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FUZZY LOCATION PROBLEMS WITH TRIANGULAR NORM:
EXISTENCE AND STABILITY
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Abstract. A fuzzy max-T location problem is considered. The fuzzy max-T location
problem is a generalization of a fuzzy maximin location problem by allowing in the
objective function arbitrary triangular norms instead of the triangular norm defined
by the minimum operation. Then we give conditions for the existence of its optimal
solutions, and derive a relationship between its optimal solutions and efficient solutions
of a fuzzy multicriteria location problem. Furthermore, we give some properties of
triangular norms, and for triangular norms, we investigate the stability of optimal
solutions of the fuzzy max-T location problem.

1 Introduction and preliminaries In a general continuous location model, finitely
many points called demand points in R

n, modeling existing facilities or customers, are
given. Let di ∈ R

n, i = 1, 2, · · · , �(≥ 2) be demand points. We put I ≡ {1, 2, · · · , �}.
Then a problem to locate a new facility in R

n is called a single facility location problem. If
one prefers the location of the facility near demand points, then the problem is formulated
as follows:

(1) min
x∈Rn

f(γ1(x − d1), γ2(x − d2), · · · , γ�(x − d�))

where x ∈ R
n is the variable location of the facility. It is often assumed that f : R

� → R

is non-decreasing and convex or that f : R
� → R

� satisfies f(y) = y for all y ∈ R
�. It is

also often assumed that γi: R
n → R, i ∈ I are norms or gauges, and each γi(x − di), i ∈ I

represents the distance from di to x. In this paper, it is assumed that γi, i ∈ I are gauges.
Let B ⊂ R

n be a compact convex set containing the origin in its interior. A gauge
γ : R

n → R for B is defined by γ(x) ≡ inf{λ > 0 : x ∈ λB} for x ∈ R
n; see [4] and [12].

Formulation (1) is natural if one prefers the location of the facility near demand points.
However, for the location of the facility, degrees of satisfaction with respect to demand
points may be different even if distances from demand points to the facility are the same.
Furthermore, for example, if the facility is an airport, then one may not prefer the location
of the facility near demand points because of the noise. In order to deal with such situations,
we consider membership functions, which represent degrees of satisfaction for the location
of the facility with respect to demand points, and a maximization problem with an objective
function involving membership functions. It is assumed that membership functions µi: R

→ [0, 1] ≡ {x ∈ R: 0 ≤ x ≤ 1}, i ∈ I are given. For each x ∈ R
n and i ∈ I, the value

µi(γi(x − di)) represents the degree of satisfaction for the location x with respect to the
demand point di. For convenience, it is assumed that µi(x) = 0, i ∈ I for x < 0. We
put µi(x) ≡ µi(γi(x − di)), i ∈ I for x ∈ R

n. For each i ∈ I, let Ai and Ai be fuzzy sets
on R and R

n with membership functions µi and µi, respectively. Then for each i ∈ I, Ai

represents the fuzzy set of desirable distances from di to the facility, and Ai represents the
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fuzzy set of desirable locations of the facility with respect to di. A fuzzy maximin location
problem (FMMP) is formulated as follows:

(2) max
x∈Rn

µFMMP(x) ≡ min {µ1(γ1(x − d1)), · · · , µ�(γ�(x − d�))} .

For example, FMMP with block norm and asymmetric rectilinear distance are considered
in [7] and [9], respectively. For each x ∈ R

n, the value µFMMP(x) represents the degree of
total satisfaction for the location x, which is the degree of satisfaction for x with respect
to all demand points. The fuzzy set on R

n with a membership function µFMMP is denoted
by ∩i∈IAi, which is the usual intersection of fuzzy sets Ai, i ∈ I, and it represents the
fuzzy set of desirable locations of the facility with respect to all demand points. Therefore
FMMP is a problem to find the location of the facility which maximizes the degree of total
satisfaction. A fuzzy max-T location problem (FMTP), which is a generalization of FMMP
and our main problem, is formulated as follows:

(3) max
x∈Rn

µFMTP(x) ≡ T (µ1(γ1(x − d1)), · · · , µ�(γ�(x − d�)))

where T : [0, 1]� → [0, 1] is an extension of a triangular norm (t-norm for short), which
is a binary operation on [0, 1], to an �-ary operation on [0, 1]. It is a generalization of
the minimum operation in FMMP, and its precise definition will be given in section 2.
FMTP can be interpreted in the same way as FMMP. For each x ∈ R

n, the value µFMTP(x)
represents the degree of total satisfaction for the location x under the t-norm T as an
operation. The fuzzy set on R

n with a membership function µFMTP is denoted by (∩T )i∈IAi,
which is the intersection of fuzzy sets Ai, i ∈ I under the t-norm T , and it represents the
fuzzy set of desirable locations of the facility with respect to all demand points under the
t-norm T . Therefore FMTP is a problem to find the location of the facility which maximizes
the degree of total satisfaction under the t-norm T . Let S∗

FMMP and S∗
FMTP be sets of all

optimal solutions of FMMP and FMTP, respectively. We also consider a fuzzy multicriteria
location problem (FMCP) formulated as follows:

(4) max
x∈Rn

µFMCP(x) ≡ (µ1(γ1(x − d1)), · · · , µ�(γ�(x − d�)))T .

