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STRONG HYPERGROUPS OF ORDER FOUR
ARISING FROM EXTENSIONS
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Abstract. In this paper we obtain the complete parametrization of commutative
hypergroup extensions of a hypergroup of order two by another hypergroup of order
two. Among them we characterize all strong hypergroups and splitting extensions.
Applying our results, one can determine all strong hypergroups of order four which
have non-trivial subhypergroups.

1 Introduction Let K be a finite commutative hypergroup. If K has a subhypergroup
H and the quotient hypergroup K/H ∼= L, then K is called an extension of L by H and
denoted by the exact sequence 1 → H → K ϕ→ L → 1. In this case, Ker(ϕ) = H and
ϕ(K) = L, where ϕ is the quotient homomorphism from K onto L.

Extension problem for the category of commutative hypergroups is to determine all
commutative hypergroups K of L by H when commutative hypergroups L and H are given.
This will be essential to understand the full structure of hypergroups. We discussed the
extension problem of hypergroups in [HKKK], [HK1] and [K] in general situation for splitting
extensions. Moreover in the previous papers [HJKK], [HK2], [KST], [IKS], [KKY] and [KM],
we have succeeded to determine all extensions in the case that H or L is a group. In the
present paper we consider the extension problem for the case that both of H and L are
hypergroups of order two. This is the model case that H and L are not necesarily groups.
Wildberger[W2] determined all strong hypergroups of order three in 2002. The next task will
be expected to determine all strong hypergroups of order four. The present paper is devoted
to determine all strong hypergroups of order four which have non-trivial subhypergroups,
combining with Wildberger’s results for hypergroups of order three.

Our main results are described in Theorem 3.2, Theorem 3.4, Theorem 4.1 and Theorem
4.5.

2 Preliminaries We recall some notions and facts on finite commutative hypergroups
from Wildberger’s paper [W1] and Bloom-Heyer’s book [BH]. K := (K, A) is called a finite
commutative signed hypergroup if the following conditions (1)–(6) are satisfied.

(1) A is a ∗-algebra over C with the unit c0,

(2) K = {c0, c1, . . . , cn} is a linear basis of A,

(3) K∗ = K,

(4) cicj =
n∑

k=0

nk
ijck, where nk

ij is a real number such that

(i) c∗i =cj ⇐⇒ n0
ij > 0, (ii) c∗i �= cj ⇐⇒ n0

ij = 0,
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(5)
n∑

k=0

nk
ij = 1 for any i, j,

(6) cicj = cjci for any i, j.

In the case that nk
ij ≥ 0 for any i, j, k, K = (K, A) is called a finite commutative

hypergroup with order |K| = n + 1. We often denote ∗-algebra A of (K, A) by A(K). If
c∗i = ci for all i = 1, 2, . . . , n, then K is called a hermitian hypergroup.

The weight of an element ci ∈ K is defined by w(ci) := (n0
ij)

−1 where cj = c∗i , and the
total weight of K is given by w(K) :=

∑n
i=0 w(ci).

For a finite commutative signed hypergroup K a complex valued function χ on K is
called a character of K if

(1) χ(c0) = 1, (2) χ(c∗i ) = χ(ci), (3) χ(ci)χ(cj) =
n∑

k=0

nk
ijχ(ck).

The set K̂ of all characters of K also becomes a finite commutative signed hypergroup with
the same order |K|, and the duality

(K̂)
�∼= K holds in the sense of isomorphisms between

signed hypergroups[W1][Z]. A finite hypergroup K is called a strong hypergroup if the dual
K̂ of K is also a hypergroup.

Let E0(K) ∈ A(K) denote the normalized Haar measure of K which is given by

E0(K) = w(K)−1
n∑

i=0

w(ci)ci.

