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The aim of the book is to develop an appropriate category-theoretical background to
characterize the category Par of all sets and all partial mappings between sets and to use
this characterization to study theories for partial algebras. For a better understanding we
first will give the most important basic concepts from Category Theory which are used
throughout the book.

1 Basic Concepts from Category Theory First we provide a short, self-contained
introduction to some elementary topics in Category Theory, including categories, functors
and natural transformations to make the material presented in “Partial Algebras and Their
Theories” more understandable. For more information on Category Theory we refer the
reader to [11] and [9].

A category C consists of a class |C| of objects and a class morCC (or morC, for short)
of morphisms between these objects. Let C(A,B) be the set of all morphisms between the
objects A and B. Each morphism f has exactly one object A as its source and exactly
one object B as its target. We will write f : A → B or also A

f→ B for a morphism from
source A to target B. The objects of a category are classes which are not necessarily sets.
For a set-theoretical foundation one can use for instance the Set Theory of von Neumann-
Bernays-Gödel. The concept of a class is then taken as a basic concept, and sets are those
classes which are elements of a class. There exists a universal class which contains all sets
as elements. For details see for instance [7] or [10].

A category in which the objects are sets with additional structure (such as operations,
partial operations or relations) is called a concrete category. A category is called small if
morC is a set. The following properties have to be satisfied by the objects and morphisms
of such a category:

(i) If A is the base set of an object, then 1A : A→ A defined by 1A(x) = x for all x ∈ A
is a morphism.

(ii) The class of morphisms is closed under composition: if A, B and D are objects and
f : A→ B and g : B → D are morphisms, then g ◦ f : A→ D is a morphism.

(iii) For any objects A and B and any morphism f : A→ B the equations f ◦ 1A = f and
1B ◦ f = f are satisfied.

(iv) The composition of morphisms is associative.

Example 1.1 1. The objects of the category Set are sets and the morphisms are the
usual mappings between sets.

2. The objects of the category Par are sets and the morphisms are the partial mappings
between sets.
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3. The objects of the category Top are the topological spaces and the morphisms are the
continuous mappings between them.

4. The objects of the category Group are groups and morphisms are homomorphisms
between them.

5. The objects of the category Alg(τ) are the algebras of type τ and the morphisms are
(algebra) homomorphisms between them.

6. More generally, each variety of algebras can be regarded as a category, where the
objects are the algebras of the variety and the morphisms are the homomorphisms
between them.

7. The product A×B of two categories A and B is a category which has as its objects
the ordered pairs (A,B), A ∈ |A|, B ∈ |B|. The sets of morphisms are defined by
morA×B((A,B), (A′, B′)) := morA(A,A′) ×morB(B,B′). The composition of mor-
phisms is defined componentwise by (f ′, g′) · (f, g) := (f ′ · f, g′ · g) . (Instead of (f, g)
we will also write f ⊗ g.)

Morphisms can have some special properties.

Definition 1.2 A morphism f : A→ B is called
a) left-invertible or a coretraction if there exists a morphism h : B → A such that h◦f = 1A.
In this case the morphism h is called a left inverse of f .

b) right-invertible or a retraction if there exists a morphism g : B → A such that
f ◦ g = 1B. In this case g is called a right inverse of f .

c) an isomorphism if there exists a morphism g : B → A such that g ◦ f = 1A and
f ◦ g = 1B. Such a morphism g is called an inverse of f .

Remark 1.3 1. If the morphism f : A→ B is both left-invertible and right-invertible,
then it is an isomorphism. It is a simple exercise to prove that if f has both a left
and a right inverse, then these two inverses must be equal.

2. If f : A → B is an isomorphism, then there exists exactly one morphism g with
g ◦ f = 1A and f ◦ g = 1B. This mapping g is denoted by f−1, and is called the
inverse of f .

3. If there is an isomorphism between the objects A and B, then A and B are called
isomorphic and we write A ∼= B.

Definition 1.4 A morphism f : A → B is said to be a monomorphism (or a mono for
short) if

∀g1, g2 : C → A (f ◦ g1 = f ◦ g2 ⇒ g1 = g2),

and an epimorphism (or an epi) if

∀h1, h2 : B → C (h1 ◦ f = h2 ◦ f ⇒ h1 = h2).

Clearly, any left-invertible morphism is a monomorphism, and dually any right-invertible
morphism is an epimorphism. The converse of this proposition is not true.

Terminal and initial objects of a category are objects with certain special properties.

Definition 1.5 An object T of a category C is called terminal if for every object A of C
there is exactly one morphism τA : A→ T .
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If there are terminal objects in the category C, then such objects are uniquely determined
up to isomorphism.

Example 1.6 In the category Set every one-element set is terminal. In the category Group
every one-element group is terminal, and in Alg(τ) the one-element algebras of type τ are
terminal.

Definition 1.7 An object I of a category C is called initial if for every object A of C there
is exactly one morphism I → A.

The initial objects of a category are also uniquely determined up to isomorphism.

Example 1.8 In the category Set the empty set ∅ is initial. In Group every one-element
group is initial.