We define γ(x) ≡ (γ1(x−d1), γ2(x−d2), · · · , γ�(x−d�))T for x ∈ R
n and µ(y) ≡ (µ1(y1),

µ2(y2), · · · , µ�(y�))T for y ≡ (y1, y2, · · · , y�)T ∈ R
�. Then µFMCP = µ ◦ γ, where µ ◦ γ is

the composite function of µ and γ. A point x0 ∈ R
n is called an efficient solution of FMCP

if there is no x ∈ R
n such that µFMCP(x) ≥ µFMCP(x0) and µFMCP(x) 	= µFMCP(x0). Let

FE be the set of all efficient solutions of FMCP. FMCP is considered, for example, in [6].
In [10] and [11], fuzzy maximin, max-T and multicriteria problems are considered. These

problems are, respectively, ones that µi(γi(x − di)), i ∈ I in (2), (3) and (4) are replaced
by µi(x), i ∈ I as functions from R

n into [0, 1].
In this paper, the fuzzy max-T location problem is considered mainly. Then we give

conditions for the existence of its optimal solutions, and derive a relationship between
its optimal solutions and efficient solutions of the fuzzy multicriteria location problem.
Furthermore, we give some properties of triangular norms, and for triangular norms, we
investigate the stability of optimal solutions of the fuzzy max-T location problem.

2 Triangular Norms In this section, we give some properties of triangular norms which
are used in FMTP.

A triangular norm (t-norm for short) is a binary operation T on [0, 1], that is, a function
T : [0, 1]2 → [0, 1], such that for all x, y, z ∈ [0, 1], the following four axioms are satisfied:
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(T1) T (x, y) = T (y, x) (commutativity), (T2) T (x, T (y, z)) = T (T (x, y), z) (associativity),
(T3) T (x, y) ≤ T (x, z) whenever y ≤ z (monotonicity) and (T4) T (x, 1) = x (boundary
condition); see [5].

Example 1. The following are two of basic t-norms. For x, y ∈ [0, 1],

(i) TM(x, y) ≡ min{x, y}, (minimum)

(ii)

TD(x, y) ≡
{

min{x, y} if max{x, y} = 1,
0 otherwise. (drastic product)

For any t-norm T , it can be seen easily that TD(x, y) ≤ T (x, y) ≤ TM(x, y) for all
x, y ∈ [0, 1]. Let T be a t-norm. From the commutativity (T1) and the associativity (T2),
we define its extension to more than two arguments by

T k+1(x1, x2, · · · , xk+2) ≡ T (T k(x1, x2, · · · , xk+1), xk+2)

for xi ∈ [0, 1], i = 1, 2, · · · , k + 2, where T 1(x1, x2) ≡ T (x1, x2). If there is no danger of
misunderstanding, the upper index �−1 of T �−1 is omitted and we write T instead of T �−1.

Example 2. For x1, x2, · · · , x� ∈ [0, 1],

(i) TM(x1, x2, · · · , x�) = min{x1, x2, · · · , x�},
(ii)

TD(x1, x2, · · · , x�) =
{

xi if xj = 1, ∀j 	= i for some i,
0 otherwise.

Note that FMTP with TM reduces to FMMP. Let T be a t-norm, and we put xi =
µi(γi(x − di)), i ∈ I for x ∈ R

n. Then the value T (x1, x2, · · · , x�) represents the degree
of total satisfaction for the location x. When T = TM, the degree of total satisfaction
is the minimum among all degrees of satisfaction with respect to demand points. When
T = TD, it is the minimum among all degrees of satisfaction with respect to demand points
if all degrees of satisfaction with respect to demand points except for some di, i ∈ I are 1,
otherwise it is 0.

Some of the following Theorem 1-3 about t-norms seem to be known. In fact, Theorem
1 is similar to Proposition 8.3 in [5]. However, within our knowledge, no literature contains
the same results as Theorem 1-3. So, we give their proofs for completeness.

Theorem 1. Let Tλ : [0, 1]� → [0, 1], λ ∈ Λ and T : [0, 1]� → [0, 1] be t-norms, where
Λ ⊂ [−∞,∞] is a nonempty interval and [−∞,∞] ≡ R∪ {−∞,∞}. If T is continuous and
Tλ converges (pointwise) to T as λ approaches λ0, then Tλ converges uniformly to T as λ
approaches λ0, where λ, λ0 ∈ Λ.

