ON IDEALS AND UPPER SETS IN BE-ALGEBRAS

SUN SHIN AHN AND KEUM SOOK SO

Received May 5, 2008

ABSTRACT. In this paper, the idea of ideals of *BE*-algebras is introduced and several descriptions of ideals are given in terms of upper sets $A(u, v) = \{z \in X | u * (v * z) = 0\}$ for transitive and for self distributive *BE*-algebras (X; *, 1) of type (2, 0).

1. Introduction.

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-algebras and BCI-algebras ([3, 4]). It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. In [1, 2] Q. P. Hu and X. Li introduced a wide class of abstract algebras: BCH-algebras. They have shown that the class of BCI-algebras is a proper subclass of the class of BCH-algebras. J. Neggers and H. S. Kim ([8]) introduced the notion of d-algebras which is another generalization of BCK-algebras. Y. B. Jun, E. H. Roh and H. S. Kim ([6]) introduced the notion of BH-algebra, which is a generalization of BCH/BCI/BCK-algebras, i.e., (I); (II) and (IV) x * y = 0 and y * x = 0 imply x = y for any $x, y \in X$. In [5], H. S. Kim and Y. H. Kim introduced the notion of a BE-algebra as a dualization of a generalization of a BCK-algebra. Using the notion of upper sets they provided an equivalent condition describing filters in BE-algebras.

In this paper we continue the study of BE-algebras. In particular we define the proper notion of ideal for this class of algebras. After introducing the notions of transitive and self distributive BE-algebras as rather natural subclasses of interest in terms of an order relation associated with the product-operation of the algebras of this type, we obtain several characterizations of ideals in this setting as unions of special collections of upper sets A(x, y)(defined below) in these algebras.

2. Preliminaries.

We recall some definitions and results (See [5]).

Definition 2.1. An algebra (X; *, 1) of type (2,0) is called a *BE-algebra* ([5]) if

- (BE1) x * x = 1 for all $x \in X$;
- (BE2) x * 1 = 1 for all $x \in X$;
- (BE3) 1 * x = x for all $x \in X$;
- (BE4) x * (y * z) = y * (x * z) for all $x, y, z \in X$ (exchange)

²⁰⁰⁰ Mathematics Subject Classification. 06F35. Key words and phrases. BE-algebras, ideal, upper set, self distributive.

We introduce a relation " \leq " on X by $x \leq y$ if and only if x * y = 1.

Proposition 2.2. ([5]) If (X; *, 1) is a *BE*-algebra, then x * (y * x) = 1 for any $x, y \in X$.

Example 2.3. ([5]) Let $X := \{1, a, b, c, d, 0\}$ be a set with the following table:

*	1	a	b	c	d	0
1	1	a	b	С	d	0
a	1	1	a	c	c	d
b	1	1	1	c	c	c
c	1	a	b	1	a	b
d	1	1	a	1	1	a
0	1	a 1 1 a 1 1	1	1	1	1

Then (X; *, 1) is a *BE*-algebra.

Definition 2.4. A *BE*-algebra (X, *, 1) is said to be *self distributive* ([5]) if x * (y * z) = (x * y) * (x * z) for all $x, y, z \in X$.

Example 2.5. ([5]) Let $X := \{1, a, b, c, d\}$ be a set with the following table:

*	1	a	b	c	d
1	1	a	b	С	d
a	1	$egin{array}{c} a \\ 1 \\ a \\ 1 \end{array}$	b	c	d
b	1	a	1	c	c
c	1	1	b	1	b
d	1	1	1	1	1

It is easy to see that X is a BE-algebra satisfying self distributivity.

Note that the *BE*-algebra in Example 2.3 is not self distributive, since d * (a * 0) = d * d = 1, while (d * a) * (d * 0) = 1 * a = a.

3. Main Results.

In what follows let X be denote a *BE*-algebra unless otherwise specified. We begin by defining the notion of ideals of X.

