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Abstract. In this note first we define the notions of left (right) hyper stabilizers of
types 1 and 2 of a nonempty subset of a hyper K-algebra. Also we define the notions
of left (right) normal elements of types 1 and 2 of a hyper K-algebra and left (right)
normal hyper K-algebras of types 1 and 2. Then we give many examples to show that
these notions are different together. Finally we prove some theorems and obtain some
related results . In particular we determine the relationships between the proper hyper
K-ideals of a left (right) normal hyper K-algebra of types 1 and 2 and the positive
implicative hyper K-ideals of types 2, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 17, 19, 21, 23,
24, 25 and 26 of a hyper K-algebra of order 3, which satisfies the simple condition.
Finally we define some closure operators induced by stabilizers.

1 Introduction

The hyper algebraic structure theory was introduced by F. Marty [6] in 1934. Imai and Iseki
[5] in 1966 introduced the notion of BCK-algebra. Boorzooei, Jun and Zahedi et.al. [1,2,8]
applied the hyper structure to BCK-algebra and introduced the concept of hyper K-algebra
which is a generalization of BCK-algebra. Yisheng Hung and Zhaomu Chen [4 ] in 1997
introduced normal BCK-algebra. Roodbari and Zahedi [7] introduced 27 different types
of positive implicative hyperK-ideals also they introduced 9 different types of commutative
hyper K-ideals . In this note we define 4 different types of left (right) stabilizers normal
hyper K-algebras and some closure operators induced by stabilizers of a hyper K-algebra.
Then we obtain some results as mentioned in the abstract.

2 Preliminaries

Definition 2.1.. [2] Let H be a nonempty set and ” ◦ ” be a hyper operation on H , that is
”◦” is a function from H ×H to P ∗(H) = P (H)\{∅}. Then H is called a hyper K- algebra
if it contains a constant ”0” and satisfies the following axioms:
(HK1) (x ◦ z) ◦ (y ◦ z) < x ◦ y ,
(HK2) (x ◦ y) ◦ z = (x ◦ z) ◦ y,
(HK3) x < x ,
(HK4) x < y, y < x ⇒ x = y ,
(HK5) 0 < x.
for all x, y, z ∈ H , where x < y is defined by 0 ∈ x ◦ y and for every A,B ⊆ H , A < B is
defined by ∃a ∈ A, ∃b ∈ B such that a < b. Note that if A,B ⊆ H , then by A ◦B we mean
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the subset
⋃

a∈A
b∈B

a ◦ b of H .

From now on (H, ◦, 0) is a hyper K-algebra.

Theorem 2.2. [2] For all x, y, z ∈ H and for all non-empty subsets A and B of H the
following statements hold:
(i) x ◦ y < x, (ii) A ◦ B < A,
(iii) A ◦ A < A, (iv) 0 ∈ x ◦ (x ◦ 0),
(v) x < x ◦ 0, (vi) A < A ◦ 0,
(vii) A < A ◦ B, if 0 ∈ B.

Lemma 2.3. [1] For all x, y, z ∈ H the following statements hold:
(i) x ◦ y < z ⇔ x ◦ z < y, (ii) x ∈ x ◦ 0.

Proof. (i) Let x, y, z ∈ H be such that x◦ y < z. Then there exists t ∈ x◦ y such that t < z.
Thus 0 ∈ t ◦ z ⊆ (x◦ y) ◦ z = (x◦ z) ◦ y, and hence there exists w ∈ x ◦ z such that 0 ∈ w ◦ y,
i.e., w < y. Therefore x ◦ z < y. The proof of the converse is similar.

(ii) By Theorem 2.2.(i) we have x ◦ 0 < x. So there exists t ∈ x ◦ 0 such that t < x. Since
t ∈ x ◦ 0 , then x ◦ 0 < t and so by (i) , x ◦ t < 0. Thus there is h ∈ x ◦ t such that h < 0.
By (HK5) and (HK4) we get that h = 0. So 0 ∈ x ◦ t, that is x < t. Since x < t and t < x,
then by (HK4), x = t. Therefore x ∈ x ◦ 0.

Definition 2.4. [2] Let I be a nonempty subset of H and 0 ∈ I. Then,
(i) I is called a weak hyper K-ideal of H if x ◦ y ⊆ I and y ∈ I imply that x ∈ I, for all
x, y ∈ H ,
(ii) I is called a hyper K-ideal of H if x◦ y < I and y ∈ I imply that x ∈ I, for all x, y ∈ H .

Definition 2.5. [8] Let H = {0, 1, 2} be a hyper K-algebra. We say that H satisfies the
simple condition if the conditions 1 �< 2 and 2 �< 1 hold.