Proof. We shall show only the case � = 2 and λ0 ∈ R. It can be shown similarly
in the other case. Fix any ε > 0 and (x0, y0)T ∈ [0, 1]2. Because of the continuity
of T , there exists δx0y0 > 0 (which depends on ε) such that for all (x, y)T ∈ [0, 1]2 ∩
([x0 − δx0y0 , x0 + δx0y0 ] × [y0 − δx0y0 , y0 + δx0y0 ]), |T (x, y) − T (x0, y0)| < ε

3 . Writing x0

= max{x0 − δx0y0 , 0}, y
0

= max{y0 − δx0y0 , 0}, x0 = min{x0 + δx0y0 , 1} and y0 =
min{y0 + δx0y0 , 1}, we get T (x0, y0) − T (x0, y0

) = T (x0, y0) − T (x0, y0) + T (x0, y0) −
T (x0, y0

) ≤ 2ε
3 . From the pointwise convergence of Tλ to T as λ approaches λ0, there

exists η > 0 such that for all λ ∈ Λ ∩ (λ0 − η, λ0 + η), |Tλ(x0, y0
) − T (x0, y0

)| < ε
3 and
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|Tλ(x0, y0) − T (x0, y0)| < ε
3 , where (a, b) ≡ {x ∈ R : a < x < b} for a, b ∈ R with

a < b. Fix any λ ∈ Λ ∩ (λ0 − η, λ0 + η). For all (x, y)T ∈ [0, 1]2 ∩ ([x0 − δx0y0 , x0

+ δx0y0 ] × [y0 − δx0y0 , y0 + δx0y0 ]) with Tλ(x, y) < T (x, y), we have T (x, y) − Tλ(x, y) ≤
T (x0, y0)−Tλ(x0, y0

) ≤ T (x0, y0)−T (x0, y0
)+ |T (x0, y0

)−Tλ(x0, y0
)| < ε. For all (x, y)T ∈

[0, 1]2 ∩ ([x0 − δx0y0 , x0 + δx0y0 ] × [y0 − δx0y0 , y0 + δx0y0 ]) with Tλ(x, y) ≥ T (x, y), we have
Tλ(x, y)−T (x, y) ≤ Tλ(x0, y0)−T (x0, y0

) ≤ |Tλ(x0, y0)−T (x0, y0)|+T (x0, y0)−T (x0, y0
) <

ε. Since, as a compact set, the unit square [0, 1]2 can be covered by a finite number of rect-
angles of the form [0, 1]2 ∩ ((x − δxy

2 , x + δxy

2 ) × (y − δxy

2 , y + δxy

2 )), there exists ηε > 0
such that for all λ ∈ Λ ∩ (λ0 − ηε, λ0 + ηε) and (x, y)T ∈ [0, 1]2, |Tλ(x, y) − T (x, y)| < ε.

�

Theorem 2. Let T 1
λ : [0, 1]2 → [0, 1], λ ∈ Λ and T 1 : [0, 1]2 → [0, 1] be t-norms, where

Λ ⊂ [−∞,∞] is a nonempty interval. If T 1 is continuous and T 1
λ converges to T 1 as λ

approaches λ0, then T �−1
λ converges to T �−1 as λ approaches λ0, where λ, λ0 ∈ Λ.

Proof. We shall show only the case λ0 ∈ R by induction on �. It can be shown similarly in
the other case. When � = 2, from the assumption, T �−1

λ converges to T �−1 as λ approaches
λ0. Suppose that T �−1

λ converges to T �−1 as λ approaches λ0 for � ≥ 2, and we shall
show that T �

λ converges to T � as λ approaches λ0. Fix any (x1, · · · , x�, x�+1)T ∈ [0, 1]�+1

and ε > 0. From the continuity of T 1, there exists δ > 0 such that for all x ∈ [0, 1] ∩(
T �−1(x1, · · · , x�) − δ, T �−1(x1, · · · , x�) + δ

)
, |T 1(x, x�+1) − T 1(T �−1(x1, · · · , x�), x�+1)| <

ε
2 . Since T �−1

λ (x1, · · · , x�) converges to T �−1(x1, · · · , x�) as λ approaches λ0, there exists
η1 > 0 such that for all λ ∈ Λ∩(λ0−η1, λ0+η1),

∣∣T �−1
λ (x1, · · · , x�) − T �−1(x1, · · · , x�)

∣∣ < δ.
Since T 1 is continuous, T 1

λ converges uniformly to T 1 as λ approaches λ0 from Theorem
1. Thus there exists η2 > 0 such that for all λ ∈ Λ ∩ (λ0 − η2, λ0 + η2) and x ∈ [0, 1],∣∣T 1

λ(x, x�+1) − T 1(x, x�+1)
∣∣ < ε

2 . We put η = min{η1, η2} > 0. Then for all λ ∈ Λ ∩ (λ0 −
η, λ0 + η), we have |T �

λ(x1, · · · , x�, x�+1) − T �(x1, · · · , x�, x�+1)| = |T 1
λ(T �−1

λ (x1, · · · , x�),
x�+1) − T 1(T �−1(x1, · · · , x�), x�+1)| ≤ |T 1

λ(T �−1
λ (x1, · · · , x�), x�+1) − T 1(T �−1

λ (x1, · · · ,
x�), x�+1)| + |T 1(T �−1

λ (x1, · · · , x�), x�+1) − T 1(T �−1(x1, · · · , x�), x�+1)| < ε. �

Theorem 3. Let T 1 : [0, 1]2 → [0, 1] be a t-norm.

(i) If T 1 is upper semicontinuous, then T �−1 is also upper semicontinuous.

