ON (COMPLETE) NORMALITY OF FUZZY d-IDEALS IN d-ALGEBRAS

SUN SHIN AHN AND KEUM SOOK SO

Received April 8, 2008; revised July 27, 2008

ABSTRACT. In this paper, we introduce the notion of normal fuzzy *d*-ideals, maximal fuzzy *d*-ideals and completely normal fuzzy *d*-ideals in *d*-transitive *d*-algebras. We investigate some interesting properties of normal (resp. maximal, completely normal) *d*-ideals. We show that every non-constant normal fuzzy *d*-ideal which is a maximal element of $(\mathcal{N}(X), \subseteq)$, where X is a *d*-transitive *d*-algebra, takes only the values 0 and 1, and every maximal fuzzy *d*-ideal in a *d*-transitive *d*-algebra is completely normal. Moreover, we state a fuzzy characteristic *d*-ideal in *d*-algebras.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras : BCK-algebras and BCI-algebras ([5,6]). It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. In [2,3] Q. P. Hu and X. Li introduced a wide class of abstract algebras : BCH-algebras. They have shown that the class of BCI-algebras is a proper subclass of the class of BCH-algebras. J. Neggers and H. S. Kim ([11]) introduced the notion of d-algebras which is another useful generalization of BCK-algebras, and investigated several relations between d-algebras and BCK-algebras, and then investigated other relations between d-algebras and oriented digraphs. J. Neggers, Y. B. Jun and H. S. Kim ([10]) discussed ideal theory in d-algebras, and introduced the notions of d-subalgebra, d-ideal, $d^{\#}$ -ideal and d^{*} -ideal, and investigated some relations among them. Y. C. Lee and H. S. Kim ([8]) introduced the notion of d-transitive d^{*} -algebra which is a generalization of BCK-algebras.

In this paper, we introduce the notion of normal fuzzy *d*-ideals, maximal fuzzy *d*-ideals and completely normal fuzzy *d*-ideals in *d*-transitive *d*-algebras. We investigate some interesting properties of normal (resp., maximal, completely normal) *d*-ideals. We show that every non-constant normal fuzzy *d*-ideal which is a maximal element of $(\mathcal{N}(X), \subseteq)$, where X is a *d*-transitive *d*-algebra, takes only the values 0 and 1, and every maximal fuzzy *d*-ideal in a *d*-transitive *d*-algebra is completely normal. Moreover, we state a fuzzy characteristic *d*-ideal in *d*-algebras.

2. Preliminaries

A *d-algebra* ([11]) is a non-empty set X with a constant 0 and a binary operation "*" satisfying axioms :

²⁰⁰⁰ Mathematics Subject Classification. 06F35, 03G25.

Key words and phrases. d-algebras, fuzzy d-ideal, normal fuzzy d-ideal, maximal fuzzy d-ideal, completely normal fuzzy d-ideal.

- (I) x * x = 0,
- (II) 0 * x = x,
- (III) x * y = 0 and y * x = 0 imply x = y for all $x, y \in X$.

A d-algebra (X; *, 0) is said to be d-transitive if x * y = 0 and y * z = 0 imply x * z = 0.

A BCK-algebra is a d-algebra (X; *, 0) satisfying additional axioms:

- (IV) ((x * y) * (x * z)) * (z * y) = 0,
- (V) (x * (x * y)) * y = 0, for all $x, y, z \in X$.

For brevity we also call X a *d*-algebra. In X we can define a binary relation " \leq " by $x \leq y$ if and only if x * y = 0.