Definition 2.6. [7] Let I be a nonempty subset of H such that 0 ∈ I. Then I is called a
positive implicative hyper K-ideal of
(i) type 1, if for all x, y, z ∈ H , ((x ◦ y) ◦ z) ⊆ I and (y ◦ z) ⊆ I imply that (x ◦ z) ⊆ I,

(ii) type 2, if for all x, y, z ∈ H , ((x ◦ y) ◦ z) ⊆ I and (y ◦ z) ⊆ I imply that (x ◦ z)
⋂

I �= ∅,

(iii) type 3, if for all x, y, z ∈ H , ((x ◦ y) ◦ z) ⊆ I and (y ◦ z) ⊆ I imply that x ◦ z < I,

(iv) type 4, if for all x, y, z ∈ H , ((x ◦ y) ◦ z) ⊆ I and (y ◦ z)
⋂

I �= ∅ imply that (x ◦ z) ⊆ I,

(v) type 5, if for all x, y, z ∈ H , ((x◦y)◦z) ⊆ I and (y◦z)
⋂

I �= ∅ imply that (x◦z)
⋂

I �= ∅

(vi) type 6, if for all x, y, z ∈ H , ((x ◦ y) ◦ z) ⊆ I and (y ◦ z)
⋂

I �= ∅ imply that x ◦ z < I,

(vii) type 7, if for all x, y, z ∈ H , ((x ◦ y) ◦ z) ⊆ I and y ◦ z < I imply that x ◦ z < I,

(viii) type 8, if for all x, y, z ∈ H , ((x ◦ y) ◦ z) ⊆ I and y ◦ z < I imply that (x ◦ z)
⋂

I �= ∅,

(ix) type 9 , if for all x, y, z ∈ H , ((x ◦ y) ◦ z) ⊆ I and y ◦ z < I imply that (x ◦ z) ⊆ I,
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(x) type 10, if for all x, y, z ∈ H , ((x◦y)◦z)
⋂

I �= ∅ and (y◦z) ⊆ I imply that (x◦z)
⋂

I �= ∅,

(xi) type 11, if for all x, y, z ∈ H , ((x ◦ y) ◦ z)
⋂

I �= ∅ and (y ◦ z) ⊆ I imply that(x ◦ z) ⊆ I,

(xii) type 12, if for all x, y, z ∈ H , ((x ◦ y) ◦ z)
⋂

I �= ∅ and (y ◦ z) ⊆ I imply that x ◦ z < I,

(xiii) type 13, if for all x, y, z ∈ H , ((x ◦ y) ◦ z)
⋂

I �= ∅ and (y ◦ z)
⋂

I �= ∅ imply that
(x ◦ z) ⊆ I,

(xiv) type 14, if for all x, y, z ∈ H , ((x ◦ y) ◦ z)
⋂

I �= ∅ and (y ◦ z)
⋂

I �= ∅ imply that
(x ◦ z)

⋂
I �= ∅,

(xv) type 15, if for all x, y, z ∈ H , ((x◦y)◦z)
⋂

I �= ∅ and (y◦z)
⋂

I �= ∅ imply thatx◦z < I,

(xvi) type 16, if for all x, y, z ∈ H , ((x ◦ y) ◦ z)
⋂

I �= ∅ and y ◦ z < I imply that x ◦ z < I,

(xvii) type 17 , if for all x, y, z ∈ H , ((x ◦ y) ◦ z)
⋂

I �= ∅ and y ◦ z < I imply that
(x ◦ z)

⋂
I �= ∅,

(xviii) type 18, if for all x, y, z ∈ H , ((x◦y)◦z)
⋂

I �= ∅ and y ◦z < I imply that (x◦z) ⊆ I,

(xix) type 19 , if for all x, y, z ∈ H , ((x◦ y)◦ z) < I and (y ◦ z)
⋂

I �= ∅ imply that x◦ z < I,

(xx) type 20, if for all x, y, z ∈ H , ((x◦y)◦z) < I and (y ◦z)
⋂

I �= ∅ imply that (x◦z) ⊆ I,

(xxi) type 21, if for all x, y, z ∈ H , ((x ◦ y) ◦ z) < I and (y ◦ z)
⋂

I �= ∅ imply that
(x ◦ z)

⋂
I �= ∅,

(xxii) type 22, if for all x, y, z ∈ H ,((x ◦ y) ◦ z) < I and (y ◦ z) ⊆ I imply that (x ◦ z) ⊆ I,

(xxiii) type 23 , if for all x, y, z ∈ H , ((x ◦ y) ◦ z) < I and (y ◦ z) ⊆ I imply that x ◦ z < I,

(xxiv) type 24 , if for all x, y, z ∈ H , ((x◦y)◦z) < I and (y◦z) ⊆ I imply that (x◦z)
⋂

I �= ∅,

(xxv) type 25 , if for all x, y, z ∈ H , ((x ◦ y) ◦ z) < I and y ◦ z < I imply that x ◦ z < I,

(xxvi) type 26 , if for all x, y, z ∈ H , ((x◦y)◦z) < I and y◦z < I imply that (x◦z)
⋂

I �= ∅,

(xxvii) type 27 , if for all x, y, z ∈ H , ((x ◦ y) ◦ z) < I and y ◦ z < I imply that (x ◦ z) ⊆ I.

For simplicity of notation we use ”PIHKI ” instead of ” Positive Implicative Hyper K-ideal”
.