Definition 3.1. A non-empty subset I of X is called an *ideal* of X if

- (I1) $\forall x \in X \text{ and } \forall a \in I \text{ imply } x * a \in I, \text{ i.e., } X * I \subseteq I;$
- (I2) $\forall x \in X, \forall a, b \in I \text{ imply } (a * (b * x)) * x \in I.$

Example 3.2. In Example 2.3, $\{1, a, b\}$ is an ideal of X, but $\{1, a\}$ is not an ideal of X, since $(a * (a * b)) * b = (a * a) * b = 1 * b = b \notin \{1, a\}$.

Lemma 3.3. Every ideal of X contains 1.

Proof. Let $I \neq \emptyset$ be an ideal of X. There exists $x \in I$. Hence $1 = x * x \in I * I \subseteq X * I \subseteq I$. Thus $1 \in I$.

Lemma 3.4. If I is an ideal of X, then $(a * x) * x \in I$ for all $a \in I$ and $x \in X$. *Proof.* Let b := 1 in (I2). Then $(a * (1 * x)) * x \in I$. Hence $(a * x) * x \in I$.

Corollary 3.5. Let I be an ideal of X. If $a \in I$ and $a \leq x$, then $x \in I$.

Proof. Let $a \in I$, $x \in X$ with $a \le x$. Hence a * x = 1. Therefore $x = 1 * x = (a * x) * x \in I$. Thus $x \in I$.

Lemma 3.6. Let I be a subset of X such that

- (I3) $1 \in I;$
- (I4) $x * (y * z) \in I$ and $y \in I$ imply $x * z \in I$ for all $x, y, z \in X$.

If $a \in I$ and $a \leq x$, then $x \in I$.

Proof. Let $a \in I$, $a \leq x, x \in X$. Then $1 * (a * x) = 1 * 1 = 1 \in I$. By $a \in I$, (I4), we have $1 * x = x \in I$. Thus $x \in I$.

Definition 3.7. A *BE*-algebra (X; *, 1) is said to be *transitive* if for any $x, y, z \in X$,

$$y * z \le (x * y) * (x * z).$$

Example 3.8. Let $X := \{1, a, b, c\}$ be a set with the following table:

*	1	a	b	c
1	1	a	b	c
$a \\ b$	1	1	a	a
b	1	1	1	a
c	1	1	a	1

Then X is a transitive BE-algebra.

Example 3.9. Let $X := \{1, a, b, c\}$ be a set with the following table:

*	1	a	b	c
1	1	a	b	c
a	1	1 1	b	c
b	1	1	1	1
c	1	a	c	1

Then X is a *BE*-algebra. Since b * a = 1 and (c * b) * (c * a) = c * a = a, X is not transitive.

Proposition 3.10. If X is a self distributive *BE*-algebra, then it is transitive.

Proof. For any $x, y \in X$, we have

$$\begin{array}{lll} (y*z)*[(x*y)*(x*z)] &=& (y*z)*[x*(y*z)] & [\text{self distributive}] \\ &=& x*[(y*z)*(y*z)] & [(\text{BE4})] \\ &=& x*1 & [(\text{BE1})] \\ &=& 1 & [(\text{BE2})], \end{array}$$

proving the proposition.

The converse Proposition 3.10 need not be true in general. In Example 3.8, X is a transitive *BE*-algebra, but a * (a * b) = a * a = 1, while (a * a) * (a * b) = 1 * a = a, showing that X is not self distributive.

The following is a characterization of ideals

Theorem 3.11. Let X be a transitive BE-algebra. A subset $I \neq \emptyset$ of X is an ideal of X if and only if it satisfies conditions (I3) and (I4).

Proof. Let I be an ideal of X. Then $1 \in I$ by Lemma 3.3. Thus (I3) holds. Let $x, y, z \in X$ be such that $x * (y * z) \in I$ and $y \in I$. Using Lemma 3.4, we get $(y * z) * z \in I$. Now, let $\alpha := y * z$, $\beta := z$ in

$$\alpha * \beta \le (x * \alpha) * (x * \beta).$$

Then $(y * z) * z \le (x * (y * z)) * (x * z)$ and so [(y * z) * z] * [(x * (y * z)) * (x * z)] = 1. Hence $x * z = 1 * (x * z) = [((y * z) * z) * ((x * (y * z)) * (x * z))] * (x * z) \in I$. Thus $x * z \in I$. Thus (I4) holds.