(ii) If T 1 is lower semicontinuous, then T �−1 is also lower semicontinuous.

(iii) If T 1 is continuous, then T �−1 is also continuous.

Proof.
(i) We proceed by induction on �. When � = 2, T �−1 is upper semicontinuous from the
assumption. Suppose that T �−1 is upper semicontinuous for � ≥ 2, and we shall show
that T � is also upper semicontinuous. Fix any (x0

1, · · · , x0
� , x

0
�+1)

T ∈ [0, 1]�+1 and ε > 0.
Since T 1 is upper semicontinuous, there exists δ > 0 such that for all (x, y)T ∈ [0, 1]2

∩ ((T �−1(x0
1, · · · , x0

�) − δ, T �−1(x0
1, · · · , x0

� ) + δ) × (x0
�+1 − δ, x0

�+1 + δ)), T 1(x, y) <

T 1
(
T �−1(x0

1, · · · , x0
� ), x

0
�+1

)
+ ε. From the monotonicity of T 1, this inequality holds for all

(x, y)T ∈ [0, 1]2 ∩ ([0, T �−1(x0
1, · · · , x0

�) + δ) × [0, x0
�+1 + δ)), where [a, b) ≡ {x ∈ R : a ≤

x < b} for a, b ∈ R with a < b. Since T �−1 is upper semicontinuous, there exists η > 0
such that for all (x1, · · · , x�)T ∈ [0, 1]� ∩ ((x0

1 − η, x0
1 + η) × · · · × (x0

� − η, x0
� + η)),

T �−1(x1, · · · , x�) < T �−1(x0
1, · · · , x0

� )+ δ. Thus for all (x1, · · · , x�, x�+1)T ∈ [0, 1]�+1 ∩ ((x0
1

− η, x0
1 + η) × · · · × (x0

� − η, x0
� + η) × (x0

�+1 − δ, x0
�+1 + δ)), we have T �(x1, · · · , x�,

x�+1) = T 1(T �−1(x1, · · · , x�), x�+1) < T 1(T �−1(x0
1, · · · , x0

� ), x0
�+1) + ε = T �(x0

1, · · · , x0
� ,



FUZZY LOCATION PROBLEMS 345

x0
�+1) + ε. Therefore T � is upper semicontinuous.

(ii) We proceed by induction on �. When � = 2, T �−1 is lower semicontinuous from the
assumption. Suppose that T �−1 is lower semicontinuous for � ≥ 2, and we shall show
that T � is also lower semicontinuous. Fix any (x0

1, · · · , x0
� , x

0
�+1)

T ∈ [0, 1]�+1 and ε > 0.
Since T 1 is lower semicontinuous, there exists δ > 0 such that for all (x, y)T ∈ [0, 1]2

∩ ((T �−1(x0
1, · · · , x0

� ) − δ, T �−1(x0
1, · · · , x0

� ) + δ) × (x0
�+1 − δ, x0

�+1 + δ)), T 1(x, y) >

T 1
(
T �−1(x0

1, · · · , x0
� ), x

0
�+1

) − ε. From the monotonicity of T 1, this inequality holds for all
(x, y)T ∈ [0, 1]2 ∩ ((T �−1(x0

1, · · · , x0
� ) − δ, 1] × (x0

�+1 − δ, 1]), where (a, b] ≡ {x ∈ R : a <

x ≤ b} for a, b ∈ R with a < b. Since T �−1 is lower semicontinuous, there exists η > 0
such that for all (x1, · · · , x�)T ∈ [0, 1]� ∩ ((x0

1 − η, x0
1 + η) × · · · × (x0

� − η, x0
� + η)),

T �−1(x1, · · · , x�) > T �−1(x0
1, · · · , x0

�)− δ. Thus for all (x1, · · · , x�, x�+1)T ∈ [0, 1]�+1 ∩ ((x0
1

− η, x0
1 + η) × · · · × (x0

� − η, x0
� + η) × (x0

�+1 − δ, x0
�+1 + δ)), we have T �(x1, · · · , x�,

x�+1) = T 1(T �−1(x1, · · · , x�), x�+1) > T 1(T �−1(x0
1, · · · , x0

� ), x0
�+1) − ε = T �(x0

1, · · · , x0
� ,

x0
�+1) − ε. Therefore T � is lower semicontinuous.

(iii) We have the conclusion immediately from (i) and (ii). �

3 Existence of optimal solutions of FMTP In this section, we give conditions for
S∗

FMTP to be nonempty, and derive a relationship between S∗
FMTP and FE.

Let µ be a function from R
n into [0, 1]. For α ∈ (0, 1], the upper level set of µ, [µ]α ≡

{x ∈ R
n : µ(x) ≥ α}, is called α-cut of µ. If α-cut of µ is bounded for all α ∈ (0, 1], then

the fuzzy set on R
n with a membership function µ is said to be bounded.

The following theorem gives sufficient conditions for the existence of optimal solutions of
FMTP, and also gives a relationship between those optimal solutions and efficient solutions
of FMCP.

