ON IDEALS AND UPPER SETS IN BE-ALGEBRAS

Sun Shin Ahn and Keum Sook So

Received May 5, 2008

Abstract

In this paper, the idea of ideals of $B E$-algebras is introduced and several descriptions of ideals are given in terms of upper sets $A(u, v)=\{z \in X \mid u *(v * z)=0\}$ for transitive and for self distributive $B E$-algebras $(X ; *, 1)$ of type $(2,0)$.

1. Introduction.

Y. Imai and K. Iséki introduced two classes of abstract algebras: $B C K$-algebras and $B C I$-algebras $([3,4])$. It is known that the class of $B C K$-algebras is a proper subclass of the class of $B C I$-algebras. In $[1,2] \mathrm{Q} . \mathrm{P} . \mathrm{Hu}$ and $\mathrm{X} . \mathrm{Li}$ introduced a wide class of abstract algebras: $B C H$-algebras. They have shown that the class of $B C I$-algebras is a proper subclass of the class of BCH -algebras. J. Neggers and H. S. Kim ([8]) introduced the notion of d-algebras which is another generalization of $B C K$-algebras. Y. B. Jun, E. H. Roh and H. S. Kim ([6]) introduced the notion of $B H$-algebra, which is a generalization of $B C H / B C I / B C K$-algebras, i.e., (I); (II) and (IV) $x * y=0$ and $y * x=0$ imply $x=y$ for any $x, y \in X$. In [5], H. S. Kim and Y. H. Kim introduced the notion of a $B E$-algebra as a dualization of a generalization of a $B C K$-algebra. Using the notion of upper sets they provided an equivalent condition describing filters in $B E$-algebras.

In this paper we continue the study of $B E$-algebras. In particular we define the proper notion of ideal for this class of algebras. After introducing the notions of transitive and self distributive $B E$-algebras as rather natural subclasses of interest in terms of an order relation associated with the product-operation of the algebras of this type, we obtain several characterizations of ideals in this setting as unions of special collections of upper sets $A(x, y)$ (defined below) in these algebras.

2. Preliminaries.

We recall some definitions and results (See [5]).
Definition 2.1. An algebra $(X ; *, 1)$ of type $(2,0)$ is called a $B E$-algebra $([5])$ if
(BE1) $x * x=1$ for all $x \in X$;
(BE2) $x * 1=1$ for all $x \in X$;
(BE3) $1 * x=x$ for all $x \in X$;
(BE4) $x *(y * z)=y *(x * z)$ for all $x, y, z \in X$ (exchange)

[^0]We introduce a relation " \leq " on X by $x \leq y$ if and only if $x * y=1$.
Proposition 2.2. ([5]) If $(X ; *, 1)$ is a BE-algebra, then $x *(y * x)=1$ for any $x, y \in X$.

Example 2.3. ([5]) Let $X:=\{1, a, b, c, d, 0\}$ be a set with the following table:

$*$	1	a	b	c	d	0
1	1	a	b	c	d	0
a	1	1	a	c	c	d
b	1	1	1	c	c	c
c	1	a	b	1	a	b
d	1	1	a	1	1	a
0	1	1	1	1	1	1

Then $(X ; *, 1)$ is a $B E$-algebra.
Definition 2.4. A $B E$-algebra $(X, *, 1)$ is said to be self distributive $([5])$ if $x *(y * z)=$ $(x * y) *(x * z)$ for all $x, y, z \in X$.

Example 2.5. ([5]) Let $X:=\{1, a, b, c, d\}$ be a set with the following table:

$*$	1	a	b	c	d
1	1	a	b	c	d
a	1	1	b	c	d
b	1	a	1	c	c
c	1	1	b	1	b
d	1	1	1	1	1

It is easy to see that X is a $B E$-algebra satisfying self distributivity.
Note that the $B E$-algebra in Example 2.3 is not self distributive, since $d *(a * 0)=$ $d * d=1$, while $(d * a) *(d * 0)=1 * a=a$.

3. Main Results.

In what follows let X be denote a $B E$-algebra unless otherwise specified. We begin by defining the notion of ideals of X.