Definition 2.7[7] Let I be a nonempty subset of H such that 0 ∈ I.
Then I is called a commutative hyper K-ideal of

(i) type 1 , if for all x, y, z ∈ H , ((x◦y)◦z)
⋂

I �= ∅ and z ∈ I imply that (x◦(y◦(y◦x)) ⊆ I,

(ii) type 2 , if for all x, y, z ∈ H , ((x◦y)◦z)
⋂

I �= ∅ and z ∈ I imply that (x◦(y◦(y◦x))
⋂

I �=
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∅,

(iii) type 3 , if for all x, y, z ∈ H , ((x◦y)◦z)
⋂

I �= ∅ and z ∈ I imply that (x◦(y◦(y◦x)) < I,

(iv) type 4 , if for all x, y, z ∈ H , ((x ◦ y) ◦ z) ⊆ I, z ∈ I imply that (x ◦ (y ◦ (y ◦ x)) ⊆ I,

(v) type 5 , if for all x, y, z ∈ H , ((x◦y)◦z) ⊆ I and z ∈ I imply that (x◦(y◦(y◦x))
⋂

I �= ∅,

(vi) type 6 , if for all x, y, z ∈ H , ((x ◦ y) ◦ z) ⊆ I and z ∈ I imply that (x ◦ (y ◦ (y ◦ x)) < I,

(vii) type 7 , if for all x, y, z ∈ H , ((x ◦ y) ◦ z) < I, z ∈ I imply that (x ◦ (y ◦ (y ◦ x)) ⊆ I,

(viii) type 8 , if for all x, y, z ∈ H , ((x◦y)◦z) < I and z ∈ I imply that (x◦(y◦(y◦x))
⋂

I �= ∅,

(ix) type 9 , if for all x, y, z ∈ H , ((x ◦ y) ◦ z) < I and z ∈ I imply that (x ◦ (y ◦ (y ◦ x)) < I.

For simplicity of notation we use ”CHKI ” instead of ”Commutative hyper K-ideal ”.

Definition 2.8. [1] Let H be a hyper K-algebra. An element a ∈ H is called to be a
left(resp. right) scalar if |a ◦ x| = 1(resp. |x ◦ a| = 1) for all x ∈ H .

Definition 2.9. [1] Let S be a subset of a hyper K-algebra H . The smallest hyper K-ideal
containing S is called the hyper K-ideal generated by S and is denoted by < S >.

Definition 2.10 [3 ] If we are given a set A, a mapping ϕ : P (A) → P (A) is called a closure
operator on A if for all X, Y ⊆ A it satisfies:

(i) X ⊆ ϕ(X),

(ii) ϕ2(X) = ϕ(X),

(iii) X ⊆ Y ⇒ ϕ(X) ⊆ ϕ(Y ).

3 Normal hyper K-algebras of types 1(2)

Definition 3.1. Let H be a hyper K-algebra and S be a nonempty subset of H . Then the
sets
l1S = {x ∈ H |a < (a ◦ x), ∀ a ∈ S}, l2S = {x ∈ H |a ∈ (a ◦ x), ∀ a ∈ S}, Sr1 = {x ∈ H |x <
(x ◦ a), ∀ a ∈ S} and Sr2 = {x ∈ H |x ∈ (x ◦ a), ∀ a ∈ S} are called left hyper stabilizer
of type 1 of S, left hyper stabilizer of type 2 of S, right hyper stabilizer of type 1 of S and
right hyper stabilizer of type 2 of S, respectively.

Also we let l1Sr1=l1S
⋂

Sr1 and l2Sr2 =l2S
⋂

Sr2 and they are called hyper stabilizers of
types 1 and 2, respectively.

For simplicity of notation , we use l1s(l2s) and sr1(sr2) instead of l1{s}(l2{s}) and {s}r1({s}r2).

Example 3.2. The following table shows a hyper K-algebra structure on H = {0, 1, 2}.
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◦ 0 1 2
0 {0, 1} {0} {0, 1}
1 {1, 2} {0, 1} {0, 2}
2 {2} {1, 2} {0, 1, 2}

Then l11 = 1r1 = 1r2 = H and l21 ={0, 1}.

Theorem 3.3. Let H be a hyper K-algebra and C, D ,S and Sj be nonempty subsets of
H . Then

(a) If C ⊆ D, then l1D ⊆l1C, l2D ⊆l2C, Dr1 ⊆ Cr1 and Dr2 ⊆ Cr2,

(b) D ⊆l1(Dr1),D ⊆ (l1D)r1, D ⊆l2(Dr2) and D ⊆ (l2D)r2,

(c) l1D=l1((l1D)r1) , l2D=l2((l2D)r2),Dr1 = (l1(Dr1))r1 and Dr2 = (l2(Dr2))r2,

(d) li(C
⋃

D)=liC
⋂

li D and (C
⋃

D)ri = Cri

⋂
Dri, for i=1, 2

(á) (< S >)ri ⊆ Sri and li(< S >) ⊆liS, for i=1, 2 and

(d̀). (
⋃

j∈J

Sj)ri=
⋂

j∈J

(Sj)ri and li(
⋃

j∈J

(Sj))=
⋂

j∈J

li(Sj) , for any i=1, 2.