Theorem 4. If all µi, i ∈ I are upper semicontinuous and Aj is bounded for some j ∈ I
and T is an upper semicontinuous t-norm, then S∗

FMTP 	= ∅. Moreover, if maxx∈Rn µFMTP(x)
> 0, then S∗

FMTP ∩ FE 	= ∅.
Proof. Put γi(x) ≡ γi(x − di), i ∈ I for x ∈ R

n. First, we shall show that (∩T )i∈IAi

is bounded. Fix any α ∈ (0, 1]. Since Aj is bounded, [µj ]α is bounded. Thus [µj ◦ γj ]α =
{x ∈ R

n : µj(γj(x)) ≥ α} = {x ∈ R
n : γj(x) ∈ [µj ]α} is bounded. Therefore {x ∈

R
n: min{µ1(γ1(x)), µ2(γ2(x)), · · · , µ�(γ�(x))} ≥ α} = ∩i∈I{x ∈ R

n: µi(γi(x)) ≥ α}
= ∩i∈I [µi ◦ γi]α is bounded. Since, for x ∈ [µFMTP]α, α ≤ T (µ1(γ1(x)), µ2(γ2(x)), · · · ,
µ�(γ�(x))) ≤ min{µ1(γ1(x)), µ2(γ2(x)), · · · , µ�(γ�(x))}, we see that [µFMTP]α ⊂ ∩i∈I [µi ◦
γi]α. Consequently, [µFMTP]α is bounded.

Next, in order to show that µFMTP is upper semicontinuous, we shall show that for x0 ∈
R

n and ε > 0, there exists δ > 0 such that µFMTP(x) ≤ µFMTP(x0) + ε for all x ∈ Nδ(x0) ≡
{x ∈ R

n: ‖x − x0‖ < δ}, where ‖ · ‖ is Euclidean norm. For each i ∈ I, since µi is upper
semicontinuous and γi is continuous, µi ◦γi is upper semicontinuous. Put y0i ≡ µi(γi(x0)),
i ∈ I and y0 ≡ (y01, y02, · · · , y0�)T . Since T is upper semicontinuous on [0, 1]�, there exists
η > 0 such that

(5) T (y1, y2, · · · , y�) ≤ T (y01, y02, · · · , y0�) + ε

for all y ∈ Nη(y0) ≡ {y ∈ [0, 1]�: ‖y − y0‖ < η}, where y ≡ (y1, y2, · · · , y�)T . Since µi ◦γi,
i ∈ I are upper semicontinuous, there exists δ > 0 such that µi(γi(x)) ≤ µi(γi(x0)) + η

2
√

�

for all x ∈ Nδ(x0) and i ∈ I. By the monotonicity of the t-norm,

(6) T (µ1(γ1(x)), µ2(γ2(x)), · · · , µ�(γ�(x))) ≤ T (z1, z2, · · · , z�)
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where zi ≡ min{1, µi(γi(x0)) + η

2
√

�
}, i ∈ I. Since (z1, z2, · · · , z�)T ∈ Nη(y0), µFMTP(x)

≤ µFMTP(x0) + ε from (5) and (6). Therefore [µFMTP]α is compact. Consequently, µFMTP

attains its maximum on R
n, that is, S∗

FMTP 	= ∅.
In order to prove the last part of the theorem, suppose that x∗ ∈ S∗

FMTP and α∗ ≡
µFMTP(x∗) > 0. Then S∗

FMTP = [µFMTP]α∗ . Since α∗ > 0, S∗
FMTP is compact from the above

discussion. Put g ≡ ∑
i∈I µi ◦ γi. Since all µi ◦ γi, i ∈ I are upper semicontinuous, g is also

upper semicontinuous. Thus there exists x0 ∈ S∗
FMTP such that g(x0) = maxx∈S∗

FMTP
g(x).

Assume that x0 /∈ FE in order to show that x0 ∈ FE. Then there exists x1 ∈ R
n such that

µ ◦ γ(x1) ≥ µ ◦ γ(x0) and µ ◦ γ(x1) 	= µ ◦ γ(x0). Since g(x1) > g(x0), we see that x1 /∈
S∗

FMTP by the definition of x0. Since, by the monotonicity of the t-norm, α∗ = µFMTP(x0) =
T (µ1(γ1(x0)), µ2(γ2(x0)), · · · , µ�(γ�(x0))) ≤ T (µ1(γ1(x1)), µ2(γ2(x1)), · · · , µ�(γ�(x1))) =
µFMTP(x1) ≤ α∗, we have µFMTP(x1) = α∗, which contradicts that x1 /∈ S∗

FMTP. Therefore
x0 ∈ S∗

FMTP ∩ FE, that is, S∗
FMTP ∩ FE 	= ∅. �

The following corollary gives sufficient conditions for the existence of optimal solutions of
FMMP, and also gives a relationship between those optimal solutions and efficient solutions
of FMCP.

Corollary 1. If all µi, i ∈ I are upper semicontinuous and Aj is bounded for some j ∈ I,
then S∗

FMMP 	= ∅. Moreover, if maxx∈Rn µFMMP(x) > 0, then S∗
FMMP ∩ FE 	= ∅.