Definition 3.1. A non-empty subset I of X is called an ideal of X if
(I1) $\forall x \in X$ and $\forall a \in I$ imply $x * a \in I$, i.e., $X * I \subseteq I$;
(I2) $\forall x \in X, \forall a, b \in I$ imply $(a *(b * x)) * x \in I$.
Example 3.2. In Example 2.3, $\{1, a, b\}$ is an ideal of X, but $\{1, a\}$ is not an ideal of X, since $(a *(a * b)) * b=(a * a) * b=1 * b=b \notin\{1, a\}$.

Lemma 3.3. Every ideal of X contains 1.
Proof. Let $I(\neq \emptyset)$ be an ideal of X. There exists $x \in I$. Hence $1=x * x \in I * I \subseteq$ $X * I \subseteq I$. Thus $1 \in I$.

Lemma 3.4. If I is an ideal of X, then $(a * x) * x \in I$ for all $a \in I$ and $x \in X$.
Proof. Let $b:=1$ in (I2). Then $(a *(1 * x)) * x \in I$. Hence $(a * x) * x \in I$.

Corollary 3.5. Let I be an ideal of X. If $a \in I$ and $a \leq x$, then $x \in I$.
Proof. Let $a \in I, x \in X$ with $a \leq x$. Hence $a * x=1$. Therefore $x=1 * x=(a * x) * x \in I$. Thus $x \in I$.

Lemma 3.6. Let I be a subset of X such that
(I3) $1 \in I$;
(I4) $x *(y * z) \in I$ and $y \in I$ imply $x * z \in I$ for all $x, y, z \in X$.
If $a \in I$ and $a \leq x$, then $x \in I$.
Proof. Let $a \in I, a \leq x, x \in X$. Then $1 *(a * x)=1 * 1=1 \in I$. By $a \in I$, (I4), we have $1 * x=x \in I$. Thus $x \in I$.

Definition 3.7. A $B E$-algebra $(X ; *, 1)$ is said to be transitive if for any $x, y, z \in X$,

$$
y * z \leq(x * y) *(x * z)
$$

Example 3.8. Let $X:=\{1, a, b, c\}$ be a set with the following table:

$*$	1	a	b	c
1	1	a	b	c
a	1	1	a	a
b	1	1	1	a
c	1	1	a	1

Then X is a transitive $B E$-algebra.
Example 3.9. Let $X:=\{1, a, b, c\}$ be a set with the following table:

$*$	1	a	b	c
1	1	a	b	c
a	1	1	b	c
b	1	1	1	1
c	1	a	c	1

Then X is a $B E$-algebra. Since $b * a=1$ and $(c * b) *(c * a)=c * a=a, X$ is not transitive.
Proposition 3.10. If X is a self distributive $B E$-algebra, then it is transitive.
Proof. For any $x, y \in X$, we have

$$
\begin{aligned}
& (y * z) *[(x * y) *(x * z)]=(y * z) *[x *(y * z)] \quad \text { [self distributive] } \\
& =x *[(y * z) *(y * z)] \quad[(\mathrm{BE} 4)] \\
& =x * 1 \quad[(\mathrm{BE} 1)] \\
& =1 \quad[(\mathrm{BE} 2)],
\end{aligned}
$$

proving the proposition.

The converse Proposition 3.10 need not be true in general. In Example 3.8, X is a transitive $B E$-algebra, but $a *(a * b)=a * a=1$, while $(a * a) *(a * b)=1 * a=a$, showing that X is not self distributive.

The following is a characterization of ideals
Theorem 3.11. Let X be a transitive $B E$-algebra. A subset $I(\neq \emptyset)$ of X is an ideal of X if and only if it satisfies conditions (I3) and (I4).

Proof. Let I be an ideal of X. Then $1 \in I$ by Lemma 3.3. Thus (I3) holds. Let $x, y, z \in X$ be such that $x *(y * z) \in I$ and $y \in I$. Using Lemma 3.4, we get $(y * z) * z \in I$. Now, let $\alpha:=y * z, \beta:=z$ in

$$
\alpha * \beta \leq(x * \alpha) *(x * \beta)
$$

Then $(y * z) * z \leq(x *(y * z)) *(x * z)$ and so $[(y * z) * z] *[(x *(y * z)) *(x * z)]=1$. Hence $x * z=1 *(x * z)=[((y * z) * z) *((x *(y * z)) *(x * z))] *(x * z) \in I$. Thus $x * z \in I$. Thus (I4) holds.