For an exact sequence 1 → H → K ϕ→ L → 1, the total weight w(K) of K equals to
w(H)w(L). Moreover, if L = {�0, . . . , �l} and ϕ−1(�j) = {s0, . . . , sk(j)} ⊂ K for �j ∈ L,
then

∑k(j)
i=0 w(si) = w(H)w(�j). This is easy to see by the follwing equality:

w(K)ϕ(E0(K)) = w(H)w(L)E0(L).

We use the notation ρ̃ = 1 − ρ for a real number ρ, a reflection of ρ with respect to a
center point 1/2 throughout this paper. Let L(ρ) = {�0, �1} be a hypergroup of order two
which is determined by �2

1 = ρ̃�0 + ρ�1, where 0 ≤ ρ < 1.

3 Extensions and non hermitian type At first, we shall give a general result in the
case of |H| = |L| = 2 and |K| = 4.

Assume that K is a hypergroup which has a subhypergroup H ∼= L(p) with 0 ≤ p < 1
and its quotient K/H = L ∼= L(q) with 0 ≤ q < 1. We put H = {h0, h1} and L = {�0, �1}
with structure equations h2

1 = p̃h0 + ph1 and �2
1 = q̃�0 + q�1.

We write K = {h0, h1, s0, s1} where ϕ(si) = �1 (i = 0, 1).

Proposition 3.1. An extension K in the above assumption has the following conditions:

(Ha) h1s0 = τs0 + τ̃ s1,

(Hb) h1s1 = (p̃ + τ)s0 + (p − τ)s1.

where τ is a parameter such that 0 ≤ τ ≤ p.
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Proof. Since ϕ(h1si) = �1 for i = 0, 1, we can write h1s0 = x̃s0+xs1 and h1s1 = ỹs0+ys1 for
x, y ∈ [0, 1]. Consider a triple product (s0h1)h1 = (x̃s0 +xs1)h1 = (x̃2 +xỹ)s0 +(x̃x+xy)s1

and s0(h1)2 = s0(p̃h0 + ph1) = p̃s0 + p(x̃s0 + xs1) = (p̃ + px̃)s0 + pxs1. Compare the
coefficients of s1. Then we have x̃x + xy = px.

Assume that x = 0, then s0h1 = s0. Hence E0(H)s0 = s0, where E0(H) is the normalized
Haar measure of H. On the other hand supp(E0(H)s0) � s1. It is a contradiction, so that
x �= 0. Therefore, x̃ + y = p.

Put τ = x̃. We note that y = p − τ and ỹ = p̃ + τ . By the axiom of hypergroups we
have 0 ≤ τ ≤ p.

Now we consider the case that K is not a hermitian hypergroup, i.e. s∗0 = s1 and s∗1 = s0.
Then we have the following theorem about multiplicative structure of K.

Theorem 3.2. If K is not a hermitian hypergroup with |K| = 4, then K = Kp,q
nh =

{h0, h1, s0, s1} is determined by the following multiplicative structure:

(a) h1s0 =
p

2
s0 + (1 − p

2
)s1, h1s1 = (1 − p

2
)s0 +

p

2
s1,

(b) s2
0 = s2

1 = q̃h1 +
q

2
s0 +

q

2
s1,

(c) s0s1 =
2p̃q̃

1 + p̃
h0 +

pq̃

1 + p̃
h1 +

q

2
s0 +

q

2
s1.

Proof. The results (Ha)(Hb) in Proposition 3.1 also hold in this case.
By the fact that ϕ(s2

0) = ϕ(s2
1) = ϕ(s0s1) = �2

1, we put

s2
0 = q̃h1 + qz̃s0 + qzs1,(1)

s2
1 = q̃h1 + qw̃s0 + qws1,(2)

s1s0 = q̃x̃h0 + q̃xh1 + qỹs0 + qys1.(3)