Now we review some fuzzy logic concepts. A fuzzy set in a set X is a function $\mu : X \to [0, 1]$. By X_{μ} we denote the set $\{x \in X | \mu(x) = \mu(0)\}$. For any fuzzy sets μ and ν in a set X, we define

$$\mu \subseteq \nu \quad \Leftrightarrow \quad \mu(x) \leq \nu(x) \quad \text{for all} \quad x \in X.$$

Definition 2.1. ([10]) Let (X; *, 0) be a *d*-algebra and $\emptyset \neq I \subseteq X$. *I* is a *d*-subalgebra of *X* if $x * y \in I$ whenever $x \in I$ and $y \in I$. *I* is called a *BCK*-ideal of *X* if it satisfies:

$$(D_0) \ 0 \in I,$$

 $(D_1) x * y \in I \text{ and } y \in I \text{ imply } x \in I.$

I is a called a d-ideal of X if it satisfies (D_1) and

 (D_2) $x \in I$ and $y \in X$ imply $x * y \in I$, i.e., $I * X \subseteq I$.

3. Normality of fuzzy *d*-ideals

In this section, X will denote a d-algebra, unless otherwise specified.

Definition 3.1. ([7]) Let μ be a fuzzy set in a *d*-algebra *X*. Then μ is called a *fuzzy d*-subalgebra of *X* if $\mu(x * y) \ge \min\{\mu(x), \mu(y)\}, \forall x, y \in X. \mu$ is called a *fuzzy BCK-ideal* of *X* if

 $(F_0) \ \mu(0) \ge \mu(x),$

 $(F_1) \ \mu(x) \ge \min\{\mu(x * y), \mu(y)\}, \text{ for all } x, y \in X.$

 μ is called a *fuzzy d-ideal* of X if it satisfies (F_1) and

 (F_2) $\mu(x * y) \ge \mu(x)$ for all $x, y \in X$.

Lemma 3.2. ([7]) If μ is a fuzzy d-ideal of a d-algebra X, then $\mu(0) \ge \mu(x)$ for all $x \in X$.

Let μ be a fuzzy d-ideal of X and let $t \in Im(\mu)$. The level subset $\mu_t := \{x \in X | \mu(x) \ge t\}$ is a fuzzy d-ideal of X ([7]).

Example 3.3. Let $X = \{0, a, b, c, d, e\}$ be a set with the following Cayley table:

*	0	a	b	c	d	e
0	0	0	0	0	0	0
a	a	0	0	0	0	a
b	b	b	0	0	a	a
c	c	b	a	0	a	a
d	d	d	d	d	0	a
e	e	e	$egin{array}{c} 0 \\ 0 \\ a \\ d \\ e \end{array}$	e	e	0

Then X is a d-algebra. Define a fuzzy set $\mu : X \to [0,1]$ by $\mu(e) = 0.3$ and $\mu(x) = 0.5$ for all $x \neq e$. Then μ is a fuzzy d-ideal of X.

Proposition 3.4. Let A be a non-empty subset of X and let μ_A be defined by

$$\mu_A := \begin{cases} s & \text{if } x \in A \\ t & \text{otherwise,} \end{cases}$$

for all $x \in X$ and some $s, t \in [0, 1]$ with s > t. Then μ_A is a fuzzy d-ideal of X if and only if A is a d-ideal of X. Moreover,

$$X_{\mu_A} := \{ x \in X | \mu_A(x) = \mu_A(0) \} = A.$$

Proof. Straightforward.

Definition 3.5. A fuzzy *d*-ideal μ of X is said to be *normal* if there exists $x \in X$ such that $\mu(x) = 1$.

Example 3.6. Let X be the d-algebra of Example 3.3. Then a fuzzy set μ in X defined by $\mu(e) = t < 1$ and $\mu(x) = 1$ for all $x \neq e$ is a normal fuzzy d-ideal of X.

We note that if μ is a normal fuzzy *d*-ideal of *X*, then clearly $\mu(0) = 1$, and hence μ is normal if and only if $\mu(0) = 1$.

Proposition 3.7. Given a fuzzy d-ideal μ of X let μ^+ be the fuzzy set in X defined by $\mu^+(x) = \mu(x) + 1 - \mu(0)$ for all $x \in X$. Then μ^+ is a normal fuzzy d-ideal of X which contains μ .