Now we look at two constructions defined on a family (Ai)i∈I of objects in a category.

Definition 1.9 Let (Ai)i∈I be a family of objects in a category C. An object S together
with a family (ei : Ai → S)i∈I of morphisms is called the sum of the Ai’s if for every object
Q from C with morphisms (qi : Ai → Q)i∈I there is exactly one morphism s : S → Q with
qi = s ◦ ei for all i ∈ I. If such a sum exists, we write S :=

∑
i∈I

Ai and call the morphisms

(ei)i∈I injections of the sum.

The diagram in Figure 1 illustrates the sum construction. The sum of a family of objects
is also called their coproduct.
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Figure 1: Coproduct

Example 1.10 Consider the category Set of sets and set mappings. We take S to be the
disjoint sum

A1 + A2 = {(1, a) | a ∈ A1} ∪ {(2, b) | b ∈ A2},

and as morphisms the mappings e1 : A1 → A1 + A2 and e2 : A2 → A1 + A2 defined by
e1(a) = (1, a) and e2(a) = (2, b). To see that this fits our categorical definition of the sum,
suppose that Q is any set with mappings qi : Ai → Q for i = 1, 2. Then there exists
precisely one mapping s : A1 + A2 → Q with qi = s ◦ ei, defined by s(i, a) := qi(a). For any
a ∈ A1 ∪A2, we have qi(a) = (s ◦ ei)(a) = s(ei(a)) = s((i, a)), so qi = s ◦ ei for i = 1, 2.
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The sum of a family (Ai)i∈I of objects of a category C is uniquely determined up to
isomorphism. The injections (ei)i∈I associated with a sum must be epimorphisms. That is,
for all morphisms h1, h2 : S → C and all i ∈ I we have

h1 ◦ ei = h2 ◦ ei ⇒ h1 = h2.

The product of a family of objects is defined in the following dual way.

Definition 1.11 Let (Ai)i∈I be a family of objects in a category C. An object P together
with a family (pi : P → Ai)i∈I of morphisms is called the product of the Ai’s if for every
object Q from C with morphisms (qi : P → Ai)i∈I there is exactly one morphism s : Q→ P
with qi = pi ◦ s for all i ∈ I. If the product exists, we write P :=

∏
i∈I

Ai, and the morphisms

(pi)i∈I are called projections.

The diagram in Figure 2 illustrates the product construction.
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Figure 2: Product

In the category Set of sets, the usual cartesian product of a family of sets is their
product, with the usual projection mappings as morphisms. In the category Alg(τ) the
direct product of a family (A)i∈I is a product.

Pushouts and Pullbacks are defined as follows:

Definition 1.12 Let (fi : A → Bi)i∈I be a family of morphisms in a category C. An
object P together with a family (pi : Bi → P )i∈I of morphisms is called a pushout of the
fi’s if

(i) for all i, j ∈ I, pi ◦ fi = pj ◦ fj.

(ii) for all objects Q and all morphisms (qi : Bi → Qi)i∈I with qi ◦ fi = qj ◦ fj for all
i, j ∈ I, there exists a unique morphism h : P → Q satisfying h ◦ pi = qi for all i ∈ I.
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Figure 3: Pushout
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Definition 1.13 Let (fi : Ai → B)i∈I be a family of morphisms. An object P together
with a family (pi : P → Ai)i∈I of morphisms is called the pullback of the fi’s if

(i) for all i, j ∈ I, fi ◦ pi = fj ◦ pj ;

(ii) for all objects Q and all morphisms qi : Q → Ai with fi ◦ qi = fj ◦ qj for all i, j ∈ I,
there exists a unique morphism h : Q→ P such that pi ◦ h = qi for all i ∈ I.

So far we have considered morphisms between objects in one category. Now we turn
to mappings between objects and morphisms of two different categories. A functor from a
category C to a category D maps the objects of C to objects of D and the morphisms of
C to morphisms of D, in a way that is compatible with the composition of morphisms and
preserves the identity morphism. The next definition makes this more precise.

Definition 1.14 Let C and D be categories. A (covariant) functor F : C → D defines
a mapping A 
→ F (A) of objects A from the object class |C| of the category C to objects
F (A) from the object class |C′| of the category D; and also a mapping for morphisms which
maps each morphism f : A → B from C to a morphism F (f) : F (A) → F (B) from the
category D, such that for all morphisms f, g and all objects A from C the following two
conditions are satisfied:

(i) F (g ◦ f) = F (g) ◦ F (f),

(ii) F (1A) = idF (A).

(The functor is called contravariant if instead of (i), (ii) the following conditions are satisfied:

(i’) F (g ◦ f) = F (f) ◦ F (g),

(ii’) F (1A) = idF (A).)

We are interested here only in covariant functors, and shall refer to them merely as
functors.

A bifunctor is a functor F : A × B → C. If F (A,B) and F (f, g) are the images of
(A,B) and of (f, g), respectively, then F (f ′ · f, g′ · g) = F (f ′, g′) · F (f, g).

We can use the following constructions to combine functors into new functors. Let F1

and F2 be functors from Set to Set.

