$$

hence

$$
|u(y)| \leq 2^{-1 / p}(p-1)^{(p-1) / p^{2}}\|u\|_{1, p}
$$

Here the equality holds if and only if $u(x)$ is a constant multiple of $v_{y}(x)$, i.e., that of

$$
\phi_{y}(x) \equiv e^{-(p-1)^{-1 / p}|x-y|}
$$

Q.E.D.

Theorem 8. For any $u \in X=W^{1, p}(-\infty, \infty)$,

$$
\|u\|_{\infty} \leq 2^{-1 / p}(p-1)^{(p-1) / p^{2}}\|u\|_{1, p}
$$

The equality is attained if and only if

$$
u(x)=\phi_{y}(x) \equiv e^{-(p-1)^{-1 / p}|x-y|} \quad(-\infty<x<\infty)
$$

with some $y \in(-\infty, \infty)$ up to the constant multiplication.
Proof . Immediate from the previous Proposition 6.
Let us go on to the second example.

Proposition 9. Let $u \in X=W_{0}^{1, p}(-1,1)$ and $y \in(-1,1)$ be arbitrary.

$$
|u(y)| \leq\{(1+y)(1-y)\}^{(p-1) / p}\left\{(1+y)^{p-1}+(1-y)^{p-1}\right\}^{-1 / p}\left\|u^{\prime}\right\|_{p}
$$

The equality is attained only by

$$
\phi_{y}(x)= \begin{cases}(1-y)(x+1) & (-1 \leq x \leq y \leq 1) \\ (1+y)(1-x) & (-1 \leq y \leq x \leq 1)\end{cases}
$$

or its scalar multiples.

Proof. By the Poincaré inequality,

$$
\|u\|_{X}=\left\|u^{\prime}\right\|_{p}
$$

is equivalent to the standard norm

$$
\|u\|_{1, p}=\left\{\left(\|u\|_{p}\right)^{p}+\left(\left\|u^{\prime}\right\|_{p}\right)^{p}\right\}^{1 / p}
$$

for $X=W_{0}^{1, p}(-1,1)$. The equation we consider is

$$
-\left\{\left|v_{y}(x)^{\prime}\right|^{p-1} \operatorname{sgn}\left(v_{y}^{\prime}(x)\right)\right\}^{\prime}=\delta(x-y), \quad v_{y} \in X=W_{0}^{1, p}(-1,1)
$$

Its solution

$$
v_{y}(x)= \begin{cases}(1-y)\left\{(1+y)^{p-1}+(1-y)^{p-1}\right\}^{-1 /(p-1)}(x+1) & (-1 \leq x \leq y \leq 1) \\ (1+y)\left\{(1+y)^{p-1}+(1-y)^{p-1}\right\}^{-1 /(p-1)}(1-x) & (-1 \leq y \leq x \leq 1)\end{cases}
$$

satisfies

$$
\left|v_{y}^{\prime}(x)\right|^{p-1} \operatorname{sgn}\left(v_{y}^{\prime}(x)\right)=\left\{\begin{array}{lc}
\frac{(1-y)^{p-1}}{(1+y)^{p-1}+\left(1-y p^{p-1}\right.} & (-1 \leq x \leq y \leq 1) \\
-\frac{(1+y)^{p-1}}{(1+y)^{p-1}+(1-y)^{p-1}} & (-1 \leq y \leq x \leq 1)
\end{array}\right.
$$

Hence we have

$$
u(y)=\int_{-1}^{1} u^{\prime}(x)\left\{\left|v_{y}^{\prime}(x)\right|^{p-1} \operatorname{sgn}\left(v_{y}^{\prime}(x)\right)\right\} d x
$$

for any $u \in W_{0}^{1, p}(-1,1)$. Therefore this v_{y} is the very one mentioned in Theorem 2 as well as Theorem 5. Recalling $\|u\|_{X}=\left\|u^{\prime}\right\|_{p}$,

$$
|u(y)| \leq\left\|v_{y}^{\prime}\right\|_{p}^{p-1}\left\|u^{\prime}\right\|_{p}=\left(v_{y}(y)\right)^{(p-1) / p}\left\|u^{\prime}\right\|_{p}
$$

Here

$$
\left(v_{y}(y)\right)^{(p-1) / p}=\{(1-y)(1+y)\}^{(p-1) / p}\left\{(1+y)^{p-1}+(1-y)^{p-1}\right\}^{-1 / p}
$$

Hence

$$
|u(y)| \leq\{(1-y)(1+y)\}^{(p-1) / p}\left\{(1+y)^{p-1}+(1-y)^{p-1}\right\}^{-1 / p}\left\|u^{\prime}\right\|_{p}
$$

Here the equality holds if and only if

$$
u(x) \equiv v_{y}(x)
$$

up to the constant multiplication. Q.E.D.