where 0 ≤ x, y, z, w ≤ 1 but x �= 1. Operate the inverse ∗ on the above (1)–(3). Then
we have qw̃ = qz and qỹ = qy. Hence, qỹ = qy = q/2. Moreover it is easy to see that
τ = p/2 by (h1s0)∗ = h1s1, (h1s1)∗ = h1s0. This shows (a). Next consider a triple
product (s0s1)h1, (s0h1)s1 and s0(h1s1). From the coefficients of h0 of them, it shows that
q̃xp̃ = τ q̃x̃ = (p − τ)q̃x̃. Since q̃x̃ �= 0 and τ = p/2, we have 2xp̃ = px̃ = p(1 − x). Hence
x = p/(1 + p̃) and x̃ = 2p̃/(1 + p̃), and this means (b). Compare the coefficients of h0 on
a product (s0s1)s0 = (s0)2s1. Then qyq̃x̃ = qz̃q̃x̃. Hence qz̃ = qy = q/2. Consequently
qz = qw = q/2. Therefore we have (c).

As the coefficients of s0 in products (s0s1)h1, (s0h1)s1 and s0(h1s1) equal to q/2, we
have the associative law: (s0s1)h1 = (s0h1)s1 = s0(h1s1).

Finally it is easy to see the associativity on h1s0s0, h1s1s1, s0s0s1, s0s1s1.

REMARK. In the previous paper [KST] and [IKS], we studied the cases that H or L
is a group. When p = 0, i.e. H ∼= Z2, K0,q

nh is parameterized as same as Model 1 in [KST].
When q = 0, i.e. L ∼= Z2, Kp,0

nh is parameterized as in [IKS]. When p = q = 0, we have
K0,0

nh
∼= Z4. This is non splitting exact sequence as in abelian group category.

We remark that all of extensions in Theorem 3.2 are not splitting as hypergroup.

Now we calculate characters of Kp,q
nh . We denote the dual signed hypergroup K̂p,q

nh =
{χ0, χ1, χ2, χ3}. Then we have the exact sequence of dual hypergroups 1 → L̂ → K̂ →
Ĥ → 1, where L̂ = {χ0, χ1} ∼= L(q).
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Proposition 3.3. A hypergroup Kp,q
nh has characters {χ0, χ1, χ2, χ3} which is determined

by the following table with values of weights:

h0 h1 s0 s1 w(χi)
χ0 1 1 1 1 1
χ1 1 1 −q̃ −q̃ 1/q̃

χ2 1 −p̃
√
−p̃q̃ −

√
−p̃q̃

q̃ + 1
2p̃q̃

χ3 1 −p̃ −
√
−p̃q̃

√
−p̃q̃

q̃ + 1
2p̃q̃

w(hi), w(si) 1 1/p̃
p̃ + 1
2p̃q̃

p̃ + 1
2p̃q̃

(p̃ + 1)(q̃ + 1)
p̃q̃

Proof. From L̂ ⊂ K̂ we have that χ1(hj) = 1, χ1(sj) = −q̃ for j = 0, 1. Assume a character
χ �= χ0, χ1. Since χ �∈ L̂, it follows that χ(h1) �= 1. This means χ(h1) = −p̃. We have
χ(s0) = −χ(s1) from (a) in Theorem 3.2. From the conditions (b) and (c), we have the
same equation χ(s0)2 = −p̃q̃. Therefore we write χ2(s0) =

√−p̃q̃ and χ3(s0) = −√−p̃q̃.
Applying the method of [W2] which calculates the structure coefficients mk

ij of the dual
signed hypergroup, we have

m0
22 = w(χ2)−1 =

(
1 + χ2(h1)2w(h1) + |χ2(s0)|2w(s0) + |χ2(s1)|2w(s1)

) /
w(Kp,q

nh )

=
(
1 + p̃ +

1 + p̃

2
+

1 + p̃

2

)
· p̃q̃

(p̃ + 1)(q̃ + 1)

=
2p̃q̃

q̃ + 1
.

Hence w(χ2) = (q̃ + 1)/(2p̃q̃). It is shown that w(χ3) = w(χ∗
3) = w(χ2).

The value on the right and bottom corner in the table is total weight w(Kp,q
nh ) =

w(H)w(L).

We determine the dual signed hypergroup of Kp,q
nh .