(i) F1 ◦F2 defined by A 
→ F1(F2(A)) for objects A and f 
→ F1(F2(f)) for morphisms f
is a functor. This construction is called composition of functors.

(ii) F1×F2 defined by (F1×F2)(A) := F1(A)×F2(A) for objects and (F1×F2)(f)(u, v) :=
(F1(f)(u), F2(f)(v)) for morphisms is a functor. This construction is called the carte-
sian product of functors. The cartesian product can also be defined for arbitrary
families of endofunctors of Set.

(iii) F1+F2 is defined on objects by (F1+F2)(A) := F1(X)+F2(X), where F1(X)+F2(X)
is the disjoint union of the sets F1(X), F2(X). For each morphism f we define

(F1 + F2)(f)(u) :=
{

F1(f)(u), if u ∈ F1(X)
F2(f)(u), if u ∈ F2(X) .

Then F1 + F2 is a functor.
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Remark 1.15 1. If F : Set→ Set is a functor and f is injective (surjective) then F (f)
is also injective (respectively surjective).

2. Let C be a category and let C(A,B) be the set of all morphisms f : A → B in C.
Every functor F : C→ D defines a mapping FA,B : C(A,B)→ D(F (A), F (B)).

3. A functor F : C→ D is called full if for any two objects A and B of C the mapping
FA,B is surjective. F is called faithful if FA,B is injective for any two objects A and
B of C.

4. The functor F : C → D is called an isomorphism if there is a functor G : D → C
such that F ◦G = ID and G ◦ F = IC.

Natural transformations connect functors with functors.

Definition 1.16 Let F1, F2 : C → D be functors. A natural transformation η from F1 to
F2 maps each object X from C to a morphism ηX : F1(X) → F2(X) such that for every
morphism f : X → Y in C the equation

F2(f) ◦ ηX = ηY ◦ F1(f)

is satisfied. If η is a natural transformation from F1 to F2 we write η : F1 → F2. If
ηX is an isomorphisms for each object X , the natural transformation η is called a natural
isomorphism.

2 Symmetric Monoidal Categories The book is based on an important class of cat-
egories, the symmetric monoidal categories. This concept was introduced by Eilenberg and
Kelly (see [6])

Definition 2.1 C := (C0,⊗, I, a, c, r, l) is said to be a symmetric monoidal category if the
following conditions hold:

(i) C0 is a category.

(ii) ⊗ : C×C→ C is a functor, the monoidal product of C (also called the tensor product
or the multiplication).

(iii) I is an object of C.

(iv) a = (aABC)A,B,C∈|C| with aABC : A⊗ (B ⊗ C)→ (A⊗B)⊗ C,

(v) c = (cAB)A,B∈|C| with cAB : A⊗B → B ⊗A,

(vi) r = (rA)A∈|C| with rA : A⊗ I → A,

(vii) l = (lA)A∈|C| with lA : I ⊗ A → A are families of isomorphisms of C such that for
arbitrary morphisms f : A→ A′, g : B → B′, h : C → C′ the equations:

aABC · ((f ⊗ g)⊗ h) = (f ⊗ (g ⊗ h)) · aA′B′C′ ,
cAB · (g ⊗ f) = (f ⊗ g) · cA′B′ ,
rA · f = (f ⊗ 1I) · rA′ ,
lA · f = (1I ⊗ f) · lA′

and the coherence conditions
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(1A ⊗ aABC) · aAB⊗CD ⊗ (aABC ⊗ 1D) = aABC⊗D · aA⊗BCD,
aAIB · (rA ⊗ 1B) = 1A ⊗ lB),
cAB · cB,A = 1A⊗B, i.e.c−1

AB = cBA,
aABC · cA⊗BC · aCAB = (1A ⊗ cBC) · aACB · (cAC ⊗ 1B),
cAI · lA = rA

are satisfied.

This means that a, c, r, l are natural isomorphisms.

3 dht-Symmetric Categories With the aim to give an axiomatic description of the
category Par in [8] H.-J. Hoehnke defined the concept of a dht-symmetric category.

Definition 3.1 K := (K0,⊗, I, a, c, r, l, d, t, o) is said to be a dht-symmetric category if
the following conditions hold:

(i) (K0,⊗, I, a, c, r, l) is a symmetric monoidal category.

(ii) O is an object of K, o : I → O is a morphism of K and A⊗O = O ⊗A = O for each
A ∈ |K|.

(iii) d = (dA)A∈|K| with dA : A→ A⊗A, A ∈ |K|

(iv) t = (tA), A ∈ |K| with tA : A→ I, A ∈ |K|, are families of morphisms of K satisfying
the following conditions:

(1) dA · (f ⊗ f) = f · dA′ for any f : A→ A′;

(2) if f · g = 1A, then f · tB = tA for any f : A→ B, g : B → A;

(3) f = tA · o, g = (1B ⊗ to) · rB for any f : A→ O, g : O→ B.