Theorem 10. For any $u \in W_{0}^{1, p}(-1,1)$,

$$
\|u\|_{\infty} \leq 2^{-1 / p}\left\|u^{\prime}\right\|_{p}
$$

Here, the equality is attained if and only if

$$
u(x)=\phi(x)=1-|x| \quad(-1 \leq x \leq 1)
$$

up to the constant multiplication.

Proof . Almost everything is proved in the previous Proposition 8. We have only to notice that

$$
\begin{aligned}
\left\|v_{y}^{\prime}\right\|_{p}^{p-1}=\left(v_{y}(y)\right)^{(p-1) / p} & =\{(1-y)(1+y)\}^{(p-1) / p}\left\{(1+y)^{p-1}+(1-y)^{p-1}\right\}^{-1 / p} \\
& =\left\{(1+y)^{-p+1}+(1-y)^{-p+1}\right\}^{-1 / p}
\end{aligned}
$$

attains its maximum $2^{-1 / p}$ at $y=0$. And $v_{0}(x)$ is a constant multiple of

$$
\phi(x)=1-|x| .
$$

Q.E.D.

Let us now work on $H(0,1,0,1)$. Different from the above examples, the exact integral expression of $u(y)$ is difficult to obtain except for $y=0$. So $|u(y)|(y \neq 0)$ will be estimated only from above.

Definition.

$$
H(0,1,0,1)=\left\{u \in W^{2, p}(-1,1) ; u(\pm 1)=u^{\prime}(\pm 1)=0\right\}
$$

Remark 11. The norm $\|u\|_{X}=\left\|u^{\prime \prime}\right\|_{p}$ is equivalent to the standard norm $\|u\|_{2, p}$ by the Poincaré inequality.

To calculate the best constant, let us introduce the Green function $G(x, y)$ for $u^{\prime \prime}(x)=$ $-f(x)(-1<x<1)$ with Dirichlet boundary condition $u(\pm 1)=0$ as follows. ! !

Definition

$$
G(x, y)= \begin{cases}(1 / 2)(1+x)(1-y) & (-1 \leq x \leq y \leq 1) \\ (1 / 2)(1-x)(1+y) & (-1 \leq y \leq x \leq 1)\end{cases}
$$

The next Lemma gives the characterization of $\operatorname{Ran}\left(d^{2} / d x^{2}\right)$, i.e., the domain of the Green (resolvent)operator.

Lemma 12. ! For $\phi \in L^{p}(-1,1)$, the following are equivalent.
i) $u^{\prime \prime}(x)=-\phi(x)$ for some $u \in H(0,1,0,1)$.
ii) $\int_{-1}^{1} \phi(x) d x=\int_{-1}^{1} x \phi(x) d x=0$.

In this case, $u(y) \quad(-1 \leq y \leq 1)$ is expressed as

$$
u(y)=\int_{-1}^{1} G(x, y) \phi(x) d x
$$

Proof of i) \rightarrow ii). Since $u(-1)=u^{\prime}(-1)=0$, we find

$$
u(y)=-\int_{-1}^{y}(y-x) \phi(x) d x \quad(-1 \leq y \leq 1)
$$

hence

$$
u^{\prime}(y)=-\int_{-1}^{y} \phi(x) d x \quad(-1 \leq y \leq 1) .
$$

Therefore, $u(1)=u^{\prime}(1)=0$ leads

$$
\int_{-1}^{1}(1-x) \phi(x) d x=\int_{-1}^{1} \phi(x) d x=0
$$

i.e., the condition ii).

Proof of ii) \rightarrow i). Set

$$
u(y)=\int_{-1}^{1} G(x, y) \phi(x) d x
$$

The property of the Green function implies

$$
u^{\prime \prime}(y)=-\phi(y) \quad(-1 \leq y \leq 1)
$$

and

$$
u(\pm 1)=0
$$

In addtion, we have

$$
\begin{aligned}
u^{\prime}(y) & =\int_{-1}^{1}(\partial G / \partial y)(x, y) \phi(x) d x \\
& =(-1 / 2) \int_{-1}^{y}(x+1) \phi(x) d x+(1 / 2) \int_{y}^{1}(1-x) \phi(x) d x
\end{aligned}
$$

especially

$$
\begin{aligned}
u^{\prime}(1) & =(-1 / 2) \int_{-1}^{1}(x+1) \phi(x) d x \\
u^{\prime}(-1) & =(1 / 2) \int_{-1}^{1}(1-x) \phi(x) d x
\end{aligned}
$$

From the assumption, we obtain

$$
u^{\prime}(-1)=u^{\prime}(1)=0
$$

Q.E.D.