Proof. Let $x, y \in X$. Then we have

$$\min\{\mu^{+}(x * y), \mu^{+}(y)\} = \min\{\mu(x * y) + 1 - \mu(0), \mu(y) + 1 - \mu(0)\}$$
$$= \min\{\mu(x * y), \mu(y)\} + 1 - \mu(0)$$
$$\leq \mu(x) + 1 - \mu(0) = \mu^{+}(x)$$

and

$$\mu^+(x*y) = \mu(x*y) + 1 - \mu(0) \ge \mu(x) + 1 - \mu(0) = \mu^+(x)$$

Also we obtain $\mu^+(0) = \mu(0) + 1 - \mu(0) = 1$. This shows that μ^+ is a normal fuzzy *d*-ideal of *X*. Clearly $\mu \subseteq \mu^+$, completing the proof.

Corollary 3.8. Let μ and μ^+ be as in Proposition 3.7. If there is $x \in X$ such that $\mu^+(x) = 0$, then $\mu(x) = 0$.

Proof. Since
$$\mu \subseteq \mu^+$$
, it is straightforward.

Using Proposition 3.4, we know that for any *d*-ideal A of X the characteristic function χ_A of A is a normal fuzzy *d*-ideal of X. It is clear that μ is normal if and only if $\mu^+ = \mu$.

Proposition 3.9. If μ is a fuzzy *d*-ideal of X, then $(\mu^+)^+ = \mu^+$. Moreover if μ is normal, then $(\mu^+)^+ = \mu$.

Proof. Straightforward.

Proposition 3.10. If μ and ν are fuzzy *d*-ideals of *X* such that $\mu \subseteq \nu$ and $\mu(0) = \nu(0)$, then $X_{\mu} \subseteq X_{\nu}$.

Proof. Let $x \in X_{\mu}$. Then $\nu(x) \ge \mu(x) = \mu(0) = \nu(0)$ and so $\nu(x) \ge \nu(0)$. By Lemma 3.2, we have $\nu(0) \ge \nu(x)$. Hence $\nu(x) = \nu(0)$, i.e., $x \in X_{\nu}$, proving $X_{\mu} \subseteq X_{\nu}$.

Corollary 3.11. If μ and ν are normal fuzzy d-ideals of X such that $\mu \subseteq \nu$, then $X_{\mu} \subseteq X_{\nu}$.

Proposition 3.12. Let μ be a fuzzy *d*-ideal of *X*. If there exists a fuzzy *d*-ideal ν of *X* such that $\nu^+ \subseteq \mu$, then μ is normal.

Proof. Assume that there exists a fuzzy *d*-ideal ν of *X* such that $\nu^+ \subseteq \mu$. Then $1 = \nu^+(0) \leq \mu(0)$, and so $\mu(0) = 1$ and we are done.

Proposition 3.13. Let μ be a fuzzy d-ideal of X and let $f : [0, \mu(0)] \to [0, 1]$ be an increasing function. Then a fuzzy set $\mu_f : X \to [0, 1]$ defined by $\mu_f := f(\mu(x))$ for all $x \in X$ is a fuzzy d-ideal of X. In particular, if $f(\mu(0)) = 1$ then μ_f is normal; and if $f(t) \ge t$ for all $t \in [0, \mu(0)]$, then μ is contained in μ_f .

Proof. For any $x, y \in X$, we have

$$\begin{split} \min\{\mu_f(x*y), \mu_f(y)\} &= \min\{f(\mu(x*y)), f(\mu(y))\} \\ &= f(\min\{\mu(x*y), \mu(y)\}) \\ &\leq f(\mu(x)) = \mu_f(x) \end{split}$$

and

$$\mu_f(x * y) = f(\mu(x * y)) \ge f(\mu(x)) = \mu_f(x).$$

Hence μ_f is a fuzzy *d*-ideal of *X*. If $f(\mu(0)) = 1$, then clearly μ_f is normal. Assume that $f(t) \ge t$ for all $t \in [0, \mu(0)]$. Then $\mu_f(x) = f(\mu(x)) \ge \mu(x)$ for all $x \in X$, which proves that μ is contained in μ_f .