Conversely, we assume that I satisfies (I3) and (I4). Let $x \in X, a \in I$. Then $x *(a * a)=$ $x * 1=1 \in I$, by (I3). By (I4), $x * a \in I$, i.e., (I1) holds. Let $x \in X, a, b \in I$. Then $(a * x) *(a * x)=1 \in I$. By (I4), $(a * x) * x \in I$. Now, $((a * x) * x) *((b *(a * x)) *(b * x))=1$, by Proposition 3.10. Hence $(a * x) * x \leq(b *(a * x)) *(b * x)$. Using Lemma 3.6, we have $(b *(a * x)) *(b * x) \in I$. Since $b \in I$, by (I4), we obtain $(b *(a * x)) * x \in I$. Thus (I2) holds. Therefore I is an ideal of X.

Corollary 3.12. Let X be a self distributive $B E$-algebra. A subset $I(\neq \emptyset)$ of X is an ideal of X if and only if it satisfies conditions (I3) and (I4).

Proof. The proof follows from Proposition 3.10 and Theorem 3.11

For any $u, v \in X$, consider a set

$$
A(u, v):=\{z \in X \mid u *(v * z)=1\}
$$

We call $A(u, v)$ the upper set ([5]) of u and v. In Example 3.2, the set $A(1, a)=\{1, a\}$ is not an ideal of X. Hence we know that $A(u, v)$ may not be an ideal of X in general.

Theorem 3.13. If X is a self distributive $B E$-algebra, then $A(u, v)$ is an ideal of X, $\forall u, v \in X$.

Proof. Let $a, b \in A(u, v)$ and $x \in X$. Then $u *(v * a)=1$ and $u *(v * b)=1$. It follows from the self distributivity law that

$$
\begin{aligned}
& u *(v *(x * a))=u *[(v * x) *(v * a)] \quad \text { [self distributive] } \\
& =[u *(v * x)] *[u *(v * a)] \quad \text { [self distributive] } \\
& =(u *(v * x)) * 1, \quad[a \in A(u, v)] \\
& =1 \quad[(\mathrm{BE} 2)]
\end{aligned}
$$

whence $x * a \in A(u, v)$. Thus, (I1) holds.

Let $a, b \in A(u, v)$ and $x \in X$. Then $u *(v * a)=1$ and $u *(v * b)=1$. It follows from the self distributivity law that

$$
\begin{array}{rlrl}
u *(v *((a *(b * x)) * x)) & =u *[(v *(a *(b * x))) *(v * x)] & \text { [self distributive] } \\
& =[u *(v *(a *(b * x)))] *[u *(v * x)] & \text { [self distributive] } \\
& =[(u *(v * a)) *(u *(v *(b * x)))] *[u *(v * x)] & \text { [self distributive] } \\
& =[1 *(u *(v *(b * x))] *[u *(v * x)] & {[a \in A(u, v)]} \\
& =[u *(v *(b * x))] *[u *(v * x)] & {[(\mathrm{BE} 3)]} \\
& =[(u *(v * b)) *(u *(v * x)] *[u *(v * x)] \\
& =(u *(v * x)) *(u *(v * x)) & \\
& & =1 & {[(\mathrm{BE} 2)]} \tag{BE2}
\end{array}
$$

whence $(a *(b * x)) * x \in A(u, v)$. Thus, (I2) holds. This proves that $A(u, v)$ is an ideal of X.

Lemma 3.14. Let X be a $B E$-algebra. If $y \in X$ satisfies $y * z=1$ for all $x \in X$, then

$$
A(x, y)=X=A(y, x)
$$

for all $x \in X$.
Proof. The proof is straightforward.

Example 3.15. Let $X:=\{1, a, b, c, d\}$ be a set with the following table:

$*$	1	a	b	c	d
1	1	a	b	c	d
a	1	1	b	c	d
b	1	a	1	c	c
c	1	1	b	1	b
d	1	1	1	1	1

Then X is a self distributive $B E$-algebra. By Lemma 3.14, $A(x, d)=A(d, x)=X$ for all $x \in X$. Furthermore, we have that $A(1,1)=\{1\}, A(1, a)=A(a, 1)=A(a, a)=A(a, b)=$ $\{1, a\}, A(1, b)=A(b, 1)=A(b, b)=\{1, b\}, A(1, c)=A(a, c)=A(c, 1)=A(c, a)=A(c, c)=$ $\{1, a, c\}, A(b, a)=\{1, a, b\}$, and $A(c, b)=X$ are ideals of X.