(4) Let G := {aABC | A,B, C ∈ |K|} ∪ {cAB | A,B ∈ |K|} ∪ {rA | A ∈ |K|} ∪ {lA |
A ∈ |K|} ∪ {tA | A ∈ |K|}. Then f · tB = tA for each f : A → B ∈MK where
MK is the ⊗-closed subcategory of K such that |MK | = |K| which is generated
by G.

(5) dA · (1A ⊗ tA) · rA = 1A, dA · (tA ⊗ 1A) · lA = 1A for each A ∈ |K|.
(6) dA⊗B · ((1A ⊗ tB)⊗ (tA ⊗ 1B)) · (rA ⊗ lB) = 1A⊗B for any A,B ∈ |K|.

Because of (2) dht-symmetric categories are not defined by equations, but the authors
can give an equational description of dht-symmetric categories. The basic example of a
dht-symmetric category is the category Par of all sets and all partial mappings between
sets. Here d and t are the families of morphisms with dA : A→ A×A defined by x 
→ (x, x)
and t with tA : A → I and I = {∅} defined by x 
→ ∅ for all x ∈ A. The morphism o
is defined by o : I → O where O = ∅. Let Db(f) be the definition domain of the partial
operation f . Then for partial mappings f, g : A→ B a partial order ≤ is defined by

f ≤ g :⇔ Db(f) ⊆ Db(g) and ∀a ∈ A (f(a) = g(a)).

This means, f is the restriction of g onto the definition domain of f . It is well-known,
that ≤ is a partial order on Par(A, B). The partial order ≤ can be characterized as follows:

(∀f, g : A→ B ∈ Par) f ≤ g ⇔ dA · (f ⊗ g) = dA · (f ⊗ f).

This observation motivates the following definition:
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Definition 3.2 Let K be any dht-symmetric category. Then we denote by “≤K” or simply
by “≤” if no confusion is possible, the binary relation in morK defined by:

f ≤ g ⇐⇒ A = A′, B = B′ and dA · (f ⊗ g) = dA · (f ⊗ f)

for all f : A→ B, g : A′ → B′ of K.
The binary relation ≤ is said to be the canonical partial order of K.

Based on this canonical partial order the authors define the important concept of a
subidentity.

Definition 3.3 For any dht-symmetric category K, a morphism e of K is called a subiden-
tity of K, if there is an object A of K such that e ≤ 1A.

In Par subidentities can be used to describe the definition domain of a partial function.

4 Monoidal dht-symmetric functors

Definition 4.1 For any two dht-symmetric categories K, K′ F : K → K′ is said to be
a monoidal dht-symmetric functor ( of K to K′), if F is a functor and there are a family
F̃ = (F̃AB)A,B∈|K| of morphisms of K′ and morphisms F 1, F 0 of K′, such that:

(i) F̃ = F̃AB : F (A)⊗ F (B) → F (A ⊗ B) (A,B ∈ |K|) is a natural isomorphism, i.
e., for arbitrary objects A,B of K, F̃AB is an isomorphism of K′, and for arbitrary
morphisms F : A→ A′, g : B → B′ of K one has

F̃AB · F (f ⊗ g) = (F (f)⊗ F (g)) · F̃A′B′ ,

(ii) F 1 : I ′ → F (I) is an isomorphism of K′,

(iii) F 0 : O′ → F (O) is an isomorphism of K′.

For arbitrary objects A,B, C of K the following equations hold:

(1) (1F (A) ⊗ F̃BC) · F̃A,B⊗C · F (aABC) = a′
F (A)F (B)F (C) · (F̃AB ⊗ 1F (C)) · F̃A⊗B,C ,

(2) F̃AB · F (cAB) = c′F (A)F (B) · F̃BA,

(3) (1F (A) ⊗ F 1) · F̃AI · F (rA) = r′F (A),

(4) (F 1 ⊗ 1F (A)) · F̃AI · F (lA) = l′F (A),

(5) F (dA) = d′F (A) · F̃AA,

(6) F (tA) = t′F (A) · F 1.

The concept of a monoidal dht-symmetric functor was introduced by H.-J. Hoehnke in
[8]. Monoidal dht-symmetric functors are characterized as follows:

Proposition 4.2 For any two dht-symmetric categories K,K′, a functor F : K→ K′ is a
monoidal dht-symmetric functor iff there hold:
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(1) F̂ = F̂AB : F (A⊗B)→ F (A)⊗ F (B) (A,B ∈ |K|)
is a natural isomorphism,
(2) t′F (I) ∈ isoK′ and (∀A ∈ |K|) : F (tA) · t′F (I) = t′F (A),
(3) F (O) ∼= O′.

For any two dht-symmetric categories K,K′ and any functor F : K→ K′ the following
conditions are pairwise equivalent:

(1) F (e) is a subidentity of K′ for all subidentities e ∈ K.
(2) For arbitrary morphisms f : A→ A′, g : B → B′ of K one has:

F̂AB · (F (f)⊗ F (g)) = F (f ⊗ g) · F̂A′B′ .

(3) For arbitrary morphisms f, g of K there holds:
If f ≤ g, then F (f) ≤ F (g).