Denote by $\mathcal{N}(X)$ the set of all normal fuzzy *d*-ideals of a *d*-transitive *d*-algebra *X*. Note that $\mathcal{N}(X)$ is a poset under set inclusion.

Theorem 3.14. Let $\mu \in \mathcal{N}(X)$ be a non-constant function such that it is a maximal element of $(\mathcal{N}(X), \subseteq)$. Then μ takes only the values 0 and 1.

Proof. Note that $\mu(0) = 1$ since μ is normal. Let $x \in X$ be such that $\mu(x) \neq 1$. We claim that $\mu(x) = 0$. If not, then there exists $a \in X$ such that $0 < \mu(a) < 1$. Let ν be a fuzzy set in X defined by $\nu(x) := \frac{1}{2}(\mu(x) + \mu(a))$ for all $x \in X$. Then clearly ν is well-defined. For all $x, y \in X$, we have

$$\nu(x*y) = \frac{1}{2}(\mu(x*y) + \mu(a)) \ge \frac{1}{2}(\mu(x) + \mu(a)) = \nu(x)$$

and

$$\begin{split} \nu(x) &= \frac{1}{2}(\mu(x) + \mu(a)) \geq \frac{1}{2}[\min\{\mu(x*y), \mu(y)\} + \mu(a)] \\ &= \min\{\frac{1}{2}(\mu(x*y) + \mu(a)), \frac{1}{2}(\mu(y) + \mu(a))\} \\ &= \min\{\nu(x*y), \nu(y)\}. \end{split}$$

Hence ν is a fuzzy *d*-ideal of *X*. It follows from Proposition 3.7 that $\nu^+ \in \mathcal{N}(X)$ where ν^+ is defined by $\nu^+(x) = \nu(x) + 1 - \nu(0)$ for all $x \in X$. Clearly $\nu^+(x) \ge \mu(x)$ for all $x \in X$. Note that

$$\nu^{+}(a) = \nu(a) + 1 - \nu(0)$$

= $\frac{1}{2}(\mu(a) + \mu(a)) + 1 - \frac{1}{2}(\mu(0) + \mu(a))$
= $\frac{1}{2}(\mu(a) + 1) > \mu(a)$

and $\nu(a) < 1 = \nu^+(0)$. Hence ν^+ is non-constant, and μ is not a maximal element of $\mathcal{N}(X)$. This is a contradiction.

We construct a new fuzzy *d*-ideal from an old one. Let t > 0 be a real number. If $\alpha \in [0,1]$, α^t shall mean the positive root in case t < 1. We define $\mu^t : X \to [0,1]$ by $\mu^t(x) := (\mu(x))^t$ for all $x \in X$.

Proposition 3.15. If μ is a fuzzy d-ideal of X, then so is μ^t and $X_{\mu^t} = X_{\mu}$. *Proof.* For any $x, y \in X$, we have $\mu^t(x * y) = (\mu(x * y))^t \ge (\mu(x))^t = \mu^t(x)$ and

$$\mu^{t}(x) = (\mu(x))^{t} \ge (\min\{\mu(x * y), \mu(y)\})^{t}$$

= min{((\mu(x * y))^{t}, (\mu(y))^{t}}
= min{\mu^{t}(x * y), \mu^{t}(y)}.

Hence μ^t is a fuzzy *d*-ideal of X. Now

$$X_{\mu^{t}} = \{ x \in X | \mu^{t}(x) = \mu^{t}(0) \}$$

= $\{ x \in X | (\mu(x))^{t} = (\mu(0))^{t} \}$
= $\{ x \in X | \mu(x) = \mu(0) \} = X_{\mu}$

This completes the proof.