Proof. (a). Suppose x ∈l1 D , then d < d ◦ x for all d ∈ D. Since C ⊆ D, we have x ∈l1 C,
therefore l1D ⊆l1C . Similarly , l2D ⊆l2C , Dr1 ⊆ Cr1 and Dr2 ⊆ Cr2 ,

(b). Assume that d ∈ D, then x ∈ x ◦ d, for all x ∈ Dr2. Hence x ∈l2 (Dr2). Therefore
D ⊆l2 (Dr2). By a similar argument D ⊆l1 (Dr1) and D ⊆ (l2D)r2,

(c). By (b) we get that l1D ⊆l1 ((l1D)r1) and D ⊆ (l1D)r1, so by (a) l1((l1D)r1)) ⊆l1 D.
Hence l1((l1D)r1)) =l1 D. Similarly l2((l2D)r2)) =l2 D. Also by (b) we get that Dr1 ⊆
(l1(Dr1))r1 and D ⊆l1 (Dr1), so by (a) (l1(Dr1))r1 ⊆ Dr1. Hence (l1(Dr1))r1 = Dr1.
Similarly (l2(Dr2))r2 = Dr2.

(d). We have (C
⋃

D)r2 ⊆ Cr2 and also Dr2. So (C
⋃

D)r2 ⊆ Cr2

⋂
Dr2. Assume that

x ∈ Cr2

⋂
Dr2, then x ∈ x ◦ d and x ∈ x ◦ c for all d ∈ D and c ∈ C. Therefore

x ∈ (C
⋃

D)r2. So (C
⋃

D)r2 = Cr2

⋂
Dr2. By a similar argument (C

⋃
D)r1=Cr1

⋂
Dr1,

l1(C
⋃

D)=l1C
⋂

l1 D and l2(C
⋃

D)=l2C
⋂

l2 D.

(à). Since S ⊆< S >, by (a) we get that (à).

It is similar to part (d).

Remark 3.4.(i). Note that it may be that S is a hyper K-ideal, while l1S and Sr1 are
not hyper K-ideals. To see this consider the following hyper K-algebra structure on H =
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{0, 1, 2}.
◦ 0 1 2
0 {0} {0} {0, 2}
1 {1} {0} {0, 2}
2 {2} {2} {0}

Assume that S = {0, 1}. Then S is a hyper K-ideal of H , while l1S = Sr1 = {0, 2} are not
hyper K-ideals .

(ii). Note that it may be that S is a hyper K-ideal, while l2S and Sr2 are not hyper K-ideals.
To see this , consider the following hyper K-algebra structure on H = {0, 1, 2}.

◦ 0 1 2
0 {0} {0, 1, 2} {0, 1, 2}
1 {1} {0, 2} {0, 1, 2}
2 {2} {2} {0, 1, 2}

Assume that S = {0, 1}. Then S is a hyper K-ideal of H , while l2S = Sr2 = {0, 2} are not
hyper K-ideals.

Example 3.5. The following table shows that a hyper K-algebra structure on H = {0, 1, 2}.
◦ 0 1 2
0 {0} {0} {0}
1 {1} {0, 1} {0}
2 {2} {1} {0}

Suppose S = {1}, then 1r1 = 1r2 = {0, 1} and (< S >)r1 = (< S >)r2 = {0}. Also
(< S >)r1 is a proper subset of Sr1 , (< S >)r2 is a proper subset of Sr2 , l1S =l2 S = {0, 1}
and l1(< S >) =l2 (< S >) = {0}. Therefore l1(< S >) is a proper subset of l1S and
l2(< S >) is a proper subset of (l2)S.

These means that in à it may be we have proper inclusion.

Theorem 3.6. Let H be a hyper K-algebra, S be a nonempty subset of H and a ◦ a = {0}
, for all a ∈ S. Then S

⋂
li S = ∅ or S

⋂
li S = {0}(S ⋂

Sri = ∅ or S
⋂

Sri = {0}) for any
i=1 or i=2.

Proof. If S
⋂

l1 S �= ∅, then x ∈ S
⋂

l1 S. So x < x ◦ x = {0}. Hence x = 0. Therefore
S

⋂
l1 S = {0}. The proof of the other case is similar.

Example 3.7. The following table shows that a hyper K-algebra structure on H = {0, 1, 2}.
◦ 0 1 2
0 {0} {0, 1, 2} {0, 1, 2}
1 {1} {0, 2} {0, 1, 2}
2 {2} {2} {0, 1, 2}
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Suppose that S = {1, 2}. We see that l1S = Sr1 = {0, 1, 2}, S
⋂

l1 S = S
⋂

Sr1 =
{1, 2},l2 S = Sr2 = {0, 2} and S

⋂
l2 S = S

⋂
Sr2 = {2}. Also 2 ◦ 2 �= {0}. Hence the

condition ”a ◦ a = {0} for all a ∈ S” in Theorem 3. 6 is necessary.

Theorem 3.8. Let H be a hyper K-algebra and let A and B be nonempty subsets of H such
that a ◦ a = {0}, for all a ∈ A . If A and B satisfy any one of A ⊆l1 B, A ⊆l2 B, A ⊆ Br1

and A ⊆ Br2 . Then A
⋂

B = {0}.