For a dht-symmetric category K the mapping

αK : morK→ {e | e is a subidentity of K},

(for short α) is the mapping which maps each morphisnm f : A → B to the subidentity
α(f) := dA · (1A ⊗ f) · pA,B

1 .

Definition 4.3 For any two dht-symmetric functors K and K′ a functor F : K → K′ is
called an α-compatible functor, if F : K → K′ is a functor and the following identity is
valid:

(∀f ∈ K) : F (α(f)) = α(F (f)).

Then α-compatible functors were characterized as follows:

Proposition 4.4 For arbitrary dht-symmetric categories K and K′, a functor F : K→ K′

is α-compatible, iff there hold:

(1) F̂ = F̂AB : F (A ⊗ B) → F (A) ⊗ F (B) (A,B ∈ |K′K|) is a natural
transformation,
(2) F (tA) · t′F (I) = t′F (A) for every object A of K.

Corollary 4.5 For arbitrary dht-symmetric categories K,K′ and every functor F : K →
K′ one has:

(1) If F is a monoidal dht-symmetric functor, then F is an α-compatible functor.
(2) If F is an α-compatible functor, then one has:
(∀f, g ∈ K) : f ≤ g =⇒ F (f) ≤ F (g).

The monoidal dht-symmetric functors can be characterized in the following way as spe-
cial α-compatible functors:

Theorem 4.6 For arbitrary dht-symmetric categories K and K′, F : K→ K′ is a monoidal
dht-symmetric functor, iff there hold:

(1) F is an α-compatible functor,
(2) F̂AB ∈ isoK′ for arbitrary objects A,B of K,
(3) F (I) ∼= I ′,
(4) F (O) ∼= O′.
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Strict monoidal dht-symmetric functors are defined as follows:

Definition 4.7 Let K,K′ be dht-symmetric categories. F : K → K′ is called a strictly
monoidal dht-symmetric functor, if F is a monoidal dht-symmetric functor and for arbitrary
objects A,B of K one has:

F̃AB = 1F (A)⊗F (B),

F 1 = 1I′ ,

F 0 = 1O′ .

F : K→ K′ is called an embedding (of K into K′), if F is a faithful, monoidal dht-symmetric
functor; and then K is said to be embeddable in K′ , if there exists an embedding of K into
K′.
F : K → K′ is called an isomorphism, if F is a strictly monoidal dht-symmetric funtor,
the mappings of objects and of morphisms are bijective; and then K and K′ are called
isomorphic (in signs: “K ∼= K′”), if there is an isomorphism F : K→ K′.

Now the the following two categories can be considered:
dht-Cat is the category with all small dht-symmetric categories as objects and with the
class of all α-compatible functors F : K → K′, where K,K′ are objects of dht-Cat, as
morphisms. The composition of morphisms of dht-Cat is induced by consecutively carrying
out the functors to be composed. The category dht-Cat will be called the category of α-
compatible functors (between small dht-symmetric categories).
dht-Mon is the subcategory of dht-Cat with the class of all monoidal dht-symmetric functors
F : K→ K′, where K,K are objects of dht-Cat, as morphisms. This category is called the
category of monoidal dht-symmetric functors (between small dht-symmetric categories).

5 The Category of all Partial Arrows of a Category Any morphism (arrow) f :
A → B of the category Par, i. e. any mapping of a subset X of A (the definition domain
of f) into the set B can be considered as an ordered pair (m,x) of morphisms of Set, where
m = idX : X>→A and x = f : X → B:

A
m
←<X

x→B.

Here m = idX : X >→A is a monomorphism of Set. The composition of morphisms of
Par can be expressed by means of pullbacks in the category Set of sets. This connection
between the categories Set and Par can be used as a model for gaining a category of partial
arrows by a suitable locally small category gaining a category of partial arrows by a suitable
locally small category C admitting pullbacks. A category C is called locally small, if for
every object A of C there is a set of monomorphisms R of C having the source A, such
that for each subobject U of A, that is an equivalence class of isomorphic monomorphisms
of C, there exists exactly one m in R belonging to U .

Now the authors apply a construction of categories of partial arrows for an arbitrary
category which is based on an M -class of a category.

Definition 5.1 For any category C, M is an M -class of C, if M is a class of morphisms
of C, which is closed with respect to composition of morphisms, such that
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(1) isoC ⊆M ⊆ monoC,
(2) C is M-locally small, i. e., each class of pairwise non-isomorphc monomor-
phisms of C from M having the same target, forms a set.
(3) C has inverse M-images, i.e., for arbitrary morphisms of C, X

x→ B
n← Y

where n ∈M, there exists a cartesian square in C with n′ ∈M.

Examples of M -classes are the following ones:

(a) The class of all injective mappings between sets is an M -class of Set.

(b) For every category C the class of all isomorphisms of C is an M -class of C.

(c) For every locally small category having pullbacks, the class of all monomorphisms of
C, monoC, is an M -class of C.