Corollary 3.16. If $\mu \in \mathcal{N}(X)$, then so is μ^t .

Proof. Straightforward.

Definition 3.17. Let μ be a fuzzy *d*-ideal of a *d*-transitive *d*-algebra *X*. Then μ is said to be *maximal* if

- (i) μ is non-constant,
- (ii) μ^+ is a maximal element of the poset $(\mathcal{N}(X), \subseteq)$.

Theorem 3.18. If μ is a maximal fuzzy d-ideal of a d-transitive d-algebra, then

- (i) μ is normal,
- (ii) μ takes only the values 0 and 1,
- (iii) $\mu_{X_{\mu}} = \mu$,
- (iv) X_{μ} is a maximal d-ideal of X.

Proof. Let μ be a maximal fuzzy *d*-ideal of *X*. Then μ^+ is a non-constant maximal element of the poset $(\mathcal{N}(X), \subseteq)$. It follows from Theorem 3.14 that μ^+ takes only the values 0 and 1. Note that $\mu^+(x) = 1$ if and only if $\mu(x) = \mu(0)$, and $\mu^+(x) = 0$ if and only if $\mu(x) = \mu(0) - 1$. By Corollary 3.8, we have $\mu(x) = 0$, i.e., $\mu(0) = 1$. Hence μ is normal, and clearly $\mu^+ = \mu$. This proves (i) and (ii).

(iii) Clearly $\mu_{X_{\mu}} \subseteq \mu$ and $\mu_{X_{\mu}}$ takes the values 0 and 1. Let $x \in X$. If $\mu(x) = 0$, then obviously $\mu \subseteq \mu_{X_{\mu}}$. If $\mu(x) = 1$, then $x \in X_{\mu}$, and so $\mu_{X_{\mu}}(x) = 1$. This shows that $\mu \subseteq \mu_{X_{\mu}}$.

(iv) X_{μ} is a proper *d*-ideal of *X* because μ is non-constant. Let *A* be a *d*-ideal of *X* such that $X_{\mu} \subseteq A$. Noticing that for any *d*-ideals *A* and *B* of *X*, $A \subseteq B$ if and only if $\mu_A \subseteq \mu_B$, then we obtain $\mu = \mu_{X_{\mu}} \subseteq \mu_A$. Since μ and μ_A are normal and since $\mu = \mu^+$ is a maximal element of $\mathcal{N}(X)$, we have that either $\mu = \mu_A$ or $\mu_A = \mathbf{1}$ where $\mathbf{1} : X \to [0, 1]$ is a fuzzy set defined by $\mathbf{1}(x) := 1$ for all $x \in X$. The other case implies that A = X. If $\mu = \mu_A$, then $X_{\mu} = X_{\mu_A} = A$ by proposition 3.4. This proves that X_{μ} is a maximal *d*-ideal of *X*, completing the proof.

Definition 3.19. A normal fuzzy *d*-ideal μ of X is said to be *completely normal* if there exists $x \in X$ such that $\mu(x) = 0$.

Denote by $\mathcal{C}(X)$ the set of all completely normal fuzzy *d*-ideals of a *d*-transitive *d*-algebra X. We note that $\mathcal{C}(X) \subseteq \mathcal{N}(X)$ and there the restriction of the partial ordering \subseteq of $\mathcal{N}(X)$ gives a partial ordering of $\mathcal{C}(X)$.

Example 3.20 Let X be the d-algebra of Example 3.3. Then a fuzzy set μ in defined by $\mu(e) = 0 < 1$ and $\mu(x) = 1$ for all $x \neq e$ is a normal fuzzy d-ideal of X. Since $e \in X$ such that $\mu(e) = 0$, μ is completely normal.