Theorem 3.4. The dual K̂p,q
nh = {χ0, χ1, χ2, χ3} is determined by the structure equations:

(A) χ2
1 = q̃χ0 + qχ1, χ1χ2 =

q

2
χ2 + (1 − q

2
)χ3, χ1χ3 = (1 − q

2
)χ2 +

q

2
χ3,

(B) χ2
2 = χ2

3 = p̃χ1 +
p

2
χ2 +

p

2
χ3,

(C) χ2χ3 = p̃ · 2q̃

q̃ + 1
χ0 + p̃ · q

q̃ + 1
χ1 +

p

2
χ2 +

p

2
χ3.

The hypergroup Kp,q
nh is strong.

Proof. It is easily obtained from the symmetry of the table with respect to p, q in Proposition
3.3. It is shown that all coefficients of the above are non negative. Therefore the dual K̂p,q

nh

is a hypergroup.

REMARK. It is easy to see that K̂p,q
nh

∼= Kq,p
nh from the structure in Theorem 3.2 and

Theorem 3.4. In the special case of p = q, Kp,p
nh is a self dual hypergroup.
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4 Hermitian type hypergroups with order four In this section we consider the
extension of hermitian type. We have the following theorem.

Theorem 4.1. Let K be an extension of L ∼= L(q) by H ∼= L(p) whose order is four. If
K is hermitian type, then K = Kp,q

h (τ, σ) = {h0, h1, s0, s1} is determined by the following
structure and condition:

(a) h1s0 = τs0 + τ̃ s1, h1s1 = (p̃ + τ)s0 + (p − τ)s1,

(b) s0s1 = q̃h1 + σs0 + (q − σ)s1,

(c) s2
0 = q̃ · p̃

p̃ + τ
h0 + q̃ · τ

p̃ + τ
h1 +

(
q − σ · τ̃

p̃ + τ

)
s0 + σ · τ̃

p̃ + τ
s1,

(d) s2
1 = q̃ · p̃

τ̃
h0 + q̃ · p − τ

τ̃
h1 + (q − σ) · p̃ + τ

τ̃
s0 +

(
q − (q − σ) · p̃ + τ

τ̃

)
s1,

(e) q · p̃ + τ

τ̃
≥ σ ≥ q · (1 − τ̃

p̃ + τ
),

where τ, σ are parameters such that 0 ≤ τ ≤ p and 0 ≤ σ ≤ q.

Proof. The statement (a) is showed in Proposition 3.1 with a parameter 0 ≤ τ ≤ p. Since
ϕ(s2

0) = ϕ(s2
1) = ϕ(s0s1) = �2

1, we can write

s1s0 = q̃h1 + σs0 + (q − σ)s1,(4)
s2
0 = q̃x̃h0 + q̃xh1 + qỹs0 + qys1,(5)

s2
1 = q̃z̃h0 + q̃zh1 + qw̃s0 + qws1.(6)

where 0 ≤ σ ≤ q and 0 ≤ x, y, z, w ≤ 1 but x, z are not 1. Then (b) is the first equation (4).
Now consider triple products (s2

0)h1 and (s0h1)s0. From the coefficients of h0, it shows
that q̃xp̃ = τ q̃x̃. Since q̃ �= 0, we have xp̃ = τx̃. Hence x = τ/(p̃ + τ) and x̃ = p̃/(p̃ + τ).
Next compare the coefficients of h0 on products (s1)2h1 and (s1h1)s1. Then q̃zp̃ = (p−τ)q̃z̃.
Hence z = (p − τ)/τ̃ and z̃ = p̃/τ̃ .

Moreover, compare the coefficients of s0 on the above triple product (s2
0)h1 and (s0h1)s0.