Let PartMC be the category of all partial arrows of C as defined in 2.1.2 of the book.
Let C, C′ be cartesian categories and let M, M′ be M -classes of C and C′ respectively,

such that all conditions are satisfied, which enable the construction of the dht-symmetric
categories of partial morphisms of C and C′ respectively.

Let F : (C,M) −→ (C′, M′) be an M-functor. Then

Part F : PartMC −→ PartMC′

is an α-compatible functor.

6 The Category of Subidentities of a
dht-symmetric Category For any category K, let SubK be the category of subidentities
of K, which is constructed as follows:

The class of objects of SubK is the class of all subidentities of K.
For subidentities e ≤ A, e′ ≤ A′ of K, SubK (e, e′) designates the corresponding set of
morphisms, i. e. of all triples (e, f, e′), for which f ∈ K(A,A′) and

α(f) = e, f · e′ = f.

Then a composition of morphisms will be defined.
The next important result is the Embedding Theorem.

Theorem 6.1 For any dht-symmetric category K

HK : K→ Part(SubK)

is a full and faithful strict monoidal dht-symmetric functor.

7 Embedding of Small dht-symmetric Categories into Par The authors are able
to characterize the category Par up to categorical equivalence as a dht-symmetric category.
To do so they give necessary and sufficient conditions for any dht-symmetric category K to
admit a fully faithful representative monoidal dht-symmetric functor from K to Par. These
conditions are given in Proposition 4.2.2 of the book.
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8 Partial Theories In the second part of the book the theory of dht-symmetric cate-
gories is used to characterize partial theories, i.e. theories for many-sorted partial algebras.

For any set J let H = (H,⊗, I) be a free algebra of type (2, 0), freely generated by J ,
let O �∈ H be an arbitrary element, and HO = (HO,⊗, I, O) for HO = H ∪ {O} be the
algebra of type (2, 0, 0), which arises from H by adjoining O as the zero element. Thus for
every element X of HO there holds O ⊗X = X ⊗O = O.

Definition 8.1 Any dht-symmetric category T such that (|T|,⊗, I, O) = HO is called a
partial theory (relative HO).

Then every partial theory necessarily is a small dht-symmetric category. Since every
small category can be defined as a multi-based algebra, also any partial theory T can
be considered as a multi-based algebra. Its carrier family is given by (T(A,B))A,B∈HO .
The composition of morphisms · of T and the bifunctor ⊗ : T × T → T induce families
(·ABC)A,B,C∈HO and (⊗ABCD)A,B,C,D∈HO as defining operations:

·ABC : T(A,B) ×T(B,C)→ T(A,C),

⊗ABCD : T(A,C) ×T(B,D)→ T(A⊗B, C ⊗D)

(A,B, C,D ∈ HO).
Morerover we have the following families of 0-ary defining operations:
(1A)A∈HO , (aABC)A,B,C∈HO , (a−1

ABC)A,B,C∈HO , (cAB)A,B∈HO , (rA)A∈HO , (r−1
A )A∈HO ,

(lA)A∈HO , (l−1
A )A∈HO , (dA)A∈HO , (tA)A∈HO , and o.

The authors prove that dht-symmetric categories can be characterized by a system of
axioms, which exclusively consists of equations. Hence the class T h of all partial theories
with respect to HO, considered as multi-based algebras, forms a variety (equationally de-
fined class) of multi-based algebras. Thus for any set J and a family (Tj)j∈J of partial
theories of T h, the direct product (×)j∈J Tj of the family (Tj)j∈J (in the sense of the
theory of multi-based algebras) again is a partial theory. Moreover each subalgebra of a
partial theory of T h is again a partial theory, and T h is closed with respect to homomorphic
images of partial theories of T h.

The first main result gives a representation of partial theories.

Theorem 8.2 Every partial theory T is isomophic to a subdirect product of partial theories
which are embeddable into Par.

Let T h0 be the subclass of the variety T h consisting of those partial theories of T h
which are embeddable into the dht-symmetric category Par, i. e. T h0 is the class of all
partial theories T′ relative to HO, for which there is a faithful monoidal dht-symmetric
functor from T′ to Par. Then we have:

Theorem 8.3 The variety T h is generated by T h0.

In chapter 5 the authors describe how free binary partial theories can be obtained by
generators and relations. The main tools for this presentation are taken from braid theory
and the Daile monoid introduced in [5]. In her thesis from 1956 (advisor: B. H. Neumann)
E. C. Dale characterized varieties of algebras by a certain monoid and by braids. Hoehnke
generalized this to varieties of many-sorted partial algebras.



ON “PARTIAL ALGEBRAS AND THEIR THEORIES” 423

9 Partial Theories and Mal’cev Clones In the case of total algebras, i.e. alge-
bras with everywhere defined fundamental operations F. W. Lawvere described varieties
by “Lawvere-Theories”. These theories are dually isomorphic to the clones of those vari-
eties.