Proof. Since FMMP is FMTP with TM which is continuous, we have the conclusion
immediately from Theorem 4. �

The following example shows that neither the condition all µi, i ∈ I are upper semicon-
tinuous nor the condition Aj is bounded for some j ∈ I in Theorem 4 and Corollary 1 can
be eliminated.

Example 3. Set n = 2, d1 = (0, 0)T , d2 = (1, 0)T , and assume that γ1 and γ2 are the
same Euclidean norm.
(i) If

µ1(x) =
{

1 if 0 ≤ x < 1,
0 otherwise, µ2(x) =

{
2−x if x ≥ 0,
0 otherwise,

then µ1 is not upper semicontinuous, and we see that µFMMP(x) < 1 for all x ∈ R
2 and that

supx∈R2 µFMMP(x) = 1. In this case, µFMMP does not attain its maximum on R
2.

(ii) If

µ1(x) = µ2(x) =
{

1 − 2−x if x ≥ 0,
0 otherwise,

then neither A1 nor A2 is bounded, and we see that µFMMP(x) < 1 for all x ∈ R
2 and that

supx∈R2 µFMMP(x) = 1. In this case, µFMMP does not attain its maximum on R
2.

The following example shows that the condition a t-norm T is upper semicontinuous in
Theorem 4 can not be eliminated.

Example 4. Set n = 2, d1 = (0, 0)T , d2 = (1, 0)T , and assume that γ1 and γ2 are the
same rectilinear norm. Put

µ1(x) = µ2(x) =
{

1 − x if x ∈ [0, 1],
0 otherwise.

Then both µ1 and µ2 are upper semicontinuous, and both A1 and A2 are bounded. More-
over, put

T (x, y) =
{

0 if x + y < 1 or x = y = 0.5,
min{x, y} otherwise.
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Then T is a t-norm constructed by using Proposition 3.63 in [5], and it is not upper
semicontinuous at (0.5, 0.5)T . We see that µFMTP(x) < 0.5 for all x ∈ R

2 and that
supx∈R2 µFMTP(x) = 0.5. In this case, µFMTP does not attain its maximum on R

2.

The following example shows that neither the condition maxx∈Rn µFMTP(x) > 0 in The-
orem 4 nor the condition maxx∈Rn µFMMP(x) > 0 in Corollary 1 can be eliminated.

Example 5. Set n = 2, d1 = (0, 0)T , d2 = (1, 0)T , and assume that γ1 and γ2 are the same
Euclidean norm. Put µ1(x) = 0 for all x ∈ R and

µ2(x) =
{

1 − 2−x if x ≥ 0,
0 otherwise.

Then both µ1 and µ2 are continuous, and A1 is bounded. In this case, we see that S∗
FMMP =

R
2, maxx∈R2 µFMMP(x) = 0 and FE = ∅.

4 Stability of optimal solutions of FMTP In this section, we investigate the stability
of optimal solutions of FMTP for t-norms.

Let Λ ⊂ [−∞,∞] be a nonempty interval and {Tλ}λ∈Λ be a class of t-norms. We define
h : R

n × Λ → [0, 1] by

h(x, λ) ≡ Tλ (µ1(γ1(x − d1)), µ2(γ2(x − d2)), · · · , µ�(γ�(x − d�)))

for x ∈ R
n and λ ∈ Λ. For each λ ∈ Λ, h(·, λ) : R

n → [0, 1] is the objective function of
FMTP with the t-norm Tλ. Then we define the optimal value function φ : Λ → [0, 1] and
the optimal set mapping Φ : Λ � R

n by

φ(λ) ≡ sup{h(x, λ) : x ∈ R
n}

and
Φ(λ) ≡ {x ∈ R

n : φ(λ) = h(x, λ)}
for λ ∈ Λ, respectively, where the symbol � stands for a set-valued mapping. For each
λ ∈ Λ, if there exists x ∈ R

n such that φ(λ) = h(x, λ), then φ(λ) is the optimal value of
FMTP with the t-norm Tλ and Φ(λ) is the set of all optimal solutions of FMTP with the
t-norm Tλ.

Theorem 5. If Tλ converges to Tλ0 as λ approaches λ0 and Tλ0 is continuous, then φ is
continuous at λ0, where λ, λ0 ∈ Λ.

Proof. We shall show only the case λ0 ∈ R. It can be shown similarly in the other case. Fix
any ε > 0. Form Theorem 1, Tλ converges uniformly to Tλ0 as λ approaches λ0. Thus there
exists η > 0 such that for all λ ∈ Λ ∩ (λ0 − η, λ0 + η) and x ∈ R

n, |h(x, λ) − h(x, λ0)| < ε
2 .

