MEAN ERGODIC THEOREMS FOR A SEQUENCE OF NONEXPANSIVE MAPPINGS IN HILBERT SPACES

MASANORI AKATSUKA, KOJI AOYAMA, AND WATARU TAKAHASHI

Received March 14, 2008; revised April 18, 2008

ABSTRACT. Let C be a closed convex subset of a Hilbert space and $\{T_n\}$ a sequence of nonexpansive self-mappings of C. Then we consider the following iterative sequence $\{z_n\}$: $x_1 = x \in C$, $x_{n+1} = T_n x_n$, and $z_n = 1/n \sum_{k=1}^n x_k$ for $n \in \mathbb{N}$. In this paper, we obtain a weak convergence theorem for such a sequence $\{z_n\}$. Using our result, we get a nonlinear ergodic theorem which is a generalization of Baillon [2]. Further we apply our result to the problem of finding a common fixed point of a countable family of nonexpansive mappings.

1. INTRODUCTION

Let C be a nonempty closed convex subset of a real Hilbert space H. Then a mapping $T: C \to C$ is called nonexpansive if

$$||Tx - Ty|| \le ||x - y||$$

for all $x, y \in C$. We denote by F(T) the set of fixed points of T. In 1975, Baillon [2] proved the first nonlinear ergodic theorem: Define

$$z_n = \frac{1}{n} \sum_{k=1}^n T^{k-1} x$$

for every $n \in \mathbb{N}$ and $x \in C$ and suppose that F(T) is nonempty. Then the sequence $\{z_n\}$ converges weakly to some element of F(T). It is known that many results concerning the mean ergodic theorem for a nonlinear mapping have been obtained, for example, [2], [11], [12], [5], [7], [8], [19]; see also [6], [3], [18], [1], [10], [9], and the references therein. Reich [13] also proved the following weak convergence theorem; see [16] for a simple proof.

Theorem 1.1 (Reich [13]). Let C be a nonempty closed convex subset of a real Hilbert space H and T a nonexpansive self-mapping of C. Suppose that F(T) is nonempty. Let $x_1 = x \in C$ and

$$x_{n+1} = \alpha_n x_n + (1 - \alpha_n) T x_n$$

for $n \in \mathbb{N}$, where $\{\alpha_n\} \subset [0, 1)$ satisfies $\sum_{n=1}^{\infty} \alpha_n (1 - \alpha_n) = \infty$. Then $\{x_n\}$ converges weakly to $z \in F(T)$.

Reich [13] really proved such a theorem in a uniformly convex Banach space whose norm is Fréchet differentiable. Motivated by Baillon [2] and Reich [13], we consider the following

²⁰⁰⁰ Mathematics Subject Classification. Primary 47H05, 47J05, 47J25.

Key words and phrases. Nonexpansive mapping, fixed point, mean ergodic theorem.

iterative sequence $\{z_n\}$: $x_1 = x \in C$ and

(1.1)
$$\begin{cases} x_{n+1} = T_n x_n, \\ z_n = \frac{1}{n} \sum_{k=1}^n x_k \end{cases}$$

for $n \in \mathbb{N}$, where $\{T_n\}$ is a sequence of nonexpansive self-mappings of C.

In this paper, we establish a weak convergence theorem for such a sequence $\{z_n\}$ generated by (1.1). Using our result, we obtain a nonlinear ergodic theorem for a nonexpansive mapping which is a generalization of Baillon [2]. Further we apply our theorem to the problem of finding a common fixed point of a countable family of nonexpansive mappings in a Hilbert space.

2. Preliminaries

Throughout this paper, H denotes a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\|\cdot\|$. Let $\{x_n\}$ be a sequence in H and $x \in H$. Weak convergence of $\{x_n\}$ to x is denoted by $x_n \to x$ and strong convergence by $x_n \to x$.