Clones (of total operations) are sets of operations defined on the same set A which are
closed under composition and contain all projection operations. But clones are understood
also in a more general sense. It turns out that clones of operations form many-sorted
algebras. They belong to a variety of many-sorted algebras whose members are called
abstract clones. In this sense not only operations, but also partial operations, sets of
operations, terms, sets of terms, cooperations and relations form clones. The notion of a
clone was first used in P. M. Cohn’s book “Universal Algebra”, but probably it goes back
to Ph. Hall. The concept of a clone is one of the basic concepts of General Algebra and
has applications in the theory of data bases and in other fields of Theoretical Computer
Science.

Composition of partial operations can be described by operations S̄n
m as follows:

S̄n
m(f, g1, . . . , gn) := f(g1(a1, . . . , am), . . . , gn(a1, . . . , am))

for all (a1, . . . , am) for which g1, . . . , gn are defined and for which the values
b1 = g1(a1, . . . , am), . . . , bn = gn(a1, . . . , am) form an n-tuple (b1, . . . , bn) belonging to the
domain of f . Then one can consider the many-sorted algebra ((Pn(A))n≥1; (S̄n

m)m,n≥1). If
we add a family of nullary operation symbols, corresponding to the total projections, then
we obtain a many-sorted algebra

P − cloneA := ((Pn(A))n≥1; (S̄n
m)m,n≥1, (en

i )n≥1,1≤i≤n).

This algebra satisfies the following axioms (C1) and (C3).
(C1) S̃p

m(Z̃, S̃n
m(Ỹ1, X̃1, . . . , X̃n), . . . , S̃n

m(Ỹp, X̃1, . . . , X̃n))
≈ S̃n

m(S̃p
n(Z̃, Ỹ1, . . . , Ỹp), X̃1, . . . , X̃n), (m,n, p = 1, 2, . . . ),

(C3) S̃n
n(Ỹ , ẽn

1 , . . . , ẽn
n) ≈ Ỹ , (n = 1, 2, . . . ).

Here Z̃, Ỹ1, . . . , Ỹp, X̃1, . . . , X̃n, are variables for terms, S̃n
m, S̃p

m, S̃p
n, S̃n

n are operation
symbols and ẽn

i are symbols for variables.
The axiom (C1) is called the superassociative law. It generalizes the associative law

which we obtain from (C1) if we set for m, n and p the integer 1.
One can check that the following identities are also satisfied:

(R) S̄n
n(f, S̄2

n(e2
1, e

n
1 , g), . . . , S̄2

n(e2
1, e

n
n, g)) ≈ S̄2

n(e2
1, f, g),

(L1) S̄1
n(e1

1, f) = f ,

(L2) S̄2
n(e2

1, f, en
i ) = f, 1 ≤ i ≤ n,

(L3) S̄2
n(e2

1, S̄
2
n(e2

1, f, g), h) ≈ S̄2
n(e2

1, f, S̄2
n(e2

1, g, h)),

(L4) S̄n
m(en

i+1, gn, g0, . . . , gn−1) ≈ S̄n
m(en

i , g1, . . . , gn), 1 ≤ i ≤ n,

(L5) S̄2
m(e2

1, g1, S̄
n
m(en

1 , g1, . . . , gn)).

In [1] a many-sorted algebra of the corresponding type was called an abstract P -clone
algebra if (C1), (R), (L1), (L2), (L3), (L4), (L5) are satisfied. The algebra P − cloneA is
an abstract P -clone algebra. P -clone algebras consisting of partial operations are called
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concrete P -clone algebras. Answering to a question of H. J. Hoehnke (posed on occasion
of the 4-th Conference for Young Algebraists, Potsdam 1988), F. Börner proved in [1] that
any abstract P -clone algebra is isomorphic to a subdirect product of concrete ones. This
result is a universal-algebraic version of the representation theorem (Theorem 8.2).

Another important example of a clone is the clone of all terms of a given type τ .
We define terms of type τ using an indexed sequence (fi)i∈I of operation symbols and

individual variables from an alphabet X . Let Xn := {x1, . . . , xn} be a finite alphabet and
let X := {x1, . . . , xn, . . . } be countably infinite. To every operation symbol fi there belongs
an integer ni as its arity. The type of the formal language which we want to define is the
indexed set (ni)i∈I of the arities. We define n-ary terms of type τ as follows:

Definition 9.1 Let n ≥ 1. The n-ary terms of type τ are defined in the following inductive
way:

(i) Every variable xi ∈ Xn is an n-ary term.

(ii) If t1, . . . , tni are n-ary terms and fi is an ni-ary operation symbol, then fi(t1, . . . , tni)
is an n-ary term.

(iii) The set Wτ (Xn) = Wτ (x1, . . . , xn) of all n-ary terms is the smallest set which contains
x1, . . . , xn and is closed under finite application of (ii).

We denote by Wτ (X) the set of all terms of type τ over the countably infinite alphabet
X :

Wτ (X) =
⋃
n≥1

Wτ (Xn).

Definition 9.2 Let Wτ (Xn) be the set of all n-ary terms of type τ . Then the composition
operations S̄n

m (for terms) are inductively defined by the following steps:

(i) If xj ∈ Xn is a variable and t1, . . . , tn ∈ Wτ (Xm), then
S̄n

m(xj , t1, . . . , tn) := tj , for 1 ≤ j ≤ n;

(ii) If fi(s1, . . . , sni) is a composite term, then
S̄n

m(fi(s1, . . . , sni), t1, . . . , tn) := fi(S̄n
m(s1, t1, . . . , tn), . . . , S̄n

m(sni , t1, . . . , tn)).