Fix any λ ∈ Λ ∩ (λ0 − η, λ0 + η). Since sup{h(x, λ0) − ε
2 : x ∈ R

n} ≤ sup{h(x, λ) : x ∈
R

n} ≤ sup{h(x, λ0) + ε
2 : x ∈ R

n}, we have φ(λ0) − ε
2 ≤ φ(λ) ≤ φ(λ0) + ε

2 . Therefore for
all λ ∈ Λ ∩ (λ0 − η, λ0 + η), |φ(λ) − φ(λ0)| ≤ ε

2 < ε. �

Let µ be a function from R into [0, 1]. The set supp(µ) ≡ {x ∈ R : µ(x) > 0} is
called the support of µ. The fuzzy set on R with a membership function µ is said to be
support bounded if the support of µ is bounded. Φ is said to be uniformly bounded around
λ0 ∈ Λ if there exists a neighborhood of λ0, V ⊂ Λ, such that the union ∪λ∈V Φ(λ) ⊂ R

n is
bounded. Φ is said to be upper semicontinuous at λ0 ∈ Λ if Φ is uniformly bounded around
λ0 and x0 ∈ Φ(λ0) for any sequence {λk} ⊂ Λ, which converges to λ0, and {xk} ⊂ R

n with
xk ∈ Φ(λk)(k = 1, 2, · · · ), which converges to x0 ∈ R

n. Φ is said to be lower semicontinuous
at λ0 ∈ Λ if for any sequence {λk} ⊂ Λ, which converges to λ0, and any x0 ∈ Φ(λ0), there
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exist an integer k0 > 0 and a sequence {xk} ⊂ R
n such that {xk} converges to x0 and

xk ∈ Φ(λk)(k ≥ k0). Φ is said to be continuous at λ0 ∈ Λ if Φ is upper and lower
semicontinuous at λ0.

Theorem 6. Assume that all µi, i ∈ I are continuous on [0,∞) ≡ {x ∈ R : x ≥ 0} and
that Aj is support bounded for some j ∈ I and that Tλ converges to Tλ0 as λ approaches
λ0 and that Tλ0 is continuous, where λ, λ0 ∈ Λ. If Φ(λ0) 	= ∅ and φ(λ0) > 0, then Φ is
upper semicontinuous at λ0. Moreover, if there exists a neighborhood of λ0, V ⊂ Λ, such
that Φ(λ) 	= ∅ for all λ ∈ V and if Φ(λ0) is a singleton, then Φ is continuous at λ0.

Proof. We shall show only the case λ0 ∈ R. It can be shown similarly in the other
case. First, we shall show that Φ is uniformly bounded around λ0. From Theorem 5,
φ is continuous at λ0. Since φ(λ0) > 0, there exists η0 > 0 such that φ(λ) > 0 for all
λ ∈ Λ ∩ (λ0 − η0, λ0 + η0). On the other hand, h(x, λ) = 0 for x /∈ {z ∈ R

n : γj(z − dj) ∈
supp(µj)}. Thus Φ(λ) ⊂ {z ∈ R

n : γj(z−dj) ∈ supp(µj)} for all λ ∈ Λ∩ (λ0 − η0, λ0 + η0).
Since supp(µj) is bounded, {z ∈ R

n : γj(z − dj) ∈ supp(µj)} is bounded. Therefore Φ is
uniformly bounded around λ0.

Next, fix any sequence {λk} ⊂ Λ, which converges to λ0, and {xk} ⊂ R
n with xk ∈

Φ(λk)(k = 1, 2, · · · ), which converges to x0 ∈ R
n. Then we shall show that h is continuous

at (x0, λ0). Fix any ε > 0. Since h(·, λ0) : R
n → [0, 1] is continuous, there exists a

neighborhood of x0, U ⊂ R
n, such that for all x ∈ U , |h(x, λ0) − h(x0, λ0)| < ε

2 . Since,
from Theorem 1, Tλ converges uniformly to Tλ0 as λ approaches λ0, there exists η > 0 such
that for all λ ∈ Λ∩(λ0−η, λ0+η) and x ∈ R

n, |h(x, λ)−h(x, λ0)| < ε
2 . Thus for all (x, λ) ∈

U×(Λ∩(λ0−η, λ0+η)), |h(x, λ)−h(x0, λ0)| ≤ |h(x, λ)−h(x, λ0)|+|h(x, λ0)−h(x0, λ0)| < ε.
Therefore h is continuous at (x0, λ0). Since φ(λ0) = limk→∞ φ(λk) = limk→∞ h(xk, λk) =
h(x0, λ0), we have x0 ∈ Φ(λ0). Therefore Φ is upper semicontinuous at λ0.

Finally, suppose that Φ(λ0) = {x0} and that Φ is not lower semicontinuous at λ0.
Then there exists a sequence {λk} ⊂ Λ, which converges to λ0, such that for any sequence
{xk} ⊂ R

n with xk ∈ Φ(λk)(k ≥ k0) for some positive integer k0, {xk} does not converge
to x0. Fix any sequence {xk} ⊂ R

n with xk ∈ Φ(λk)(k ≥ k0) for some positive integer k0.
Since {xk} does not converge to x0, there exists a subsequence {xk(p)} of {xk} such that

lim inf
p→∞ ‖xk(p) − x0‖ > 0,

xk(p) ∈ Φ(λk(p)) (p ∈ N),
λk(p) → λ0 (p → ∞),

where N is the set of all natural numbers. Since Φ is uniformly bounded around λ0, there
exists a subsequence {xk(p,q)} of {xk(p)} such that {xk(p,q)} converges to some x ∈ R

n. In
this case, we have

lim inf
q→∞ ‖xk(p,q) − x0‖ > 0, (*)

xk(p,q) ∈ Φ(λk(p,q)) (q ∈ N),
λk(p,q) → λ0 (q → ∞).