Proof. Let a ∈ A
⋂

B. Then by hypotheses a < a ◦ a = {0} or a ∈ a ◦ a = {0}, so a = 0.

Example 3.9. Consider the hyper K-algebra H given in Example 3.7 . Suppose A = {0, 2}
and B = H . We get that A ⊆l1B, A ⊆l2B, A ⊆ Br1 and A ⊆ Br2. We see that
A

⋂
B = {0, 2} and 2 ◦ 2 �= {0}. Thus the condition ”a ◦ a = {0} for all a ∈ A” in

Theorem 3.8 is necessary.

Theorem 3.10. Let H be a hyper K-algebra. Then for any a ∈ H the following conditions
are equivalent :

(i). ari ⊆lia,

(ii). ari=lia,

(iii). lia ⊆ ari

for any i=1 or 2, .

Proof. We show that (i) ⇔ (ii) and (ii) ⇔ (iii).

(ii) ⇒ (i). It is clear.

(i) ⇒ (ii). For any x ∈l1 a(l2a), we have a < a ◦ x(a ∈ a ◦ x). Thus a ∈ xr1(xr2). By (i) we
get that a ∈l1 x(l2x). Hence x ∈ ar1(ar2). Therefore ari =li a for any a ∈ H and for any
i=1 or 2 .

(ii) ⇒ (iii). It is clear.

(iii) ⇒ (ii). For any x ∈ ar1(ar2), we have x < x ◦ a(x ∈ x ◦ a). So a ∈l1 x(l2x). By (iii)
a ∈ xr1(xr2). Therefore x ∈l1 a(l2a). Hence ari =li a for any i=1 or 2 and for any a ∈ H .

Theorem 3.11. Let H be a hyper K-algebra such that xri=lix, for any i=1 or 2 and for
any x ∈ H . Then x < x ◦ y(x ∈ x ◦ y) implies that y < y ◦ x(y ∈ y ◦ x), for x, y ∈ H .

Proof. If x ∈ x ◦ y, then x ∈ yr2=l2y and so y ∈ y ◦ x. Similarly x < x ◦ y implies y < y ◦ x.

Definition 3.12. Let H be a hyper K-algebra. If x ◦ (x ◦ y) = y ◦ (y ◦ x) for all x, y ∈ H ,
then H is called a commutative hyper K-algebra.

Example 3.13. The following table shows a commutative hyper K-algebra structure on
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H = {0, 1, 2}.

◦ 0 1 2
0 {0} {0, 1, 2} {0, 1, 2}
1 {1} {0, 1, 2} {1}
2 {2} {1, 2} {0, 1, 2}

Theorem 3.14. Let H be a commutative hyper K-algebra and S be a nonempty subset
of H . Then Sr1 =l1 S.

Proof. Let x ∈ Sr1. Then x < x ◦ y for all y ∈ S. Hence 0 ∈ x ◦ (x ◦ y) = y ◦ (y ◦ x).
Therefore y < y ◦ x. Thus Sr1 ⊆l1 S. By similarly l1S ⊆ Sr1. Also Sr1=l1S.

Example 3.15. The following table shows a hyper K-algebra structure on H = {0, 1, 2}.

◦ 0 1 2
0 {0} {0, 1, 2} {0, 1, 2}
1 {1} {0, 1} {0, 1, 2}
2 {2} {1} {0, 1, 2}

We have 0 ◦ (0 ◦ 1) �= 1 ◦ (1 ◦ 0) , also 2r1 �=l12. So ”the commutativity ” in Theorem 3.14
is necessary.

Definition 3.16. Let H be a hyper K-algebra. An element a ∈ H is called a left (right )
hyper normal element of type 1(2) if lia(ari) is a hyper K-ideal of H , for i=1 , 2 .

Definition 3.17. A hyper K-algebra H is called left (right ) hyper normal of type 1(2) if
lia(ari) of any element a ∈ H is a hyper K-ideal of H for i=1 or 2 . Also if H is both left
and right hyper normal of type 1 (2), then H is called hyper normal K-algebra of type 1
(2).

Example 3.18.(i) Let(H, ∗, 0) be a normal BCK-algebra [4] and define the hyper operation
”o” on H by x ◦ y = {x ∗ y}. Then (H, ∗, 0) is a normal hyper K-algebra of types 1 and 2.

(ii) Consider Remark 3.4 (i), we have l11 = 1r1 = 1r2 = {0, 2},l2 1 = {0}, l12 = 2r1 =l2

2 = {0, 1} and 2r2 = {0}, then 2 is a left (right) hyper normal element of types 1 and 2
, but 1 is not a left (right) hyper normal element of type 1 . In Remark 3.4 (ii) , we get
that l21 = 1r1 = 1r2 = {0, 2},l1 1 = {0, 1, 2} and l12 = 2r1 =l2 2 = 2r2 = {0, 1, 2} , then 2
is a left (right) hyper normal element of types 1 and 2 , but 1 is not a right hyper normal
element of types 1, 2 , also 1 is not a left hyper normal element of type 2 and 1 is a left
hyper normal element of type 1 .