Let C be a nonempty closed convex subset of H and T a mapping of C into H. A mapping T is said to be nonexpansive if $||Tx - Ty|| \le ||x - y||$ for all $x, y \in C$. The set of fixed points of T is denoted by F(T). It is known that F(T) is closed and convex if T is nonexpansive. For each $x \in H$, there exists a unique point $z \in C$ such that

$$||x - z|| = \min\{||x - y|| : y \in C\}.$$

Such a point z is denoted by Px and P is called the metric projection of H onto C. It is known that

$$(2.1)\qquad \qquad \langle x - Px, Px - y \rangle \ge 0$$

for all $x \in H$ and $y \in C$; see [15] for more details.

To prove our results, we need the following lemmas.

Lemma 2.1 (Takahashi-Toyoda [17]). Let C be a nonempty closed convex subset of a real Hilbert space H, P the metric projection of H onto C, and $\{x_n\}$ a sequence in H. If $||x_{n+1} - u|| \leq ||x_n - u||$ for all $u \in C$ and $n \in \mathbb{N}$, then $\{Px_n\}$ converges strongly.

Lemma 2.2 (Bruck [4]). Let C be a nonempty closed convex subset of a real Hilbert space E. Let $\{S_k\}$ be a sequence of nonexpansive mappings of C into H and $\{\beta_k\}$ a sequence of positive real numbers such that $\sum_{k=1}^{\infty} \beta_k = 1$. If $\bigcap_{k=1}^{\infty} F(S_k)$ is nonempty, then the mapping $T = \sum_{k=1}^{\infty} \beta_k S_k$ is well-defined and $F(T) = \bigcap_{k=1}^{\infty} F(S_k)$.

Bruck [4] showed this assertion for a strictly convex Banach space.

3. Mean ergodic theorems

Using the technique in [15, p.59], we obtain the following:

Lemma 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let $\{x_n\}$ be a sequence in H, $\{z_n\}$ a sequence in H defined by

$$z_n = \frac{1}{n} \sum_{k=1}^n x_k$$

for $n \in \mathbb{N}$, $\{\alpha_n\}$ a sequence of real numbers such that $\alpha_n \to 0$, and T a mapping of C into H. Suppose that there exists $z \in C$ such that

$$\alpha_n \le ||x_n - z||^2 - ||x_{n+1} - Tz||^2$$

for every $n \in \mathbb{N}$ and a subsequence $\{z_{n_i}\}$ of $\{z_n\}$ converges weakly to z. Then z is a fixed point of T.

Proof. For all $k \in \mathbb{N}$ we have

$$\alpha_{k} \leq \|x_{k} - z\|^{2} - \|x_{k+1} - Tz\|^{2}$$

= $\|x_{k} - Tz + Tz - z\|^{2} - \|x_{k+1} - Tz\|^{2}$
= $\|x_{k} - Tz\|^{2} - \|x_{k+1} - Tz\|^{2} + 2\langle x_{k} - Tz, Tz - z \rangle + \|Tz - z\|^{2}.$

Summing these inequalities from k = 1 to n and dividing by n, we get

$$\frac{1}{n}\sum_{k=1}^{n}\alpha_{k} \leq \frac{1}{n}(\|x_{1} - Tz\|^{2} - \|x_{n+1} - Tz\|^{2}) + 2\langle z_{n} - Tz, Tz - z \rangle + \|Tz - z\|^{2}$$
$$\leq \frac{1}{n}\|x_{1} - Tz\|^{2} + 2\langle z_{n} - Tz, Tz - z \rangle + \|Tz - z\|^{2}.$$

Further, replacing n by n_i , we obtain

$$\frac{1}{n_i} \sum_{k=1}^{n_i} \alpha_k \le \frac{1}{n_i} \|x_1 - Tz\|^2 + 2 \langle z_{n_i} - Tz, Tz - z \rangle + \|Tz - z\|^2.$$

Since $z_{n_i} \rightharpoonup z$ and $1/n_i \sum_{k=1}^{n_i} \alpha_k \rightarrow 0$, we obtain

$$0 \le 2 \langle z - Tz, Tz - z \rangle + ||Tz - z||^{2} = - ||Tz - z||^{2}$$

and hence Tz = z.

We prove the main result of this paper.