Then we have τqỹ + τ̃σ = qỹτ + qy(p̃ + τ). Hence τ̃σ = qy(p̃ + τ), so that qy = στ̃/(p̃ + τ).
Compare the coefficients of s1 on the above triple product (s2

1)h1, then qw̃ = (q−σ)(p̃+τ)/τ̃ .
Therefore we prove the statements (c) and (d), and get associativity for (s2

0)h1 = (s0h1)s0

and similarly (s1)2h1 = (s1h1)s1.
The condition (e) is immediate from the fact that the coefficients in products on (c) and

(d) are non-negative.
It is easy to see that the associativity on s0s0s1, s0s1s1, h1s0s1 holds.

REMARK. Let Dh in Figure 1 be a region of two parameter (τ, σ) in which the
condition (e) satisfies. A region Dh includes the central point (p/2, q/2) of symmetry. The
curve (e1

b) in Figure 1, is the equation of the first inequality of (e) and a curve (e2
b) is also

the one with respect to the second inequality of (e). When a point (τ, σ) is out of Dh, i.e.
in two parts in left top and right bottom corners, Kp,q

h (τ, σ) is a signed hypergroup.
When p = 0, i.e. H ∼= Z2, we have that K0,q

h (0, σ) is parameterized as same as in Model 1
in [KST]. In this case, the condition (e) of the above becomes 0 ≤ σ ≤ q.

When q = 0, i.e. L ∼= Z2, we have that Kp,0
h (τ, 0) is parameterized in [IKS]. The

condition (e) is always satisfied because all terms of (e) is 0.
Moreover when p = q = 0, we have a hypergroup K0,0

h (0, 0) = Z2 × Z2, indeed it is a
group.
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Corollary 4.2. Kp,q
h (τ, σ) ∼= Kp,q

h (τ ′, σ′) if and only if the following (1) or (2) is satisfied.
(1) τ ′ = p − τ and σ′ = q − σ
(2) τ ′ = τ and σ′ = σ

Proof. The isomorphism of Kp,q
h (τ, σ) → Kp,q

h (q − τ, p − σ) is given by the flip Φ, i.e.
Φ(hi) = hi (i = 0, 1) and Φ(s0) = s1, Φ(s1) = s0 from (a),(b) in Theorem 4.1.

In the figure 1, two points (τ, σ) and (τ ′, σ′) of the condition in Corollary 4.2 are reflection
of each other with respect to the central point (p/2, q/2).

0

q/2

q

0 p/2 p

σ-
para
meter

τ -parameter

Region of Dh

p̃q

pq
p̃q

p̃+1

q
p̃+1

(eb1): σ = q · γ(τ)

(L)

(e1
b)

(e2
b)

Dh

(eb2): σ = q{1 − 1/γ(τ)}
(L): α = β

Figure 1: Hypergroup condition (e) of σ, τ

Now we will calculate the characters of hermitian hypergroups Kp,q
h (τ, σ).

Proposition 4.3. A hypergroup Kp,q
h (τ, σ) has characters {χ0, χ1, χ2, χ3} which is deter-

mined by the following table with values of weights:

h0 h1 s0 s1 w(χi)
χ0 1 1 1 1 1
χ1 1 1 −q̃ −q̃ 1/q̃

χ2 1 −p̃ α −γα
(q̃ + 1)β
p̃q̃(α + β)

χ3 1 −p̃ −β γβ
(q̃ + 1)α
p̃q̃(α + β)

w(hi), w(si) 1 1/p̃
p̃ + τ

p̃q̃

τ̃

p̃q̃

(p̃ + 1)(q̃ + 1)
p̃q̃

where two real numbers α, β have the relation:

(∗) α − β = q − σ(1 + γ−1), αβ = p̃q̃γ−1.

Proof. Using the same argument in Proposition 3.3, we suppose that L̂ = {χ0, χ1}. Let
χ ∈ K̂p,q

h (τ, σ) with χ �∈ L̂. From (a) in Theorem 4.1 under the case of χ(h1) = −p̃, it
implies that

(∗∗) χ(s1) = −γ · χ(s0),
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where the ratio of weights γ := (p̃ + τ )/τ̃ = w(s0)/w(s1). Then the equations (b), (c) and
(d) become one equation −γ · χ(s0)2 = −p̃q̃ + {σ − (q − σ)γ}χ(s0). Therefore

(∗∗∗) γ · χ(s0)2 + {σ − (q − σ)γ}χ(s0) − p̃q̃ = 0.