(iii) The following table shows a left(right) hyper normal K-algebra of type 1(2) on H =
{0, 1, 2}. Because l11 =l2 1 = 1r1 = 1r2 = {0, 1, 2},l1 2 =l2 2 = 2r1 = 2r2 = {0, 1} and
l10 =l2 0 = 0r1 = 0r2 = {0, 1, 2} are hyper K-ideals.
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◦ 0 1 2
0 {0} {0} {0}
1 {1} {0, 1} {1}
2 {2} {2} {0}

Theorem 3.19. Let H be a hyper K-algebra and a ∈ H . If a is a left scalar element of H
, then l2a is a weak hyper K-ideal.

Proof. Since a is a left scalar element of H , then l2a = {x ∈H|a ◦ x = {a}}. We show that
l2a is a weak hyper K-ideal. By Lemma 2.3 (ii )we have 0 ∈l2 a. Now let x ◦ y ⊆l2 a and
y ∈l2 a. Then {a} = a ◦ y. By Definition 3.1 and x ◦ y ⊆l2 a we get that {a} = a ◦ (x ◦ y).
Also a◦ (x◦y) = (a◦y)◦ (x◦y) < a◦x, then a < a◦x. Since a◦x < a, we have {a} = a◦x.
Hence x ∈l2 a .Therefore l2a is a weak hyper K-ideal.

Remark 3.20. The following table shows a hyper K-algebra structure on H = {0, 1, 2}.

◦ 0 1 2
0 {0} {0} {0}
1 {1} {0} {2}
2 {2} {0} {0, 2}

. We see that l22 = {0, 2} is not a weak hyper K-ideal. Also 2 is not a left scalar of H .
Therefore the condition ”left scalar element in Theorem 3.19” is necessary.

Theorem 3.21 . Let H be a commutative hyper K-algebra . If H is a left(right) normal
hyper K-algebra of type 1, then H is a normal hyper K-algebra of type 1.

Proof. It is sufficient to show that H is a right (left) normal of type 1 ⇔ H is a left(right)
normal of type 1. By Theorem 3.14 this can be easily proved.

Note that the following examples show that the notions normal hyper K-algebra of types 1
and 2 are not equivalent.

Example 3.22 .(i) The following table shows a hyper K-algebra structure on H = {0, 1, 2}.

◦ 0 1 2
0 {0} {0} {0}
1 {1} {0, 2} {0}
2 {2} {1} {0}

Then H is a normal hyper K-algebra of type 2, but it is not a normal hyper K-algebra of
type 1. Because {x ∈ H |x < x ◦ 1} = {0, 1} is not a hyper K-ideal of H .
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(ii) The following table shows a hyper K-algebra structure on H = {0, 1, 2}.

◦ 0 1 2
0 {0, 1} {0, 1} {0, 1}
1 {1} {0, 1} {1}
2 {1, 2} {0, 1} {0, 1, 2}

H is a normal hyper K-algebra of type 1, but it is not a normal hyper K-algebra of type 2.
Because {x ∈ H |x ∈ x ◦ 1} = {0, 1} is not a hyper K-ideal of H .

For simplicity of notation we use ”RNHKA” (LNHKA) instead of right(left) normal hyper
K-algebra and also we use ”NHKA” instead of normal hyper K-algebra.

Example 3.23. The following table shows a hyper K-algebra structure on H = {0, 1, 2, 3}.
◦ 0 1 2 3
0 {0} {0} {0} {0, 2, 3}
1 {1} {0} {1, 2, 3} {1, 2, 3}
2 {2} {2} {0, 2, 3} {2}
3 {3} {3} {3} {0, 3}

In this example we see that (x < x ◦ a) implies that (x ∈ x ◦ a) for all a, x ∈ H .

Theorem 3.24. Let H be a hyper K-algebra and (x < x◦a) implies that (x ∈ x◦a) for all
a, x ∈ H . Then H is a RNHKA(LNHKA) of type 1 if and only if H is a LNHKA(RNHKA)
of type 2.

Proof. Let a ∈ H . Then by hypothesis ar1 = ar2 and l1a =l2 a. Then the proof follows
from Definition 3.17.

Remark 3.25.(i) In Example 3.22 (i) H is a RNHKA of type 2, but it is not a LNHKA of
type 1. Also in Example 3.22 (ii) H is a RNHKA of type 1, but it is not a LNHKA of type
2.
(ii) Every RNHKA (LNHKA) of type 1 is a RNHKA (LNHKA) of type 2. Because x ∈
x ◦ a ⇒ x < x ◦ a for all x, a ∈ H .

Theorem 3.26. Let H be a hyper K-algebra.Then H is a RNHKA(LNHKA) of type 1(2)
if and only if Sri(liS) i=1, 2 is a hyper K-ideal of H for any nonempty subset S of H .

Proof.⇐. It is clear.

⇒ . We have liS =
⋂

a∈S

lia and Sri =
⋂

a∈S

ari. Thus H is a RNHKA(LNHKA) of type 1(2) if

and only if ari(lia) i=1, 2 is a hyper K-ideal of H for all a ∈ S.

Theorem 3.27. Let H be a hyper K-algebra. H is a RNHKA(LNHKA) of type 1(2) if
and only if every subhyper K-algebra N of H is a RNHKA(LNHKA) of type1(2).
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Proof. ⇒). Assume a ∈ N and ar1 ,aŕ1 be the right stabilizers of it with respect to H and
N respectively. It is clear that aŕ1 = N

⋂
ar1. We show that aŕ1 is a hyper K-ideal of N .