Conversely, we assume that I satisfies (I3) and (I4). Let $x \in X$, $a \in I$. Then $x * (a * a) = x * 1 = 1 \in I$, by (I3). By (I4), $x * a \in I$, i.e., (I1) holds. Let $x \in X, a, b \in I$. Then $(a * x) * (a * x) = 1 \in I$. By (I4), $(a * x) * x \in I$. Now, ((a * x) * x) * ((b * (a * x)) * (b * x)) = 1, by Proposition 3.10. Hence $(a * x) * x \leq (b * (a * x)) * (b * x)$. Using Lemma 3.6, we have $(b * (a * x)) * (b * x) \in I$. Since $b \in I$, by (I4), we obtain $(b * (a * x)) * x \in I$. Thus (I2) holds. Therefore I is an ideal of X.

Corollary 3.12. Let X be a self distributive BE-algebra. A subset $I \neq \emptyset$ of X is an ideal of X if and only if it satisfies conditions (I3) and (I4).

Proof. The proof follows from Proposition 3.10 and Theorem 3.11

For any $u, v \in X$, consider a set

$$A(u,v) := \{ z \in X | u * (v * z) = 1 \}.$$

We call A(u, v) the upper set ([5]) of u and v. In Example 3.2, the set $A(1, a) = \{1, a\}$ is not an ideal of X. Hence we know that A(u, v) may not be an ideal of X in general.

Theorem 3.13. If X is a self distributive BE-algebra, then A(u, v) is an ideal of X, $\forall u, v \in X$.

Proof. Let $a, b \in A(u, v)$ and $x \in X$. Then u * (v * a) = 1 and u * (v * b) = 1. It follows from the self distributivity law that

$$\begin{array}{rcl} u * (v * (x * a)) &=& u * [(v * x) * (v * a)] & [self distributive] \\ &=& [u * (v * x)] * [u * (v * a)] & [self distributive] \\ &=& (u * (v * x)) * 1, & [a \in A(u, v)] \\ &=& 1 & [(BE2)] \end{array}$$

whence $x * a \in A(u, v)$. Thus, (I1) holds.

Let $a, b \in A(u, v)$ and $x \in X$. Then u * (v * a) = 1 and u * (v * b) = 1. It follows from the self distributivity law that

$$\begin{array}{rcl} u*(v*((a*(b*x))*x)) &=& u*[(v*(a*(b*x)))*(v*x)] & [\text{self distributive}] \\ &=& [u*(v*(a*(b*x)))]*[u*(v*x)] & [\text{self distributive}] \\ &=& [(u*(v*a))*(u*(v*(b*x)))]*[u*(v*x)] & [\text{self distributive}] \\ &=& [1*(u*(v*(b*x))]*[u*(v*x)] & [a \in A(u,v)] \\ &=& [u*(v*(b*x))]*[u*(v*x)] & [(\text{BE3})] \\ &=& [(u*(v*b))*(u*(v*x)]*[u*(v*x)] \\ &=& (u*(v*x))*(u*(v*x)) \\ &=& 1 & [(\text{BE2})] \end{array}$$

whence $(a * (b * x)) * x \in A(u, v)$. Thus, (I2) holds. This proves that A(u, v) is an ideal of X.

Lemma 3.14. Let X be a BE-algebra. If $y \in X$ satisfies y * z = 1 for all $x \in X$, then

$$A(x,y) = X = A(y,x)$$

for all $x \in X$.

Proof. The proof is straightforward.