Two real numbers α,−β with −β < 0 < α is a pair of solutions of (∗∗∗) with respect to
w(s0), i.e. the relation (∗) in our conlusion holds.

We determine the last two character χ2, χ3 by χ2(s0) = α, χ2(s1) = −γα and χ3(s0) =
−β, χ3(s1) = γβ.

Using the method of [W2], the weights of these characters are calculated as

m0
22 = w(χ2)−1 =

(
1 + χ2(h1)2w(h1) + χ2(s0)2w(s0) + χ2(s1)2w(s1)

) /
w(Kp,q

nh )

=
(
1 + p̃ +

α2(p̃ + τ)
p̃q̃

+
γ2α2τ̃

p̃q̃

)
· p̃q̃

(p̃ + 1)(q̃ + 1)

=
(
1 + p̃ +

α2(p̃ + τ)(τ̃ + p̃ + τ)
τ̃ p̃q̃

)
· p̃q̃

(p̃ + 1)(q̃ + 1)

=
(
1 +

α2γ

p̃q̃

) · p̃q̃

(q̃ + 1)

=
α + β

β
· p̃q̃

q̃ + 1
,

and this leads the value of a weight w(χ2). In a similar way we get the value of w(χ3).

The curve of α = β, on which the ratio of dual weights β/α = w(χ2)/w(χ3) = 1, is a
dotted line (L) containing the center point (p/2, q/2) in Figure 1. This is obtained from the
equation σ = q

p̃+1 · (p̃ + τ) which comes from q = σ(1 + 1/γ).

Now we calculate the structure equations of dual hypergroups K̂p,q
h (τ, σ).

Theorem 4.4. The dual K̂p,q
h (τ, σ) = {χ0, χ1, χ2, χ3} has the structure equations as a

signed hypergroup:

(A) χ2
1 = q̃χ0 + qχ1, χ1χ2 =

β − q̃α

α + β
χ2 +

α + q̃α

α + β
χ3, χ1χ3 =

β + q̃β

α + β
χ2 +

α − q̃β

α + β
χ3,

(B1) χ2
2 =

p̃q̃(α + β)
(1 + q̃)β

χ0 +
p̃(β − q̃α)
(1 + q̃)β

χ1 +
pβ + α2(1 − γ)

α + β
χ2 +

pα − α2(1 − γ)
α + β

χ3,

(B2) χ2
3 =

p̃q̃(α + β)
(1 + q̃)α

χ0 +
p̃(α − q̃β)
(1 + q̃)α

χ1 +
pβ + β2(1 − γ)

α + β
χ2 +

pα − β2(1 − γ)
α + β

χ3,

(C) χ2χ3 = p̃χ1 +
pβ − αβ(1 − γ)

α + β
χ2 +

pα + αβ(1 − γ)
α + β

χ3.

Proof. It is obvious that {χ0, χ1} = L̂ ∼= L(q) from Proposition 3.3. This shows the first
equation of (A). With the relation of the structure and its characters[W2], for example, the
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coefficient m3
12 of χ3 in a product of χ1χ2 is

m3
12 =

(
1 + p̃2/p̃ + q̃αβ · p̃ + τ

p̃q̃
+ q̃γ2αβ · τ̃

p̃q̃

)
· w(χ3)

w(K)

=
(
p̃ + 1 +

αβ

p̃
(p̃ + τ + γ2τ̃ )

)
· w(χ3)

w(K)

=
(
p̃ + 1 +

αβ

p̃
γ(p̃ + 1)

)
· α

(p̃ + 1)(α + β)

=
(q̃ + 1)α
α + β

.

It is shown that m2
13 = (q̃ +1)β/(α+β) in a similar way. Therefore, we have equations (A).