If x, y ∈ N , x ◦ y < aŕ1 and y ∈ aŕ1, then x ◦ y < ar1 and y ∈ ar1. Since ar1 is a hyper
K-ideal of H , so x ∈ aŕ1. Hence N is a RNHKA of type 1. The proof of the other part is
the same as a bove.

Remark 3.28. [1] Let (H1, ◦1) and (H2, ◦2) be hyper K-algebras. Then (H1

⊗
H2, ◦) is a

hyper K-algebra , where (x1, x2) ◦ (y1, y2) = (x1 ◦1 y1, x2 ◦2 y2) = {(a, b)|a ∈ x1 ◦1 y1, b ∈
x2 ◦1 y2}.

Lemma 3.29.[1] Let (H1, ◦1) and (H2, ◦2) be hyper K-algebras. Then

(i) If I1 and I2 are hyper K-ideals of H1 and H2 , respectively , then (I1

⊗
I2, ◦) is a hyper

K-ideal of (H1

⊗
H2, ◦) ,

(ii) If I is a hyper K-ideal of (H1

⊗
H2, ◦), then there are unique hyper K-ideals I1 and I2

of H1 and H2, respectively such that I = I1

⊗
I2.

Theorem 3.30. Let (H1, ◦1) and (H2, ◦2) be hyper K-algebras. Then H1 and H2 are
RNHKA(LNHKA) of type1(2) if and only if H1

⊗
H2 is a RNHKA(LNHKA) of type 1(2).

Proof. ⇒. Let (a1, a2) ∈ H1

⊗
H2. Then (a1, a2)r1 = {(x1, x2) ∈ H1

⊗
H2|(x1, x2) <

(x1, x2) ◦ (a1, a2)} = {(x1, x2) ∈ H1

⊗
H2|x1 < x1 ◦1 a1, x2 < x2 ◦2 a2} = (a1)r1

⊗
(a2)r2.

By Lemma 3.29 (a1, a2)r1 is a hyper K-ideal of H1

⊗
H2. Therefore H1

⊗
H2 is a RNHKA

of type 1.

⇐. Let a ∈ H1. Then (a, 0) ∈ H1

⊗
H2. We have (a, 0)r1 = ar1

⊗
0r1. Since (a, 0)r1 is a

hyper K-ideal of H1

⊗
02, so ar1 is a hyper K-ideal of H1. Therefore by Lemma 3.29 H1

is a RNHKA of type 1. The proof of the other parts are the same as above.

Theorem 3.31. Let H be a NHKA of type 1(2) of order 3 , which satisfies the simple
condition and let I be a proper hyper K-ideal of H . Then I is PIHKI of types 2, 3, 5, 6, 7,
8, 10, 12, 14, 15, 16, 17, 19, 21, 23, 24, 25 and 26.

Proof. We prove theorem for type 1, the proof of the other cases is similar to it, by same
suitable modification.

Since H is simple , then by [8]

(i) 1 ◦ 2 �= {2} and 2 ◦ 1 �= {1},

(ii) 1 ◦ 0 = {1} and 2 ◦ 0 = {2}.

Since H is a NHKA of type 1 , then {x|x < x◦1}, {x|x < x◦2}, {x|1 < 1◦x} and {x|2 < 2◦x}
are hyper K-ideals . Also since H is simple , then {x ∈ H |x < x ◦ 1} ⊇ {0, 2}, {x ∈ H |x <
x ◦ 2} ⊇ {0, 1}, {x ∈ H |1 < 1 ◦ x} ⊇ {0, 2} and {x ∈ H |2 < 2 ◦ x} ⊇ {0, 1}. Therefore H
has only the following possible cases :

case 1: 1 ◦ 2 = {1} and 2 ◦ 1 = {2},
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case 2: 2 ◦ 1 = {2}, 1 ◦ 2 = {1, 2} and 1 < 1 ◦ 1,

case 3: 1 ◦ 2 = {1}, 2 ◦ 1 = {1, 2} and 2 < 2 ◦ 2,

case 4: 1 ◦ 2 = 2 ◦ 1 = {1, 2}, 2 < 2 ◦ 2 and 1 < 1 ◦ 1,

Without loss of generality assume that I = {0, 1}. Since H is a NHKA of type 1 and I is a
hyper K-ideal, then H has only the following possible cases:

case 1: 1 ◦ 2 = {1} and 2 ◦ 1 = {2},

case 2: 2 ◦ 1 = {2}, 1 ◦ 2 = {1, 2} and 1 < 1 ◦ 1.

Note that in cases 3 and 4 , I = {0, 1} is not a hyper K-ideal .We consider case 1:

On the contrary , let I does not be a PIHKI of type 2. Then there exist x, y, z ∈ H such
that ((x ◦ y) ◦ z) ⊆ I and (y ◦ z) ⊆ I , but (x ◦ z)

⋂
I = ∅. Hence x ◦ z = 2.

Since H is simple , then by [8] we have the following subcases:

(i) x=2 and z=0,

(ii) x=2 and z=1.