Since Φ is upper semicontinuous at λ0, we have x ∈ Φ(λ0), that is, x = x0, which contradicts
(*). �

5 Some discussions It is known that t-norms are the special case of aggregation oper-
ators. A fuzzy location problem with an aggregation operator instead of a t-norm can
be formulated. It is a problem that a t-norm T in (3) is replaced by an aggregation
operator A. An aggregation operator is a function A : ∪k∈N[0, 1]k → [0, 1] such that:
(A1) A(x1, x2, · · · , xk) ≤ A(y1, y2, · · · , yk) whenever xi ≤ yi for all i ∈ {1, 2, · · · , k}, (A2)
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A(x) = x for all x ∈ [0, 1] and (A3) A(0, 0, · · · , 0) = 0 and A(1, 1, · · · , 1) = 1. The aggrega-
tion operator A is said to be commutative if A(x1, x2, · · · , xk) = A(xα(1), xα(2), · · · , xα(k))
for all k ∈ N with k ≥ 2 and all x1, x2, · · · , xk ∈ [0, 1] and all permutations α = (α(1),
α(2), · · · , α(k)) of (1, 2, · · · , k). The aggregation operator A is said to be associative if
A(x1, · · · , xk, y1, · · · , ym) = A(A(x1, · · · , xk), A(y1, · · · , ym)) for all k,m ∈ N and all
x1, · · · , xk, y1, · · · , ym ∈ [0, 1]. An element e ∈ [0, 1] is called a neutral element of the ag-
gregation operator A if A(x1, · · · , xi−1, e, xi+1, · · · , xk) = A(x1, · · · , xi−1, xi+1, · · · , xk)
for all k ∈ N with k ≥ 2 and all i ∈ {1, 2 · · · , k} and all x1, · · · , xi−1, xi+1, · · · , xk ∈ [0, 1].
Each t-norm is a commutative, associative aggregation operator with neutral element 1.
Moreover, a commutative, associative aggregation operator with neutral element e ∈ [0, 1]
is a t-norm if and only if e = 1; see [5].

FMMP (2) is a problem to find a location which maximizes the worst degree of satis-
faction among degrees of satisfaction for the location of the facility with respect to demand
points, where the worst degree of satisfaction is measured by the minimum operation.
FMTP (3) has the same interpretation as FMMP (2), where the worst degree of satisfac-
tion is measured by a t-norm. Therefore FMTP (3) is a natural generalization of FMMP
(2) in the sense of the interpretation.

Let A be an aggregation operator. When the degree of total satisfaction for the location
x ∈ R

n, which represents the worst degree of satisfaction, is evaluated by A(µ1(γ1(x −
d1)), · · · , µ�(γ�(x − d�))), (i) the commutativity of A means that the degree of total
satisfaction with respect to demand points d1, d2, · · · , d� is the same value as the degree of
total satisfaction with respect to demand points dα(1), dα(2), · · · , dα(�) for all permutations
α = (α(1), α(2), · · · , α(�)) of (1, 2, · · · , �), (ii) the associativity of A means that the worst
degree of satisfaction with respect to demand points d1, d2, · · · , d� is the same value as the
worst degree of satisfaction of the worst degree of satisfaction with respect to d1, · · · , dk

and the worst degree of satisfaction with respect to dk+1, · · · , d� for all k ∈ N with 1 ≤
k ≤ �− 1 and (iii) “A has a neutral element 1” means that the worst degree of satisfaction
is independent of any demand point whose degree of satisfaction is one. We would like to
emphasize that these properties (i), (ii) and (iii) are desirable and needed for a fuzzy location
problem with an aggregation operator as a natural generalization of FMMP (2) in the sense
of the interpretation. As mentioned before, commutative, associative aggregation operators
with neutral element 1 are t-norms. Therefore in the sense of the interpretation, a fuzzy
location problem with an aggregation operator which is a t-norm is a natural generalization
of FMMP (2), but a fuzzy location problem with an aggregation operator which is not a
t-norm is not a natural generalization of FMMP (2). However, it should be noted that a
fuzzy location problem with an aggregation operator, which is not a t-norm, seems to be
another interesting problem which has an interpretation different from that of FMMP (2)
and FMTP (3).

6 Conclusions In this paper, we dealt with fuzzy maximin, max-T and multicriteria
location problems. Our main problem was the fuzzy max-T location problem. First, we gave
some properties of triangular norms. Next, we gave sufficient conditions for the existence
of optimal solutions of the fuzzy maximin and max-T location problems, and derived a
relationship between those optimal solutions and efficient solutions of the fuzzy multicriteria
location problem. Finally, for triangular norms, we investigated the stability of optimal
solutions of the fuzzy max-T location problem.
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