Then we obtain a N
+-sorted algebras

Cloneτ := ((Wτ (Xn))n∈N+ ; (S̄n
m)m,n∈N+ , (xi)1≤i≤n,n∈N+),

the term clone of type τ . This algebra satisfies (C1) and (C3).
It turns out that terms for partial algebras A = (A; (fA

i )i∈I), where f
A
i is an ni-ary

partial operation defined on A should be defined by adding one more set of symbols (for
projection mappings). This gives the set WC

τ (X) of C-terms. These terms were introduced
by W. Craig (see [4]). Welke defined in [12] many-sorted superposition operations for C-
terms which satisfy the superassociative law (C1).

In the next chapter the authors study “clone theory” in the language of dht-symmetric
categories.
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10 The Clone-part of a Theory For any dht-symmetric category C and any subset
G ⊆ C, the authors introduce the notion of a “C-clone generated by G”:
First one chooses a set J of objects of C such that any g ∈ G is of the form g : A → B,
where A and B belong to the submonoid with zero Ko

J of (|C|, ⊗, I, O), which is generated
by J . Second one forms the full subcategory C(Ko

J ) of C such that |C(Ko
J )| = Ko

J ; this
is a dht-symmetric category. Third one considers the dht-symmetric subcategory GC(Ko

J )
of C(Ko

J ) which is generated by G. The C-clone generated by G is the set 〈G〉CJ of all
f : A→ B ∈ GC(Ko

J ) such that B ∈ J ∪ {I, O}. For 〈G〉CJ = G, the set G itself is called
a C-clone. The only essential case is that one where the monoid with zero Ko

J is freely
generated by J . This is assumed henceforth.

These notions apply to C = T ∈ |T hJ |, and then one also speaks of an abstract Mal’cev
clone G. Further, these notions apply to C = Par. Instead of a Par-clone G, one speaks
of a concrete Mal’cev clone G.

Abstract and concrete Mal’cev clones are commonly denoted as Mal’cev clones. (Of
course, each concrete Mal’cev clone is an abstract one.)

Let T be any partial theory and K be an arbitrary dht-symmetric category. Then the
monoidal dht-symmetric functors F : T → K can be considered as the natural functorial
description of the notion of a T -algebra over K. Especially for K = Par one obtains thus
the natural functorial description of a partial T -algebra.

For any functorial T -algebra over K, F : T → K, the authors introduce the arity-
interpretation (“typization”) of T F ⊆ K, which is again a partial theory, Ary Im F .

One observes, that each C-clone G by assumption generates a partial theory GC(Ko
J ) =

T ∈ |T hJ |, and then G is also called the (Mal’cev) clone-part of T . One may consider the
problem to characterize the clone-part of a partial theory T independently of its connection
to T .

If T ∈ |T hJ | and F : T → K is a T -algebra over K, then we define

Mcl F : = {(A, fF,B); f : A→ B ∈ T , B ∈ J ∪ {I, O}}.

This is the clone-part of the partial theory AryIm F . It is also called the Mal’cev clone
of the T -algebra F . In particular this notion applies to the case K = Par . In this case, Mcl
F is obviously a concrete Mal’cev clone. Observe, that F maps the clone-part Mcl IdT of
T onto Mcl F . The connection between the structures of partial theories T and their clone-
parts Mcl T can be derived from the clone-part functor Cp = (|Cp|, Cp) : T hJ →MclJ ,
which is defined by:

T |Cp| = Mcl T (T ∈ |T hJ |),
F Cp = F

∣∣
Mcl T

(F = (|F |, F ) : T → T ′ ∈ T hJ ).

The clone-part functor is fully faithful. This has several consequences which are de-
scribed in section 7.2 of the book. In section 8 the authors study clones which are derived
from free algebras.

11 Strong Varieties, Regular Hyperidentities and Solid Strong Varieties Strong
varieties of partial algebras of the same type are model classes of partial algebras defined
by so-called strong identities. A strong identity in a partial algebra A is a pair (s, t) ∈
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(WC
τ (X))2 such that the realization of s on A is defined if and only if the realization of

t on A is defined and both are equal. An identity is said to be a strong hyperidentity if
(s, t) is satisfied as strong identity after each replacement of ni-ary operation symbols fi

occurring in s and in t by terms containg all variables x1, . . . , xni . Such replacements can
be performed by so-called regular hypersubstitutions. If every identity satisfied in A is
satisfied as a strong hyperidentity, the strong variety is called solid. The theory of strong
hyperidentities and solid varieties is studied on an universal-algebraic level in [?] and [3] (see
also [2]). The authors can formulate this theory in terms of dht-symmetric theories. Other
highlights of the book are the formulation of the one-point extension of partial algebras to
total ones in 9.6 and the main theorem on strong hypervarieties in 9.9.
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