If x=2 and z=0, we show that at least one of the hypothesis ((x ◦ y) ◦ z) ⊆ I or (y ◦ z) ⊆ I
does not hold.

(a) If y=0, then 2 = ((2 ◦ 0) ◦ 0) �⊆ I,

(b) if y=1, then 2 = ((2 ◦ 1) ◦ 0) �⊆ I,

(c) if y=2, then 2 = (2 ◦ 0) �⊆ I.

Therefore in this sub case I is a PIHKI of type 2.

We now consider sub case (ii), that is let x=2 and z=1 .

We show that at least one of the hypothesis ((x ◦ y) ◦ z) ⊆ I or (y ◦ z) ⊆ I does not hold.

(a) If y=0, then 2 = ((2 ◦ 0) ◦ 1) �⊆ I,

(b) if y=1, then 2 = ((2 ◦ 1) ◦ 1) �⊆ I,

(c) if y=2, then 2 = (2 ◦ 1) �⊆ I.

Therefore in this sub case I is a PIHKI of type 2.
Thus similarly , by imposing the suitable changes we can prove theorem for other types.

Remark 3.32. The converse of Theorem 3.31 is not true. The following table shows a
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hyper K-algebra structure on H = {0, 1, 2}.

◦ 0 1 2
0 {0} {0} {0, 2}
1 {1} {0} {1, 2}
2 {2} {2} {0}

We see that H is simple, moreover I = {0, 1} is a PIHKI of types 2, 3, 5, 6, 7, 8, 10, 12,
14, 15, 16, 17, 19, 21, 23, 24, 25 and 26, while H is not a NHKA of type 1(2). Because
1ri = {0, 2} is not a hyper K-ideal of H for i=1, 2.

Theorem 3.33. Let H be a NHKA of type 1(2) of order 3 , which satisfies the simple
condition and let I be a proper hyper K-ideal of H . Then I is a CHKI of types 2, 3, 5, 6,
8 and 9.

Proof. We prove theorem for type 3, the proof of the other cases are similar to it, by same
suitable modification.
Without loss of generality assume that I = {0, 1}. Since H is NHKA of type 1(2) and I is
a hyper K-ideal, then by considering the proof of Theorem 3.31 H has only the following
possible cases:

case 1: 1 ◦ 2 = {1} and 2 ◦ 1 = {2},

case 2: 2 ◦ 1 = {2}, 1 ◦ 2 = {1, 2} and 1 < 1 ◦ 1.

On the contrary , let I does not be a CHKI of type 3. Then there exist x, y, z ∈ H ,
((x ◦ y) ◦ z)

⋂
I �= ∅ and z ∈ I imply that (x ◦ (y ◦ (y ◦ x)) �< I. So (x ◦ (y ◦ (y ◦ x)) = 2. By

simplicity H [8] we have the following subcases:

(i) x=2 and y ◦ (y ◦ x) = 0,

(ii) x=2 and y ◦ (y ◦ x) = 2,

If x=2 and y ◦ (y ◦ x) = 0, then y ◦ (y ◦ 2) = 0.

We show that the hypothesis ((x ◦ y) ◦ z)
⋂

I �= ∅ in the following cases does not hold.

(a) If y=0 and z=0, then ((2 ◦ 0) ◦ 0)
⋂

I = ∅,

(b) if y=0 and z=1, then ((2 ◦ 0) ◦ 1)
⋂

I = ∅,

(a) if y=1 and z=0, then ((2 ◦ 1) ◦ 0)
⋂

I = ∅,

(d) if y=1 and z=1, then ((2 ◦ 1) ◦ 1)
⋂

I = ∅,

Also

(e)if y=2 and z=0 or z=1, then since 0 ∈ 2◦2 and 2 ∈ 2◦0 , we get that 0 ∈ (2◦ (2◦ (2◦2)).
Hence (2 ◦ (2 ◦ (2 ◦ 2)) < I, then in this case Theorem 3.33 is true. By a similar argument
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as above we obtain a contradition. Therefore I is a CHKI of type 3. Thus similarly , by
imposing the suitable changes we can prove theorem for the other types.

Remark 3.34. The converse of Theorem 3.33 is not true. Consider hyper K-algebra H in
Remark 3.32. We see that I = {0, 1} is a CHKI of types 2, 3, 5, 6, 8 and 9, while H is not
NHKA of type 1(2). Because 1ri = {0, 2} is not a hyper K-ideal of H for i=1, 2.

Theorem 3.35. Let H be a hyper K-algebra. Then the functions ϕi : P (H) → P (H) such
that ϕi(D) =li (Dri) i=1 , 2 are closure operators.

Proof. (i) By Theorem 3.3(b), we have D ⊆li (Dri) for all D ⊆ H ,

(ii) By Theorem 3.3 (c) , we have ϕi(D) =li (Dri) =li ((li(Dri))ri) = ϕi(ϕi(D)),

(iii) Let A ⊆ B. Then by Theorem 3.3(a), we get that Bri ⊆ Ari and li(Ari) ⊆li (Bri), i =
1, 2. Therefore ϕi(A) ⊆ ϕi(B). Hence by Definition 2.10 ϕi is a closure operator.
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