Example 3.15. Let $X := \{1, a, b, c, d\}$ be a set with the following table:

Then X is a self distributive *BE*-algebra. By Lemma 3.14, A(x,d) = A(d,x) = X for all $x \in X$. Furthermore, we have that $A(1,1) = \{1\}$, $A(1,a) = A(a,1) = A(a,a) = A(a,b) = \{1,a\}$, $A(1,b) = A(b,1) = A(b,b) = \{1,b\}$, $A(1,c) = A(a,c) = A(c,1) = A(c,a) = A(c,c) = \{1,a,c\}$, $A(b,a) = \{1,a,b\}$, and A(c,b) = X are ideals of X.

Using the notion of upper set A(u, v), we given an equivalent condition of the ideal in *BE*-algebras.

Theorem 3.16. Let X be a transitive BE-algebra. A subset $I \neq \emptyset$ of X is an ideal of X if and only $A(u, v) \subseteq I, \forall u, v \in I$.

Proof. Assume that I is an ideal of X. If $z \in A(u, v)$, then u * (v * z) = 1 and so $z = 1 * z = (u * (v * z)) * z \in I$ by (I2). Hence $A(u, v) \subseteq I$.

Conversely, suppose that $A(u, v) \subseteq I$ for all $u, v \in I$. Note that $1 \in A(u, v) \subseteq I$. Let $x, y, z \in I$ with $x * (y * z), y \in I$. Since (x * (y * z)) * (y * (x * z)) = (x * (y * z)) * (x * (y * z)) = 1, we have $x * z \in A(x * (y * z), y) \subseteq I$. By Theorem 3.11, I is an ideal of X.

Corollary 3.17. Let X be a self distributive BE-algebra. A subset $I \neq \emptyset$ of X is an ideal of X if and only $A(u, v) \subseteq I, \forall u, v \in I$.

Proof. The proof follows from Proposition 3.10 and Theorem 3.16

Theorem 3.18. Let X be a transitive BE-algebra. If I is an ideal of X, then

$$I = \bigcup_{u,v \in I} A(u,v).$$

Proof. Let I be an ideal of X and let $x \in I$. Obviously, $x \in A(x, 1)$ and so

$$I \subseteq \bigcup_{x \in I} A(x, 1) \subseteq \bigcup_{u, v \in I} A(u, v).$$

Now, let $y \in \bigcup_{u,v \in I} A(u,v)$. Then there exist $a, b \in I$ such that $y \in A(a,b) \subseteq I$ by Theorem 3.16. Hence $y \in I$. Therefore $\bigcup_{u,v \in I} A(u,v) \subseteq I$. This completes the proof.

Corollary 3.19. Let X be a self distributive BE-algebra. If I is an ideal of X, then

$$I = \bigcup_{u,v \in I} A(u,v).$$

Proof. The proof follows from Proposition 3.10 and Theorem 3.18

Corollary 3.20. Let X be a transitive *BE*-algebra. If I is an ideal of X, then

$$I = \bigcup_{w \in I} A(w, 1).$$

Corollary 3.21. Let X be a self distributive BE-algebra. If I is an ideal of X, then

$$I = \bigcup_{w \in I} A(w, 1).$$

References

- [1] Q. P. Hu and X. Li, On BCH-algebras, Math. Seminar Notes 11 (1983), 313-320.
- [2] Q. P. Hu and X. Li, On proper BCH-algebras, Math. Japonica 30 (1985), 659-661.
- [3] K. Iséki and S. Tanaka, An introduction to theory of BCK-algebras, Math. Japonica 23 (1978), 1-26.
- [4] K. Iséki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.
- [5] H. S. Kim and Y. H. Kim, On BE-algebras, Sci. Math. Japo. 66(1) (2007), 113-116.
- [6] Y. B. Jun, E. H. Roh and H. S. Kim, On BH-algebras, Sci. Math. Japonica Online 1 (1998), 347-354.
- [7] J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa, Co., Seoul (1994).

[8] J. Neggers and H. S. Kim, On d-algebras, Math. Slovaca 49 (1999), 19-26.

Sun Shin Ahn Department of Mathematics Education Dongguk University Seoul 100-715, Korea sunshine@dongguk.edu

Keum Sook So Department of Mathematics Hallym University Chuncheon, 200-702, Korea ksso@hallym.ac.kr