The coefficient m2
22 of χ2 in a product of χ2

2 is

m2
22 =

(
1 − p̃3/p̃ + α3 · p̃ + τ

p̃q̃
− γ3α3 · τ̃

p̃q̃

)
· w(χ2)

w(K)

=
(
1 − p̃2 +

α3

p̃q̃
(p̃ + τ − γ3τ̃ )

)
· w(χ2)

w(K)

=
(
1 − p̃2 +

α3

p̃q̃
(p̃ + τ)(1 − γ2)

)
· β

(p̃ + 1)(α + β)

=
(
1 − p̃2 +

α3γ

p̃q̃
(p̃ + 1)(1 − γ)

)
· β

(p̃ + 1)(α + β)

=
(
p +

α3γ

p̃q̃
(1 − γ)

)
· β

(α + β)

=
pβ + α2(1 − γ)

α + β
.

The equation (B1) is implied from m0
22 = w(χ2)−1 and m2

12/w(χ2) = m1
22/w(χ1). We also

have (B2). The equation (C) is obtained from m2
23/w(χ2) = m3

22/w(χ3).

Theorem 4.5. The dual K̂p,q
h (τ, σ) is a hypergroup if the following conditions (E) and (F)

are satisfied:

(E) β − q̃α ≥ 0, α − q̃β ≥ 0,

(F) pβ + α2(1 − γ) ≥ 0, pα − β2(1 − γ) ≥ 0.

Proof. We will check that all coefficients are non negative. First we will show that the
inequalities (D): p − α(1 − γ) ≥ 0, p + β(1 − γ) ≥ 0 hold in the region Dh of Firure 1.
Notice that dγ/dτ = 1/τ̃2 > 0. We can consider that the positive numbers α, β determined
by the relation (∗) in Proposition 4.3 are functions of two variables γ, σ, where p̃ ≤ γ ≤ 1/p̃.

Since ∂α/∂σ − ∂β/∂σ = −(1 + 1/γ) > 0 and β · ∂α/∂σ + α · ∂β/∂σ = 0, we have
∂α/∂σ < 0 and ∂β/∂σ > 0. Moreover ∂α/∂γ(γ, 0) = ∂/∂γ(1/2 ·

√
q2 + 4p̃q̃γ−1 + q/2) =

−p̃q̃/(γ2
√

q2 + 4p̃q̃γ−1) < 0.
At first we will prove that p−α(1−γ) ≥ 0. When γ ≥ 1, then the first inequality in (D)

holds. If γ < 1, then p−α(γ, σ)(1−γ) ≥ p−α(γ, 0)(1−γ) ≥ p−α(p̃, 0)(1− p̃) = p−1 ·p = 0.
Hence p − α(1 − γ) ≥ 0.

The next it is obtained that p + β(1− γ) ≥ 0 from the relations of ∂β/∂γ(γ, q) < 0 and
β(1/p̃, q) = 1/2 · {√(q − q(1 + p̃))2 + 4p̃2q̃ − q + q(1 + p̃)} = p̃.
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Therefore inequalities (D) are always satisfied when Kp,q
h (τ, σ) is a hypergroup.

Hence it is shown that the 4th coefficient of (B1) and the 3rd one of (B2) are non-
negativite.

The conditions (E) and (F) assure that non-negativity of coefficients in (A), (B1) and
(B2) respectively.

REMARK. Let D′
h be a region in which the conditions (E) and (F) in Theorem 4.5 are

satisfied. We give an atlas of D′
h and the region Dh of Theorem 4.1. In order to view D′

h,
the special values of α(γ, σ) and β(γ, σ) as functions with respect to γ, σ are the followings:

α(p̃, 0) = 1 α(1, q/2) =
√

p̃q̃ α(1/p̃, q) = p̃q̃ α(γ, 0) > β(γ, 0)

β(p̃, 0) = q̃ β(1, q/2) =
√

p̃q̃ β(1/p̃, q) = p̃ α(γ, q) < β(γ, q)

α
(
p̃,

2p̃q

p̃ + 1

)
= q̃ α

( 1
p̃
,

pq

p̃ + 1

)
= p̃

β
(
p̃,

2p̃q

p̃ + 1

)
= 1 β

( 1
p̃
,

pq

p̃ + 1

)
= p̃q̃

.