Using the notion of upper set $A(u, v)$, we given an equivalent condition of the ideal in $B E$-algebras.

Theorem 3.16. Let X be a transitive $B E$-algebra. A subset $I(\neq \emptyset)$ of X is an ideal of X if and only $A(u, v) \subseteq I, \forall u, v \in I$.

Proof. Assume that I is an ideal of X. If $z \in A(u, v)$, then $u *(v * z)=1$ and so $z=1 * z=(u *(v * z)) * z \in I$ by (I2). Hence $A(u, v) \subseteq I$.

Conversely, suppose that $A(u, v) \subseteq I$ for all $u, v \in I$. Note that $1 \in A(u, v) \subseteq I$. Let $x, y, z \in I$ with $x *(y * z), y \in I$. Since $(x *(y * z)) *(y *(x * z))=(x *(y * z)) *(x *(y * z))=1$, we have $x * z \in A(x *(y * z), y) \subseteq I$. By Theorem 3.11, I is an ideal of X.

Corollary 3.17. Let X be a self distributive $B E$-algebra. A subset $I(\neq \emptyset)$ of X is an ideal of X if and only $A(u, v) \subseteq I, \forall u, v \in I$.

Proof. The proof follows from Proposition 3.10 and Theorem 3.16

Theorem 3.18. Let X be a transitive $B E$-algebra. If I is an ideal of X, then

$$
I=\cup_{u, v \in I} A(u, v) .
$$

Proof. Let I be an ideal of X and let $x \in I$. Obviously, $x \in A(x, 1)$ and so

$$
I \subseteq \cup_{x \in I} A(x, 1) \subseteq \cup_{u, v \in I} A(u, v) .
$$

Now, let $y \in \cup_{u, v \in I} A(u, v)$. Then there exist $a, b \in I$ such that $y \in A(a, b) \subseteq I$ by Theorem 3.16. Hence $y \in I$. Therefore $\cup_{u, v \in I} A(u, v) \subseteq I$. This completes the proof.

Corollary 3.19. Let X be a self distributive $B E$-algebra. If I is an ideal of X, then

$$
I=\cup_{u, v \in I} A(u, v) .
$$

Proof. The proof follows from Proposition 3.10 and Theorem 3.18

Corollary 3.20. Let X be a transitive $B E$-algebra. If I is an ideal of X, then

$$
I=\cup_{w \in I} A(w, 1) .
$$

Corollary 3.21. Let X be a self distributive $B E$-algebra. If I is an ideal of X, then

$$
I=\cup_{w \in I} A(w, 1) .
$$

References

[1] Q. P. Hu and X. Li, On BCH-algebras, Math. Seminar Notes 11 (1983), 313-320.
[2] Q. P. Hu and X. Li, On proper BCH-algebras, Math. Japonica 30 (1985), 659-661.
[3] K. Iséki and S. Tanaka, An introduction to theory of BCK-algebras, Math. Japonica 23 (1978), 1-26.
[4] K. Iséki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.
[5] H. S. Kim and Y. H. Kim, On BE-algebras, Sci. Math. Japo. 66(1) (2007), 113-116.
[6] Y. B. Jun, E. H. Roh and H. S. Kim, On BH-algebras, Sci. Math. Japonica Online 1 (1998), 347-354.
[7] J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa, Co., Seoul (1994).
[8] J. Neggers and H. S. Kim, On d-algebras, Math. Slovaca 49 (1999), 19-26.

Sun Shin Ahn
Department of Mathematics Education
Dongguk University
Seoul 100-715, Korea
sunshine@dongguk.edu
Keum Sook So
Department of Mathematics
Hallym University
Chuncheon, 200-702, Korea
ksso@hallym.ac.kr

[^0]: 2000 Mathematics Subject Classification. 06F35.
 Key words and phrases. $B E$-algebras, ideal, upper set, self distributive.