Now we can introduce the reproducing kernel for $H(0,1,0,1)$ which we will use.
Proposition 13. Let

$$
H_{y}(x)=-G(x, y)+(1 / 4)\left(1-y^{2}\right)=\left\{\begin{array}{l}
-(1 / 4)(1-y)(2 x-y+1) \quad(-1 \leq x \leq y \leq 1) \\
-(1 / 4)(1+y)(-2 x+y+1) \quad(-1 \leq y \leq x \leq 1)
\end{array}\right.
$$

Then,for any $u \in H(0,1,0,1)$ and $-1 \leq y \leq 1$, the following hold:

$$
\begin{aligned}
u(y) & =\int_{-1}^{1} H_{y}(x) u^{\prime \prime}(x) d x \quad(-1 \leq y \leq 1) \\
|u(y)| & \leq\left\|H_{y}\right\|_{q}\left\|u^{\prime \prime}\right\|_{p}=2^{-(2 q-1) / q}(q+1)^{-1 / q}\left(1-y^{2}\right)\left\|u^{\prime \prime}\right\|_{p} \quad(-1 \leq y \leq 1)
\end{aligned}
$$

Proof . For any $\in W^{2, p}(-1,1)$,

$$
\begin{aligned}
\int_{-1}^{1} H_{y}(x) u^{\prime \prime}(x) d x & =-\int_{-1}^{1} G(x, y) u^{\prime \prime}(x) d x+(1 / 4)\left(1-y^{2}\right) \int_{-1}^{1} u^{\prime \prime}(x) d x \\
& =-\int_{-1}^{1} G(x, y) u^{\prime \prime}(x) d x+(1 / 4)\left(1-y^{2}\right)\left(u^{\prime}(1)-u^{\prime}(-1)\right)
\end{aligned}
$$

If $u \in H(0,1,0,1)$, then the previous Lemma 10 is applicable (recall together with $u^{\prime}(\pm 1)=$ $0)$,

$$
\int_{-1}^{1} H_{y}(x) u^{\prime \prime}(x) d x=-\int_{-1}^{1} G(x, y) u^{\prime \prime}(x) d x=u(y)
$$

Hence by the Hölder inequality,

$$
\begin{equation*}
|u(y)| \leq \int_{-1}^{1}\left|H_{y}(x)\left\|u^{\prime \prime}(x) \mid d x \leq\right\| H_{y}\left\|_{q}\right\| u^{\prime \prime} \|_{p}\right. \tag{1}
\end{equation*}
$$

Now we evaluate $\left\|H_{y}\right\|_{q}$

$$
\begin{aligned}
\left\|H_{y}\right\|_{q}^{q} & =\int_{-1}^{1}\left|H_{y}(x)\right|^{q} d x \\
& =4^{-q}(1-y)^{q} \int_{-1}^{y}|2 x-y+1|^{q} d x+4^{-q}(1+y)^{q} \int_{y}^{1}|-2 x+y+1|^{q} d x \\
& =4^{-q}(1-y)^{q} \int_{-(1+y) / 2}^{(1+y) / 2}|2 x|^{q} d x+4^{-q}(1+y)^{q} \int_{-(1-y) / 2}^{(1-y) / 2}|2 x|^{q} d x \\
& =2 \cdot 4^{-q}(1-y)^{q} \cdot 2^{-1}(q+1)^{-1}(1+y)^{q+1}+2 \cdot 4^{-q}(1-y)^{q} \cdot 2^{-1}(q+1)^{-1}(1+y)^{q+1} \\
& =2^{-2 q+1}(q+1)^{-1}(1-y)^{q}(1+y)^{q} .
\end{aligned}
$$

Thus

$$
|u(y)| \leq 2^{-(2 q-1) / q)}(q+1)^{-1 / q}\left(1-y^{2}\right)\left\|u^{\prime \prime}\right\|_{p} \quad(-1<y<1)
$$

for all $u \in H(0,1,0,1)$. Q.E.D.
Theorem 14.