Theorem 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let $\{T_n\}$ be a sequence of nonexpansive self-mappings of C. Let $\{x_n\}$ and $\{z_n\}$ be two sequences in C defined by $x_1 = x \in C$ and

$$\begin{cases} x_{n+1} = T_n x_n, \\ z_n = \frac{1}{n} \sum_{k=1}^n x_k \end{cases}$$

for $n \in \mathbb{N}$. Suppose that $\{T_n\}$ is pointwise convergent and T denotes the pointwise limit of $\{T_n\}$, that is, $Ty = \lim_{n \to \infty} T_n y$ for $y \in C$. Then the following hold:

- (i) The mapping T is nonexpansive and $\bigcap_{n=1}^{\infty} F(T_n) \subset F(T)$.
- (ii) If $\{x_n\}$ is bounded, then F(T) is nonempty.
- (iii) If $F(T) = \bigcap_{n=1}^{\infty} F(T_n) \neq \emptyset$, then $\{z_n\}$ converges weakly to $z \in F(T)$, where $z = \lim_{n \to \infty} Px_n$ and P is the metric projection of H onto F(T).

Proof. We first prove (i). Let $x, y \in C$ be fixed. Since each T_n is nonexpansive, we have

$$||Tx - Ty|| \le ||Tx - T_nx|| + ||T_nx - T_ny|| + ||T_ny - Ty||$$

$$\le ||Tx - T_nx|| + ||x - y|| + ||T_ny - Ty||.$$

Since $||T_n y - Ty|| \to 0$ for all $y \in C$, we conclude that $||Tx - Ty|| \le ||x - y||$. Suppose $u \in \bigcap_{n=1}^{\infty} F(T_n)$. It is easy to obtain that

$$||u - Tu|| \le ||u - T_nu|| + ||T_nu - Tu|| = ||T_nu - Tu|| \to 0.$$

Therefore $u \in F(T)$.

Let us show (ii). Assume that $\{x_n\}$ is bounded. Then $\{z_n\}$ is also bounded. Thus there exists a subsequence $\{z_{n_i}\}$ of $\{z_n\}$ such that $z_{n_i} \rightharpoonup z$. Note that $z \in C$. Since T_n is nonexpansive, it is clear that

$$||x_{n+1} - T_n z|| = ||T_n x_n - T_n z|| \le ||x_n - z||$$

for every $n \in \mathbb{N}$. This yields

$$\begin{aligned} \|x_{n+1} - Tz\|^2 &= \|x_{n+1} - T_n z + T_n z - Tz\|^2 \\ &= \|x_{n+1} - T_n z\|^2 + \|T_n z - Tz\|^2 + 2\langle x_{n+1} - T_n z, T_n z - Tz\rangle \\ &\leq \|x_n - z\|^2 + \|T_n z - Tz\| \left(\|T_n z - Tz\| + 2\|x_{n+1} - T_n z\| \right). \end{aligned}$$

Hence we conclude that

$$\alpha_n \le \|x_n - z\|^2 - \|x_{n+1} - Tz\|^2$$

for every $n \in \mathbb{N}$, where $\alpha_n = -\|T_n z - Tz\| (\|T_n z - Tz\| + 2\|x_{n+1} - T_n z\|)$. Since $\{T_n\}$ is pointwise convergent and both $\{x_n\}$ and $\{T_nz\}$ are bounded, it follows that $\alpha_n \to 0$. Thus Lemma 3.1 implies that $z \in F(T)$. This means that (ii) holds. Let us prove (iii). Let $u \in \bigcap_{n=1}^{\infty} F(T_n)$. It is obvious that