Proposition 3.21. Any non-constant maximal element of $(\mathcal{N}(X), \subseteq)$ is also a maximal element of $(\mathcal{C}(X), \subseteq)$.

Proof. Let μ be a non-constant maximal element of $(\mathcal{N}(X), \subseteq)$. By Theorem 3.14, μ takes only the values 0 and 1, and so $\mu(0) = 1$ and $\mu(x) = 0$ for some $x \in X$. Hence

 $\mu \in \mathcal{C}(X)$. Assume that there exists $\nu \in \mathcal{C}(X)$ such that $\mu \subseteq \nu$. It follows that $\mu \subseteq \nu$ in $\mathcal{N}(X)$. Since μ is maximal in $(\mathcal{N}(X), \subseteq)$ and ν is non-constant, therefore $\mu = \nu$. Thus μ is maximal element of $(\mathcal{C}(X), \subseteq)$, ending the proof.

Theorem 3.22. Every maximal fuzzy *d*-ideal of a *d*-transitive *d*-algebra *X* is completely normal.

Proof. Let μ be a maximal fuzzy *d*-ideal of *X*. Then by Theorem 3.18, μ is normal and $\mu = \mu^+$ takes the values 0 and 1. Since μ is non-constant, it follows that $\mu(0) = 1$ and $\mu(x) = 0$ for some $x \in X$. Hence μ is completely normal, ending the proof.

4. Fuzzy characteristic *d*-ideals

For an endomorphism f of a d-algebra X and a fuzzy set μ in X, a new fuzzy set μ^f in X is defined by $\mu^f(x) := \mu(f(x))$ ([1]) for all $x \in X$.

Proposition 4.1. ([1]) If μ is a fuzzy *d*-ideal of a *d*-algebra *X*, then so is μ^f .

Example 4.2. Let $X = \{0, a, b, c\}$ be a set with the following Cayley table:

*	0	a	b	c
0	0	0	0	0
$a \\ b$	a	0	0	a
b	b	b	0	0
c	c	c	a	0

Then X is a d-algebra ([8]). Define a fuzzy set $\mu : X \to [0,1]$ by $\mu(0) = \mu(a) = t_1$ and $\mu(b) = \mu(c) = t_2$ with $t_1 > t_2$. Then μ is a fuzzy d-ideal of X. There are 5 endomorphisms of a d-algebra X as follows:

$$\begin{split} f_1: & 0 \to 0, a \to 0, b \to 0, c \to 0 \\ f_2: & 0 \to 0, a \to 0, b \to a, c \to a \\ f_3: & 0 \to 0, a \to 0, b \to b, c \to b \\ f_4: & 0 \to 0, a \to 0, b \to c, c \to c \\ f_5: & 0 \to 0, a \to a, b \to b, c \to c. \end{split}$$

By Proposition 4.1, μ^{f_i} (i = 1, 2, 3, 4, 5) are fuzzy *d*-ideals of *X*.

Definition 4.3. A fuzzy *d*-ideal *A* of a *d*-algebra *X* is said to be *characteristic* if f(A) = A for all $f \in Aut(X)$, where Aut(X) is the set of all automorphisms of *X*.

Definition 4.4. A fuzzy *d*-ideal of a *d*-algebra X is said to be *fuzzy characteristic* if $\mu^{f}(x) = \mu(x)$ for all $x \in X$ and $f \in Aut(X)$.

Example 4.5. In Example 4.2, f_5 is an automorphism of X. It is easy to check that $f_5(\mu(x)) = \mu(x)$ for all $x \in X$. Hence μ is characteristic. Also $\mu^{f_5}(x) = \mu(f_5(x)) = \mu(x)$ for all $x \in X$. Therefore μ is fuzzy characteristic.

Lemma 4.6. Let μ be a fuzzy d-ideal of a d-algebra X and let $x \in X$. Then $\mu(x) = t$ if and only if $x \in \mu_t$ and $x \notin \mu_s$ for all s > t.