$$
\|u\|_{\infty} \leq 2^{-(2 q-1) / q}(q+1)^{-1 / q}\left\|u^{\prime \prime}\right\|_{p}
$$

for all $u \in H(0,1,0,1)$. Here the equality is attained if and only if

$$
u(x)=\int_{-1}^{1} G(x, y) \psi(y) d y \quad(-1 \leq x \leq 1)
$$

up to the constant multiplication where

$$
\begin{aligned}
\psi(x) & =4^{q-1}|H(x, 0)|^{q-1} \operatorname{sgn}(H(x, 0)) \\
& = \begin{cases}-(-2 x-1)^{q-1} & (-1 \leq x<-1 / 2) \\
(2 x+1)^{q-1} & (-1 / 2 \leq x<0) \\
(-2 x+1)^{q-1} & (0 \leq x<1 / 2) \\
-(2 x-1)^{q-1} & (1 / 2 \leq x \leq 1)\end{cases}
\end{aligned}
$$

Proof . From the previous Proposition 11, we have

$$
|u(y)| \leq 2^{-(2 q-1) / q}(q+1)^{-1 / q}\left(1-y^{2}\right)\left\|u^{\prime \prime}\right\|_{p} \leq\left\|H_{0}\right\|_{q}\left\|u^{\prime \prime}\right\|_{p}=2^{-(2 q-1) / q}(q+1)^{-1 / q}\left\|u^{\prime \prime}\right\|_{p}
$$

for all y and all $u \in H(0,1,0,1) \backslash\{0\}$. Thus the first assertion is clear. And we have only to work on the case $y=0$ for the second assertion. Putting $y=0$,

$$
u(0)=\int_{-1}^{1} H_{0}(x) u^{\prime \prime}(x) d x
$$

Therefore, the equality in \leq of

$$
|u(0)| \leq\left\|H_{0}\right\|_{q}\left\|u^{\prime \prime}\right\|_{p}=2^{-(2 q-1) / q}(q+1)^{-1 / q}\left\|u^{\prime \prime}\right\|_{p}
$$

holds if $u^{\prime \prime}(x)(u \in H(0,1,0,1))$ happens to be

$$
\psi(x)=4^{q-1}\left|H_{0}(x)\right|^{q-1} \operatorname{sgn}\left(H_{0}(x)\right)
$$

or its scalar multiples (see Corollary 3). This can actually occur since

$$
\int_{-1}^{1} \psi(x) d x=0, \quad \int_{-1}^{1} x \psi(x) d x=0
$$

The first equality follows from the fact

$$
\begin{array}{rlrl}
\psi(-(1 / 2)-t) & \equiv-\psi(-(1 / 2)+t) & & (-1 / 2 \leq t \leq 1 / 2) \\
\psi((1 / 2)-t) & \equiv & -\psi((1 / 2)+t) & \\
& (-1 / 2 \leq t \leq 1 / 2)
\end{array}
$$

while the second equality follows from the fact that $\psi(x)$ is an even function hence that $x \psi(x)$ is an odd function. Therefore Lemma 10 is applicable and $u^{\prime \prime}(x)=-\psi(x)$ has a solution $u \in H(0,1,0,1)$ which is expressed as

$$
u(x)=\int_{-1}^{1} G(x, y) \psi(y) d y
$$

Q.E.D.

References

[1] Y.Kametaka, H.Yamagishi, K.Watanabe, A.Nagai and K.Takemura : The best constant of Sobolev inequality corresponding to Dirichlet boundary value problem for $(-1)^{M}(d / d x)^{2 M}$, to appear in Sci. Math. Jpn.
[2] Y.Kametaka, H.Yamagishi, K.Watanabe, A.Nagai and K.Takemura : Riemann zeta function, Bernoulli polynomials and the best constant of Sobolev inequality, Sci. Math. Jpn., e-2007(2007) 63-89
[3] Y.Kametaka, Y.Oshime, K.Watanabe,H.Yamagishi, A.Nagai and K.Takemura : The best constant of L^{p} Sobolev inequality corresponding to theperiodic boundary problem for $(-1)^{M}(d / d x)^{2 M}$, Sci. Math. Jpn., e-2007(2007) 269-281
[4] Y.Oshime, Y.Kametaka, H.Yamagishi : The best constant of L^{p} Sobolev inequality corresponding to Dirichlet boundary problem for $(-1)^{M}(d / d x)^{4 m}$, to appear in Sci. Math. Jpn.

[^0]: 2000Mathematics Subject Classification. 41A44, 46E35, 47B32.
 Key words and phrases. Sobolev inequality,Best constants, Reproducing kernel.
 *Faculty of Science and Engineering, Doshisha University