(3.1)
$$||x_{n+1} - u|| = ||T_n x_n - T_n u|| \le ||x_n - u||$$

for every $n \in \mathbb{N}$. Thus $\{x_n\}$ is bounded. Then $\{z_n\}$ is also bounded. Let $\{z_{n_i}\}$ be a subsequence of $\{z_n\}$ such that $z_{n_i} \rightarrow z$. As in the proof of (ii), we obtain $z \in F(T)$. On the other hand, Lemma 2.1 and (3.1) imply that $\lim_{n\to\infty} Px_n = w \in \bigcap_{n=1}^{\infty} F(T_n)$. To complete the proof, it is enough to prove z = w. From $z \in F(T)$ and (2.1), it holds that

$$\begin{aligned} \langle z - w, x_k - Px_k \rangle &= \langle z - Px_k, x_k - Px_k \rangle + \langle Px_k - w, x_k - Px_k \rangle \\ &\leq \langle Px_k - w, x_k - Px_k \rangle \\ &\leq \|Px_k - w\| \|x_k - Px_k\| \\ &\leq \|Px_k - w\| M \end{aligned}$$

for every $k \in \mathbb{N}$, where $M = \sup\{||x_k - Px_k|| : k \in \mathbb{N}\}$. Summing these inequalities from k = 1 to n_i and dividing by n_i , we have

$$\left\langle z - w, z_{n_i} - \frac{1}{n_i} \sum_{k=1}^{n_i} P x_k \right\rangle \le \frac{1}{n_i} \sum_{k=1}^{n_i} \|P x_k - w\| M.$$

Since $z_{n_i} \rightharpoonup z$ as $i \rightarrow \infty$ and $Px_n \rightarrow w$ as $n \rightarrow \infty$, we obtain $\langle z - w, z - w \rangle \leq 0$. This means z = w. This completes the proof.

Let $T: C \to C$ be a nonexpansive mapping. In Theorem 3.2, putting $T_n = T$ for $n \in \mathbb{N}$, we see that $x_{n+1} = T^n x$ and $z_n = 1/n \sum_{k=1}^n T^{k-1} x$ for every $n \in \mathbb{N}$, and moreover, it is also clear that $T_n y - T y = 0$ for all $y \in C$ and $F(T) = \bigcap_{n=1}^{\infty} F(T_n)$. Therefore Theorem 3.2 (ii) yields a fixed point theorem for a nonexpansive mapping in a Hilbert space.

Theorem 3.3 ([15, Theorem 3.1.6]). Let C be a nonempty closed convex subset of a real Hilbert space H and T a nonexpansive self-mapping of C. Then $F(T) \neq \emptyset$ if and only if $\{T^nx\}$ is bounded for some $x \in C$.

We also obtain a nonlinear ergodic theorem which was proved by Baillon [2]; see also [15,Theorem 3.2.1].

Theorem 3.4 (Baillon [2]). Let C be a nonempty closed convex subset of a real Hilbert space H and T a nonexpansive self-mapping of C. Suppose that F(T) is nonempty. Let $x \in C$ and let $\{z_n\}$ be a sequence in C defined by

$$z_n = \frac{1}{n} \sum_{k=1}^n T^{k-1} x$$

for $n \in \mathbb{N}$. Then $\{z_n\}$ converges weakly to $z \in F(T)$, where $z = \lim_{n \to \infty} Px_n$ and P is the metric projection of H onto F(T).

Further, we obtain the following theorem:

Theorem 3.5. Let C be a nonempty closed convex subset of a real Hilbert space H and T a nonexpansive self-mapping of C. Suppose that F(T) is nonempty. Let $x \in C$ and let $\{x_n\}$ and $\{z_n\}$ be two sequences in C defined by $x_1 = x \in C$ and

$$\begin{cases} x_{n+1} = \alpha_n x_n + (1 - \alpha_n) T x_n, \\ z_n = \frac{1}{n} \sum_{k=1}^n x_k \end{cases}$$

for $n \in \mathbb{N}$, where $\{\alpha_n\} \subset [0,1)$ satisfies $\lim_{n\to\infty} \alpha_n = 0$. Then $\{z_n\}$ converges weakly to $z \in F(T)$, where $z = \lim_{n\to\infty} Px_n$ and P is the metric projection of H onto F(T).