Proof. Straightforward.

Theorem 4.7. For a fuzzy d-ideal μ of a d-algebra X, the following are equivalent:

- (i) μ is fuzzy characteristic,
- (ii) Each level d-ideal $\mu_t := \{x \in X | \mu(x) \ge t\}$ is characteristic.

Proof. Assume that μ is a fuzzy characteristic and let $t \in Im(\mu)$, $f \in Aut(X)$ and $x \in \mu_t$. Then $\mu^f(x) = \mu(x) \ge t$, i.e., $\mu(x) \ge t$. Hence $f(x) \in \mu_t$, i.e., $f(\mu_t) \subseteq \mu_t$. Now let $x \in \mu_t$ and $y \in X$ be such that f(y) = x. Then $\mu(y) = \mu^f(y) = \mu(f(y)) = \mu(x) \ge t$, whence $y \in \mu_t$, so that $x = f(y) \in f(\mu_t)$. Consequently, $\mu_t \subseteq f(\mu_t)$. Therefore $f(\mu_t) = \mu_t$ and μ_t is characteristic.

Conversely, suppose that each level d-ideal μ_t of μ is characteristic and let $x \in X, f \in AutX$ and $\mu(x) = t$. Then by Lemma 4.6, $x \in \mu_t$ and $x \notin \mu_s$ for all s > t. It follows from hypothesis that $f(x) \in f(\mu_t) = \mu_t$, so that $\mu^f(x) = \mu(f(x)) \ge t$. Let $s = \mu^f(x)$ and assume that s > t. Then $f(x) \in \mu_s = f(\mu_s)$, which implies from the injectivity of f that $x \in \mu_s$, a contradiction. Hence $\mu^f(x) = \mu(f(x)) = t = \mu(x)$. Therefore μ^f is fuzzy characteristic. \Box

Acknowledgement The authors are very grateful to referees for their valuable comments and suggestions for improving this paper.

References

- [1] M. Akram and K. H. Dar, On fuzzy d-algebras, Punjab Univ. J. Math. 37 (2005), 61-76.
- [2] Q. P. Hu and X. Li, On BCH-algebras, Mathematics Seminar Notes 11 (1983), 313–320.
- [3] Q. P. Hu and X. Li, On proper BCH-algebras, Math. Japonica 30 (1985), 659-661.
- [4] K. Iséki and S. Tanaka, Ideal theory of BCK-algebras, Math. Japonica 21 (1976), 351–366.
- [5] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japonica 23(1) (1978), 1–26.
- [6] K. Iséki, On BCI-algebras, Mathematics Seminar Notes 8 (1980), 125–130.
- [7] Y. B. Jun, J. Neggers and H. S. Kim, *Fuzzy d-ideals of d-algebras*, J. Fuzzy Math. 8(1) (2000), 123–130.
- [8] Y. C. Lee and H. S. Kim, On d^{*}-subalgebras of d-transitive d^{*}-algebras, Math. Slovaca 49(1), (1999), 27–33.
- [9] J. Meng and Y. B. Jun, *BCK*-algebras, Kyung Moon Sa Co., Seoul, (1994).
- [10] J. Neggers, Y. B. Jun and H. S. Kim, On d-ideals in d-algebras, Math. Slovaca 49(3), (1999), 243–251.
- [11] J. Neggers and H. S. Kim, On d-algebras, Math. Slovaca 49(1), (1999), 19-26.
- [12] O. Xi, Fuzzy BCK-algebra, Math. Japonica 36, (1991), 935–942.
- [13] L. A. Zadeh, Fuzzy Sets, Inform. Control 8, (1965), 338–353.

Sun Shin Ahn, Department of Mathematics Education, Dongguk University, Seoul 100-715, Korea

sunshine@dongguk.edu

Keum Sook So, Department of Mathematics, Hallym University, Chuncheon 200-702, Korea ksso@hallym.ac.kr