When pβ + α2(1− γ) = 0 and p + β(1− γ) = 0, it is clear that α = β = p/(γ − 1). The
intersection of (F) and (D) are on the line (L) in Figure 1. It is obvious that q

p̃+1 > pq > pq
p̃+1

and 2p̃q
p̃+1 > p̃q > p̃q

p̃+1 .

There are many varieties of intersections of conditions:(e),(E) and (F), so that we give
a typical figure.

Assume p, q < 3/5. The thick curves (Db),(Eb) and (Fb) are boundaries of conditions
(D)–(F) in the Figure 2 and the boundaries (e1

b),(e
2
b) of Figure 1 are drown by the thin

curves.

0

q/2

q

0 p/2 p

σ-parameter

τ -parameter

Region of D′
h

p̃q

2p̃q
p̃+1

pq

pq
p̃+1(Eb)

(Fb)

(Db)

(e2
b)

(e1
b)

D′
h

(Db): p − α(1 − γ) = 0

(Fb): pβ + α2(1 − γ) = 0
pα − β2(1 − γ) = 0

(Eb): α = q̃β

Figure 2: Strong hypergroup condition of σ, τ in the case p, q < 3/5

Let D′
h be the region with the thick curves (Db),(Eb),(Fb) and etc. including a central

point (p/2, q/2) in Figure 2. Using the result in Theorem 4.5, the dual K̂p,q
h (τ, σ) is a
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hypergroup in D′
h. Since Kp,q

h (τ, σ) is a hypergroup in Dh, we have that hypergroups
Kp,q

h (τ, σ) are strong when (τ, σ) is in the intersection Dh ∩D′
h. In the area of D′

h \Dh with
the horizontal strip, K̂p,q

h (τ, σ) is a hypergroup but Kp,q
h (τ, σ) is not.

In the horizontal striped regions out of the rectangle: 0 ≤ τ ≤ p and 0 ≤ σ ≤ q, which
is the extremely right area with the boundary (Db) and the extremely left one, the dual D′

h

is a hypergroup but Dh is not a hypergroup.
But if p or q is nearly to 1, then there are many varieties of the regions in which the

conditions (E),(F) and (e) are satisfied.

We apply our theorems to determine the structure of strong hypergroup of order four
which have non-trivial subhypergroups. Given a exact sequence of hypergroups: 1 → H →
K → L → 1, where |K| = 4. By the order condition : |H| + |L| − 1 ≤ |K| ≤ |H| · |L|, the
possible orders of H and L are the following cases:

|H| = |L| = 2,(7)
|H| = 3, |L| = 2,(8)
|H| = 2, |L| = 3.(9)

In the case of (7), K is already determined by Theorem 3.2 and Theorem 4.1. Using the
results of Theorem 3.4 and Theorem 4.5, we can estimate the strong hypergroups.

In the case of (8) or (9), we have |H| + |L| − 1 = |K| = 4. When |H| and |L| are fixed,
|K| has a minimal order. Hence it is shown that K is a join H ∨L.

N.J. Wildberger[W2] shows that hypergroups W3 of order 3 are completely analyzed,
which includes Jewett’s example[J]. In the case of (8), it is obvious that K = W3 ∨ L(ρ),
and K̂ = L̂(ρ) ∨ Ŵ3

∼= L(ρ) ∨ Ŵ3. In the case of (9), it is obvious that K = L(ρ) ∨W3 and
K̂ ∼= Ŵ3 ∨ L(ρ) .

For strong W3 , the joins W3 ∨ L(ρ) and L(ρ) ∨W3 are also strong.
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