Proof. Put $T_n = \alpha_n I + (1 - \alpha_n)T$ for $n \in \mathbb{N}$, where I is the identity mapping on C. Then T_n is nonexpansive and $F(T_n) = F(T)$ for every $n \in \mathbb{N}$. Therefore $\bigcap_{n=1}^{\infty} F(T_n) = F(T) \neq \emptyset$ and $||T_n y - Ty|| = \alpha_n ||y - Ty|| \to 0$ for all $y \in C$. So, from Theorem 3.2 (iii), we have the desired result.

Problem 3.6. Can we establish a theorem which unifies Theorem 1.1 and Theorem 3.5?

For the remainder of this paper we discuss the problem of approximating a common fixed point of a given countable family of nonexpansive mappings.

Let C be a nonempty closed convex subset of a Hilbert space H. Let $\{S_n\}$ be a sequence of nonexpansive self-mappings of C and $\{\beta_n\}$ a sequence of (0, 1) such that $\sum_{n=1}^{\infty} \beta_n = 1$. We define a sequence $\{T_n\}$ of self-mappings of C as follows:

$$T_{1} = \beta_{1}S_{1} + (1 - \beta_{1})S_{2},$$

$$T_{2} = \beta_{1}S_{1} + \beta_{2}S_{2} + (1 - \beta_{1} - \beta_{2})S_{3},$$

$$\vdots$$

$$T_{n} = \sum_{k=1}^{n} \beta_{k}S_{k} + (1 - \sum_{k=1}^{n} \beta_{k})S_{n+1},$$

for $n \in \mathbb{N}$. It is easy to verify that $F(T_n) = \bigcap_{k=1}^{n+1} F(S_k)$, so that we obtain

(3.2)
$$\bigcap_{n=1}^{\infty} F(T_n) = \bigcap_{k=1}^{\infty} F(S_k).$$

From Lemma 2.2 we may define a nonexpansive self-mapping T of C by

$$T = \sum_{k=1}^{\infty} \beta_k S_k.$$

It also follows from Lemma 2.2 and (3.2) that

$$F(T) = \bigcap_{n=1}^{\infty} F(T_n) = \bigcap_{k=1}^{\infty} F(S_k).$$

Let $u \in \bigcap_{k=1}^{\infty} F(S_k)$ be fixed. Since each S_k is nonexpansive, we see that

$$|S_k y|| \le ||S_k y - S_k u|| + ||S_k u|| \le ||y - u|| + ||u||$$

for all $y \in C$ and $k \in \mathbb{N}$. Then we obtain

$$\|Ty - T_n y\| = \left\| \sum_{k=1}^{\infty} \beta_k S_k y - \left(\sum_{k=1}^n \beta_k S_k y + (1 - \sum_{k=1}^n \beta_k) S_{n+1} y \right) \right\|$$
$$= \left\| \sum_{k=n+1}^{\infty} \beta_k S_k y - (1 - \sum_{k=1}^n \beta_k) S_{n+1} y \right\|$$
$$\leq \sum_{k=n+1}^{\infty} \beta_k \|S_k y\| + (1 - \sum_{k=1}^n \beta_k) \|S_{n+1} y\|$$
$$\leq M \sum_{k=n+1}^{\infty} \beta_k + M(1 - \sum_{k=1}^n \beta_k)$$

for all $y \in C$ and $n \in \mathbb{N}$, where M = ||y - u|| + ||u||. From the assumption that $\sum_{k=1}^{\infty} \beta_k = 1$, we conclude that

$$\lim_{n \to 0} \|Ty - T_n y\| = 0$$

for all $y \in C$. So, we obtain the following theorem:

Theorem 3.7. Let C be a nonempty closed convex subset of a real Hilbert space H. Let $\{S_k\}$ be a sequence of nonexpansive self-mappings of C such that $\bigcap_{k=1}^{\infty} F(S_k)$ is nonempty and $\{\beta_k\}$ a sequence in (0,1) such that $\sum_{k=1}^{\infty} \beta_k = 1$. Let $\{x_n\}$ and $\{z_n\}$ be two sequences defined by $x_1 = x \in C$ and

$$\begin{cases} x_{n+1} = \sum_{k=1}^{n} \beta_k S_k x_n + (1 - \sum_{k=1}^{n} \beta_k) S_{n+1} x_n, \\ z_n = \frac{1}{n} \sum_{k=1}^{n} x_k \end{cases}$$

for $n \in \mathbb{N}$. Then $\{z_n\}$ converges weakly to $z \in \bigcap_{k=1}^{\infty} F(S_k)$, where $z = \lim_{n \to \infty} Px_n$ and P is the metric projection of H onto $\bigcap_{k=1}^{\infty} F(S_k)$.

References

- S. Atsushiba and W. Takahashi, A nonlinear strong ergodic theorem for nonexpansive mappings with compact domains, Math. Japon. 52 (2000), 183–195.
- [2] J.-B. Baillon, Un théorème de type ergodique pour les contractions non linéaires dans un espace de Hilbert, C. R. Acad. Sci. Paris Sér. A-B 280 (1975), Aii, A1511–A1514 (French, with English summary).
- [3] J.-B. Baillon, Comportement asymptotique des itérés de contractions non linéaires dans les espaces L^p, C. R. Acad. Sci. Paris Sér. A-B 286 (1978), A157–A159 (French, with English summary).
- R. E. Bruck Jr., Properties of fixed-point sets of nonexpansive mappings in Banach spaces, Trans. Amer. Math. Soc. 179 (1973), 251–262.
- R. E. Bruck, A simple proof of the mean ergodic theorem for nonlinear contractions in Banach spaces, Israel J. Math. 32 (1979), 107–116.
- M. Edelstein, On non-expansive mappings of Banach spaces, Proc. Cambridge Philos. Soc. 60 (1964), 439–447.

- [7] N. Hirano and W. Takahashi, Nonlinear ergodic theorems for nonexpansive mappings in Hilbert spaces, Kodai Math. J. 2 (1979), 11–25.
- [8] N. Hirano, A proof of the mean ergodic theorem for nonexpansive mappings in Banach space, Proc. Amer. Math. Soc. 78 (1980), 361–365.
- H. Iiduka and W. Takahashi, Weak convergence theorems by Cesáro means for nonexpansive mappings and inverse-strongly-monotone mappings, J. Nonlinear Convex Anal. 7 (2006), 105–113.
- [10] K. Nakajo and W. Takahashi, A nonlinear strong ergodic theorem for asymptotically nonexpansive mappings with compact domains, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 9 (2002), 257–270.
- [11] A. Pazy, On the asymptotic behavior of iterates of nonexpansive mappings in Hilbert space, Israel J. Math. 26 (1977), 197–204.
- [12] S. Reich, Almost convergence and nonlinear ergodic theorems, J. Approx. Theory 24 (1978), 269–272.
- [13] S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 67 (1979), 274–276.
- [14] W. Takahashi, A nonlinear ergodic theorem for an amenable semigroup of nonexpansive mappings in a Hilbert space, Proc. Amer. Math. Soc. 81 (1981), 253–256.
- [15] W. Takahashi, Nonlinear functional analysis, Yokohama Publishers, Yokohama, 2000.
- [16] W. Takahashi, Convex Analysis and Approximation of Fixed Points, Yokohama Publishers, Yokohama, 2000 (Japanese).
- [17] W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 118 (2003), 417–428.
- [18] K.-K. Tan and H. K. Xu, The nonlinear ergodic theorem for asymptotically nonexpansive mappings in Banach spaces, Proc. Amer. Math. Soc. 114 (1992), 399–404.
- [19] R. Wittmann, Mean ergodic theorems for nonlinear operators, Proc. Amer. Math. Soc. 108 (1990), 781–788.

(Masanori Akatsuka) Ministry of Health, Labor and Welfare, Kasumigaseki, Chiyoda-ku, Tokyo 100-8916, Japan

(Koji Aoyama) Department of Economics, Chiba University, Yayoi-cho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan

E-mail address: aoyama@le.chiba-u.ac.jp

(Wataru Takahashi) Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8552, Japan

E-mail address: wataru@is.titech.ac.jp